568 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

e,

Eager et al. (1986) constructed an analytical queueing model of this algq—
rithm. Using this model, it was established that the algorithm behaves well and is
stable under a wide range of parameters, including various threshold values, trans-
fer costs, and probe limits.

Nevertheless, it should be observed that under conditions of heavy load, all
machines will constantly send probes to other machines in a futile attempt to find
one that is willing to accept more work. Few processes will be off loaded, but
considerable overhead may be incurred in the attempt to do so.

A Receiver-Initiated Distributed Heuristic Algorithm

A complementary algorithm to the one given above, which is initiated by an
overloaded sender, is one initiated by an underloaded receiver, as shown in
Fig. 8-25(b). With this algorithm, whenever a process finishes, the system check.s
to see if it has enough work. If not, it picks some machine at random and asks it
for work. If that machine has nothing to offer, a second, and then a third machine
is asked. If no work is found with N probes, the node temporarily stops asking,
does any work it has queued up, and tries again when the next process finishes. I.f
no work is available, the machine goes idle. After some fixed time interval, it
begins probing again.

An advantage of this algorithm is that it does not put extra load on the system
at critical times. The sender-initiated algorithm makes large numbers of probes
precisely when the system can least tolerate it—when it is heavily loaded. With
the receiver-initiated algorithm, when the system is heavily loaded, the chance of
a machine having insufficient work is small. However, when this does happen, it
will be easy to find work to take over. Of course, when there is little work to do,
the receiver-initiated algorithm creates considerable probe traffic as all the unem-
ployed machines desperately hunt for work. However, it is far better to have the
overhead go up when the system is underloaded than when it is overloaded.

It is also possible to combine both of these algorithms and have machines try
to get rid of work when they have too much, and try to acquire work when they.do
not have enough. Furthermore, machines can perhaps improve on random polling
by keeping a history of past probes to determine if any machines are chronically
underloaded or overloaded. One of these can be tried first, depending on whether
the initiator is trying to get rid of work or acquire it.

8.3 VIRTUALIZATION

In some situations, an organization has a multicomputer but does not actually
want it. A common example is where a company has an e-mail server, a Web ser-
ver, an FTP server, some e-commerce servers, and others. These all run on dif-
ferent computers in the same equipment rack, all connected by a high-speed net-
work, in other words, a multicomputer. In some cases, all these servers run on

~ SEC. 8.3 VIRTUALIZATION 569

separate machines because one machine cannot handle the load, but in many other
cases the primary reason not to run all these services as processes on the same
machine is reliability: management simply does not trust the operating system to
run 24 hours a day, 365 or 366 days a year, with no failures. By putting each ser-
vice on a separate computer, if one of the servers crashes, at least the other ones
are not affected. While fault tolerance is achieved this way, this solution is expen-
sive and hard to manage because so many machines are involved.

What to do? Virtual machine technology, often just called virtualization,
which is more than 40 years old, has been proposed as a solution, as we discussed
in Sec. 1.7.5. This technology allows a single computer to host multiple virtual
machines, each potentially running a different operating system. The advantage
of this approach is that a failure in one virtual machine does not automatically
bring down any others. On a virtualized system, different servers can run on dif-
ferent virtual machines, thus maintaining the partial failure model that a
multicomputer has, but at a much lower cost and with easier maintainability.

Of course, consolidating servers like this is like putting all of your eggs in one
basket. If the server running all the virtual machines fails, the result is even more
catastrophic than a single dedicated server crashing. The reason virtualization
works however, is that most service outages are not due to faulty hardware, but
due to bloated, unreliable, buggy software, especially operating systems. With vir-
tual machine technology, the only software running in kernel mode is the hypervi-
sor, which has two orders of magnitude fewer lines of code than a full operating
system, and thus two orders of magnitude fewer bugs.

Running software in virtual machines has other advantages in addition to
strong isolation. One of them is that having fewer physical machines saves
money on hardware and electricity and takes up less office space. For a company
such as Amazon, Yahoo, Microsoft, or Google, which may have hundreds of
thousands of servers doing a huge variety of different tasks, reducing the physical
demands on their data centers represents a huge cost savings. Typically, in large
companies, individual departments or groups think of an interesting idea and then

~ goout and buy a server to implement it. If the idea catches on and hundreds or

thousands of servers are needed, the corporate data center expands. It is often

- hard to move the software to existing machines because each application often

needs a different version of the operating system, its own libraries, configuration
files, and more. With virtual machines, each application can take its own environ-
ment with it.

Another advantage of virtual machines is that checkpointing and migrating
virtual machines (e.g., for load balancing across multiple servers) is much easier

 than migrating processes running on a normal operating system. In the latter case,

a fair amount of critical state information about every process is kept in operating
system tables, including information relating to open files, alarms, signal handlers,
and more. When migrating a virtual machine, all that has to be moved is the mem-

ory image, since all the operating system tables move too.

570 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

Another use for virtual machines is to run legacy applications on operating
systems (or operating system versions) no longer supported or which do not work
on current hardware. These can run at the same time and on L.he same hm@wme as
current applications. In fact, the ability to run at the same time apphcat.lons that
use different operating systems is a big argument 1n f;.ivor of virtual machines.

Yet another important use of virtual machines is software flevelopment. 'A
programmer who wants to make sure his software worlfs on Wu}dows 98, Win-
dows 2000, Windows XP, Windows Vista, several versions of Linux, FreeBSD,
OpenBSD, NetBSD, and Mac OS X no longer has to get a dozen computers and
install different operating systems ot all of them. Instead he merely'create a dozen
virtual machines on a single computer and installs different operating systems on
each one. Of course, the programmer could have paﬁitionec} the hard d}sk and
installed a different operating system in each partition, but this gpproach is more
difficult. First of all, standard PCs support only four.primary disk partitions, no
matter how big the disk is. Second, although a multiboot program could be in-
stalled in the boot block, it would be necessary to reboot the computer to wor1'< on
a new operating system. With virtual machines, all of them can run at once, sincé

they are really just glorified processes.
8.3.1 Requirements for Virtualization

As we saw in Chap. 1, there are two approaches to vinue'ilization.. One kmd of
hypervisor, dubbed a type 1 hypervisor (or x{irtual mach}ne rpqnltor) is illus-
trated in Fig. 1-29(a). In reality, it is the operating system, since it 1s the only pro-
gram running in kernel mode. Its job is to support multiple copies of the act}lal
hardware, called virtual machines, similar to the processes a ngrmal operating
system supports. In contrast, a type 2 hypervisor, shown 1n Fig. 1_-29(b), isa
completely different kind of animal. It is just a user program running on, say,
Windows or Linux that “interprets’’ the machine’s instruction set, which also
creates a virtual machine. We put “interprets’ in quotes because usually chunks
of code are processed in a certain way and then cact_led and executed d1r§ct1y to
improve performance, but in principle, full interpretation wo.uld work, albglt slow-
ly. The operating system running on top of the hypervisor 1 both cases 18 called
the guest operating system. In the case of a type 2 h?fpervmor, the operating sys-
tem running on the hardware is called the host operat'mg systerq. .

It is important to realize that in both cases, the virtual machines n}ust act just
like the real hardware. In particular, it must be possible to boot them like real ma-
chines and install arbitrary operating systems on them, just as can_be done on thfa
real hardware. It is the task of the hypervisor to provide this illusion and to do it
efficiently (without being 2 complete interpreter). . .

The reason for the two types has to do with defects in the Intel 3§6 architec-
ture that were slavishly carried forward into new CPUs .for 20 years in the name
of backward compatibility. In a nutshell, every CPU with kernel mode and user

SEC. 8.3 VIRTUALIZATION 571
mode has a set of instructions that may only be executed in kernel mode, such as
instructions that do I/O, change the MMU settings, and so on. In their classic
work on virtualization, Popek and Goldberg (1974) called these sensitive instruc-
tions. There is also a set of instructions that cause a trap if executed in user
mode. Popek and Goldberg called these privileged instructions. Their paper
stated for the first time that a machine is virtualizable only if the sensitive instruc-
tions are a subset of the privileged instructions. In simpler language, if you try to
do something in user mode that you should not be doing in user mode, the hard-
ware should trap. Unlike the IBM/370, which had this property, the 386 did not.
Quite a few sensitive 386 instructions were ignored if executed in user mode. For
example, the POPF instruction replaces the flags register, which changes the bit
that enables/disables interrupts. In user mode, this bit is simply not changed. Asa
consequence, the 386 and its successors could not be virtualized, so they could not
support a type 1 hypervisor.

Actually, the situation is slightly worse than sketched. In addition to the prob-
lems with instructions that fail to trap in user mode, there are instructions that can
read sensitive state in user mode without causing a trap. For example, on the Pen-
tium, a program can determine whether it is running in user mode or kernel mode
by reading its code segment selector. An operating system that did this and
discovered that it was actually in user mode, might make an incorrect decision
based on this information.

This problem was solved when Intel and AMD introduced virtualization in
their CPUs starting in 2005. On the Intel Core 2 CPUs it is called VT (Virtuali-
zation Technology); On the AMD Pacific CPUs it is called SVM (Secure Vir-
tual Machine). We will use the term VT in a generic sense below. Both were
inspired by the IBM VM/370 work, but they are slightly different. The basic idea
is to create containers in which virtual machines can be run. ‘When a guest operat-
ing system is started up in a container, it continues to run there until it causes an
exception and traps to the hypervisor, for example, by executing an I/O instruc-
tion. The set of operations that trap is controlled by a hardware bitmap set by the
hypervisor. With these extensions the classical trap-and-emulate virtual machine
approach becomes possible.

8.3.2 Type 1 Hypervisors

Virtualizability is an important issue, so let us examine it a more closely. In
Fig. 8-26 we see a type 1 hypervisor supporting one virtual machine. Like all
type 1 hypervisors, it runs on the bare metal. The virtual machine runs as a user
process in user mode, and as such, is not allowed to execute sensitive instructions.
The virtual machine runs a guest operating system that thinks it is in kernel mode,
although, of course, it is really in user mode. We will call this virtual kernel
mode. The virtual machine also runs user processes, which think they are in user
mode (and really are in user mode).

572 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

User process

G O } Virtual user mode WSk
Virtual

mode
machine .) .
Guest operating system \ Virtual kernel mode

) . 5 < Kernel
- ¥ Trap on privileged instruction mode

Type 1 hypervisor

Figure 8-26. When the operating system in a virtual machine executes a
kernel-only instruction, it traps to the hypervisor if virtualization technology is

present.

What happens when the operating system (which thinks it is kernel mode) ex-
ecutes a sensitive instruction (one allowed only in kernel mode)? On CPUS with-
out VT, the instruction fails and the operating system usually crashes.‘ Th1s makes
true virtualization impossible. One could certainly argue that au sensitive instruc-
tions should always trap when executed in user mode, but that is not how the 386
and its non-VT successors worked. .

On CPUs with VT, when the guest operating system executes a sensitive in-
struction, a trap to the kernel occurs, as illustrated in Fig. 8-26. The hyperwsor
can then inspect the instruction to see if it was issued by the guest operating sys-
tem in the virtual machine or by a user program in the v1rtu_a1 machine. In th'e
former case, it arranges for the instruction to be carried out; m'the latter.c.asc,. it
emulates what the real hardware would do when confronted with a sensitive in-
struction executed in user mode. If the virtual machine does not have VT, the .m-
struction is typically ignored; if it does have VT, it traps to the guest operating
system running in the virtual machine.

8.3.3 Type 2 Hypervisors

Building a virtual machine system is relatively straightfo_rward when VT is
available, but what did people do before that? Clearly, running a full operating
system in a virtual machine would not work because (some.: of) the sensitive in-
structions would just be ignored, causing the system to fail. .Instead What hap-
pened was the invention of what are now called type 2 hypervisors, as illustrated
in Fig. 1-29(b). The first of these was VMware (Adams and Agesen, 200§; and
Waldspurger, 2002), which was the outgrowth of the DISCO resegrch project at
Stanford University (Bugnion et al., 1997). VMware runs as an ordinary user pro-
gram on top of a host operating system such as Windows or Linux. th?,n it starts
for the first time, it acts like a newly booted computer and expects to find a CD-

SEC. 8.3 VIRTUALIZATION 573

ROM containing an operating system in the CD-ROM drive. It then installs the
operating system to its virtual disk (really just a Windows or Linux file) by run-
ning the installation program found on the CD-ROM. Once the guest operating
system is installed on the virtual disk, it can be booted at run.

Now let us look at how VMware works in a bit more detail. When executing
a Pentium binary program, whether obtained from the installation CD-ROM or
from the virtual disk, it scans the code first looking for basic blocks, that is,
straight runs of instructions ending in a jump, call, trap, or other instruction that
changes the flow of control. By definition, no basic block contains any instruction
that modifies the program counter except the last one. The basic block is
inspected to see if it contains any sensitive instructions (in the Popek and Gold-
berg sense). If so, each one is replaced with a call to a VMware procedure that
handles it. The final instruction is also replaced with a call into VMware.

Once these steps have been taken, the basic block is cached inside VMware
and then executed. A basic block not containing any sensitive instructions will
execute exactly as fast under VMware as it will on the bare machine—because it
is running on the bare machine. Sensitive instructions are caught this way and
emulated. This technique is known as binary translation.

After the basic block has completed executing, contro] is returned to VMware,
which locates its successor. If the successor has already been translated, it can be
executed immediately. If it has not been, it is first translated, cached, then exe-
cuted. Eventually, most of the program will be in the cache and run at close to
full speed. Various optimizations are used, for example, if a basic block ends by
jumping to (or calling) another one, the final instruction can be replaced by a
jump or call directly to the translated basic block, eliminating all overhead associ-
ated with finding the successor block. Also, there is no need to replace sensitive
instructions in user programs; the hardware will just ignore them anyway.

It should now be clear why type 2 hypervisors work, even on unvirtualizable
hardware: all sensitive instructions are replaced by calls to procedures that emu-
late these instructions. No sensitive instructions issued by the guest operating sys-
tem are ever executed by the true hardware. They are turned into calls to the
hypervisor, which them emulates them.

One might naively expect that CPUs with VT would greatly outperform the

 software techniques used by the type 2 hypervisors, but measurements show a

mixed picture (Adams and Agesen, 2006). It turns out that the trap-and-emulate
approach used by VT hardware generates a lot of traps, and traps are very expen-
sive on modern hardware because they ruin CPU caches, TLBs, and branch pre-
diction tables internal to the CPU. In contrast, when sensitive instructions are
teplaced by calls to VMware procedures within the executing process, none of
this context switching overhead is incurred. As Adams and Agesen show, de-
pending on the workload, sometimes software beats hardware. For this reason,
some type 1 hypervisors do binary translation for performance reasons, even
though the software will execute correctly without it.

574 MULTIPLE PROCESSOR SYSTEMS CHAP. 8

8.3.4 Paravirtualization

Both type 1 and type 2 hypervisors work with unmodified guest operating sys-
tems, but have to jump through hoops to get reasonable performance. A different
approach that is becoming popular is to modify the source code of the guest oper-
ating system so that instead of executing sensitive instructions at all, it makes
hypervisor calls. In effect the guest operating system is acting like a user pro-
gram making system calls to the operating system (the hypervisor). When this
route is taken, the hypervisor must define an interface consisting of a set of proce-
dure calls that guest operating systems can use. This set of calls forms what is ef-
fectively an API (Application Programming Interface) even though it is an in-
terface for use by guest operating systems, not application programs.

Going one step further, by removing all the sensitive instructions from the op-
erating system and just having it make hypervisor calls to get system services like
I/O, we have turned the hypervisor into a microkernel, like that of Fig. 1-26. A
guest operating system from which (some) sensitive instructions have been inten-
tionally removed is said to be paravirtualized (Barham et al., 2003; and Whi-
taker et al., 2002). Emulating peculiar hardware instructions is an unpleasant and
time-consuming task. It requires a call into the hypervisor and then emulating the
exact semantics of a complicated instruction. It is far better just to have the guest
operating system call the hypervisor (or microkernel) to do I/O, and so on. The
main reason the first hypervisors just emulated the complete machine was the lack
of availability of source code for the guest operating system (e.g., for Windows)
or the vast number of variants (e.g., for Linux). Perhaps in the future, the
hypervisor/microkernel API will be standardized, and subsequent operating sys-
tems will be designed to call it instead of using sensitive instructions. Doing so
would make virtual machine technology easier to support and use.

The difference between true virtualization and paravirtualization is illustrated
in Fig. 8-27. Here we have two virtual machines being supported on VT hard-
ware. On the left, is an unmodified version of Windows as the guest operating
system. When a sensitive instruction is executed, the hardware causes a trap to the
hypervisor, which then emulates it and returns. On the right, is a version of Linux
modified so that it no longer contains any sensitive instructions. Instead, when it
needs to do /O or change critical internal registers (such as the one pointing to the
page tables), it makes a hypervisor call to get the work done, just like an applica-
tion program making a system call in standard Linux.

In Fig. 8-27 we have shown the hypervisor as being divided into two parts
separated by a dashed line. In reality, there is only one program running on the
hardware. One part of it is responsible for interpreting trapped sensitive instruc-
tions, in this case, from Windows. The other part of it just carries out hypervisor
calls. In the figure the latter part is labeled “microkernel.”” If the hypervisor is
intended to run only paravirtualized guest operating systems, there is no need for
the emulation of sensitive instructions and we have a true microkernel, which just

SEC. 8.3 VIRTUALIZATION 575

True virtualization Paravirtualization

i,
O O e [O O

to sensitive
instruction

Trap due
to hypervisor
call

Unmodified Windows

Modified Linux

Type 1 hypervisor /

Microkernel

Figure 8-27. A hypervisor supporting both true virtualization and paravirtualization,

provides very basic services such as process dispatching and managing the MMU
Tbe boundary between a type 1 hypervisor and a microkernel is vague already and
vylll get even less clear as hypervisors begin acquiring more and more func-
'tlo'nahty gnd hypervisor calls, as seems likely. This subject is controversial, but it
Is increasingly clear that the program running in kernel mode on the bare, hard-
ware should be small and reliable and consist of thousands of lines of code, not
millions of lines of code. The topic has been discussed by various researc,hers
gl(—)lg%i et al., 2005; Heiser et al. 2006; Hohmuth et al., 2004; and Roscoe et al.,

Para.v%'rtua_lizing the guest operating system raises a number of issues. First. if
the sensitive instructions are replaced with calls to the hypervisor, how can t’he
operating system run on the native hardware? After all, the hardware does not
understapd these hypervisor calls. And second, what if there are multiple hypervi-
sors available in the marketplace, such as VMware, the open-source Xen origi-
nally fr.om the University of Cambridge, and Microsoft’s Viridian, all with some-
;hat?dlfferent hypervisor APIs? How can the kernel be modified to run on all of

em?

Amsden et al. (2006) have proposed a solution. In their model, the kernel is
modified to call special procedures whenever it needs to do something sensitive
Together these procedures, called the VMI (Virtual Machine Interface) form a.
low-lev.el layer that interfaces with the hardware or hypervisor. These procedures
are designed to be generic and not tied to the hardware or to any particular hyper-
visor.

. An e;lcample of this technique is given in Fig. 8-28 for a paravirtualized ver-
sion of Linux they call VMI Linux (VMIL). When VMI Linix runs on the bare
hardware, it has to be linked with a library that issues the actual (sensitive) in-
struct1qn needed to do the work, as shown in Fig. 8-28(a). When running on a
hyperv1§or, say VMware or Xen, the guest operating system is linked with dif-
ferent libraries that make the appropriate (and different) hypervisor calls to the

CHAP. 8
576 MULTIPLE PROCESSOR SYSTEMS

ur lderlylng hyperVISOL In this way, the core Ot the OPEIatlng Systenl remains po[t"

able yet is hypervisor friendly and still efficient.

VMI Linux
VMIL to Vmware lib.

r call

Sensitive
instruction
executed by

(b) (c)

(a)
re 8-28. VMI Linux running on (a) the bare hardware (b) VMware (c) Xen.

Figui

hine interface have also been made. Another

ol i i e The idea is conceptually similar to what we

i irt ops.
opular one is called paravirt _
1<;e:§cribed above, but different in the details.

8.3.5 Memory Virtualization

i irtualize the CPU. Buta

ddressed the issue of how to vir .
oie tr}fan just a CPU. It also has memory and I/O devices.
too. Let us see how that is done. o ;
ms nearly all support virtual memory, whxgh 115 ba51_
the virtual address space onto pages of physical mem

ry i in,

ory. This mapping is defined by (multilevel) page tables. Tiq;lecgailslt)é rﬂ;ﬁ g)lzpp g

: n m h i tro CP

i i i ing the operating system set a con . U

ﬁ) Ste : cl)ints(ig(gllebt};pj;l/e% page table. Virtualization greatly complicates memory
at p

management. ' 2
, for example, a virtual machi : T
systsgpigloistedecides to map its virtual pages 7, 4, and 3 onto physical pages

ini i i loads a
and 12, respectively. It builds page tables contatl);nnngtlllnsi g;igglfn ?gc;e I?Siﬁve’
, is
i to point to the top-level page table. i
haIdW\a}I; (rZePgIIJSt?: wiﬁ trap; with VMware it will cause a call to a VMV(;/?IC; [frolgor
gnr: ona parz;virtualized operating system, it will generate a hypervis A
u ; . .
simplicity, let us assume it traps into a type
same in all three cases. .
What does the hypervisor do novsi
is virtual mac
al pages 10, 11, and 12 to tpls vir
fna;) tl%e virtual machine’s virtual pages 7,4, and 3 to use

So far we have just
computer system has m
They have to be virtualized,

Modern operating sygte
cally a mapping of pages in

ne is running, and the guest operating

7 One solution is to actually allocate physi

them. So far, so good.

1 hypervisor, but the problem is the

hine and set up the actual page tables to

SEC. 8.3 VIRTUALIZATION SFT

Now suppose a second virtual machine starts and maps its virtual pages 4, 5,
and 6 onto physical pages 10, 11, and 12 and loads the control register to point to
its page tables. The hypervisor catches the trap, but what should it do? It cannot
use this mapping because physical pages 10, 11, and 12 are already in use. It can
find some free pages, say 20, 21, and 22 and use them, but it first has to create
new page tables mapping the virtual pages 4, 5, and 6 of virtual machine 2 onto
20, 21, and 22. If another virtual machine starts and tries to use physical pages
10, 11, and 12, it has to create a mapping for it. In general, for each virtual ma-
chine the hypervisor needs to create a shadow page table that maps the virtual
pages used by the virtual machine onto the actual pages the hypervisor gave it.

Worse yet, every time the guest operating system changes its page tables, the
hypervisor must change the shadow page tables as well. For example, if the guest
OS remaps virtual page 7 onto what it sees as physical page 200 (instead of 10),
the hypervisor has to know about this change. The trouble is that the guest operat-
ing system can change its page tables by just writing to memory. No sensitive op-
erations are required, so the hypervisor does not even know about the change and
certainly cannot update the shadow page tables used by the actual hardware.

A possible (but clumsy) solution, is for the hypervisor to keep track of which
page in the guest’s virtual memory contains the top-level page table. It can get this
information the first time the guest attempts to load the hardware register that
points to it because this instruction is sensitive and traps. The hypervisor can
create a shadow page table at this point and also map the top-level page table and
the page tables it points to as read only. Subsequent attempts by the guest operat-
ing system to modify any of them will cause a page fault and thus give control to
the hypervisor, which can analyze the instruction stream, figure out what the guest
OS is trying to do, and update the shadow page tables accordingly. It is not
pretty, but it is doable in principle.

This is an area in which future versions of VT could provide assistance by
doing a two-level mapping in hardware. The hardware could first map the virtual
page to the guest’s idea of the physical page, then map that address (which the
hardware sees as a virtual address) onto the physical address, all without causing
any traps. In this way no page tables would have to be marked as read only and
the hypervisor would merely have to provide a mapping between each guest’s vir-
tual address space and physical memory. When switching virtual machines, it
would just change this mapping, the same way a normal operating system changes
the mapping when switching processes.

In a paravirtualized operating system, the situation is different. Here the
paravirtualized OS in the guest knows that when it is finished changing some
process’ page table, it had better inform the hypervisor. Consequently, it first
changes the page table completely, then issues a hypervisor call telling the hyper-
visor about the new page table. Thus instead of getting a protection fault on every
update to the page table, there is one hypervisor call when the whole thing has
been updated, obviously a more efficient way to do business.

578 MULTIPLE PROCESSOR SYSTEMS CHAP. 8
8.3.6 I/O Virtualization

Having looked at CPU and memory virtualization, the next step is to examine
1/O virtualization. The guest operating system typically will start out probing the
hardware to find out what kinds of I/O devices are attached. These probes will
trap to the hypervisor. What should the hypervisor do? One approach is for it to
report back that the disks, printers, and so on are the ones that the hardware ac-
tually has. The guest will then load device drivers for these devices and try to use
them. When the device drivers try to do actual I/O, they will read and write the
device’s hardware device registers. These instructions are sensitive and will trap
to the hypervisor, which could then copy the needed values to and from the hard-
ware registers, as needed.

But here, too, we have a problem. Each guest OS thinks it owns an entire disk
partition, and there may be many more virtual machines (hundreds) than there are
disk partitions. The usual solution is for the hypervisor to create a file or region
on the actual disk for each virtual machine’s physical disk. Since the guest OS is
trying to control a disk that the real hardware has (and which the hypervisor un-
derstands), it can convert the block number being accessed into an offset into the
file or disk region being used for storage and do the I/O.

It is also possible for the disk that the guest is using to be different from the
real one. For example, if the actual disk is some brand-new high-performance disk
(or RAID) with a new interface, the hypervisor could advertise to the guest OS
that it has a plain old IDE disk and let the guest OS install an IDE disk driver.
When this driver issues IDE disk commands, the hypervisor converts them into
commands to drive the new disk. This strategy can be used to upgrade the hard-
ware without changing the software. In fact, this ability of virtual machines to
remap hardware devices was one of the reasons VM/370 became popular: com-
panies wanted to buy new and faster hardware but did not want to change their
software. Virtual machine technology made this possible.

Another I/O problem that must be solved somehow is the use of DMA, which
uses absolute memory addresses. As might be expected, the hypervisor has to
intervene here and remap the addresses before the DMA starts. However, hard-
ware is starting to appear with an /O MMU, which virtualizes the I/O the same
way the MMU virtualizes the memory. This hardware eliminates the DMA prob-
lem.

A different approach to handling I/O is to dedicate one of the virtual machines

to running a standard operating system and reflect all I/O calls from the other ones -

to it. This approach is enhanced when paravirtualization is used, so the command
being issued to the hypervisor actually says what the guest OS wants (e.g., read
block 1403 from disk 1) rather than being a series of commands writing to device
registers, in which case the hypervisor has to play Sherlock Holmes and figure out
what it is trying to do. Xen uses this approach to I/O, with the virtual machine
that does I/O called domain 0.

SEC. 8.3 VIRTUALIZATION 579

I/O virtualization is an area in which type 2 hypervisors have a practical ad-
vantage over type 1 hypervisors: the host operating system contains the device
drivers for all the weird and wonderful /O devices attached to the computer.
When an application program attempts to access a strange I/O device, the tran-
slated code can call the existing device driver to get the work done. With a type 1
hypervisor, the hypervisor must either contain the driver itself, or make a call to a
driver in domain 0, which is somewhat similar to a host operating system. As vir-
tual machine technology matures, future hardware is likely to allow application
programs to access the hardware directly in a secure way, meaning that device
drivers can be linked directly with application code or put in separate user-mode
servers, thereby eliminating the problem.

8.3.7 Virtual Appliances

Virtual machines offer an interesting solution to a problem that has long
plagued users, especially users of open-source software: how to install new appli-
cation programs. The problem is that many applications are dependent on
numerous other applications and libraries, which are themselves dependent on a
host of other software packages, and so on. Furthermore, there may be dependen-
cies on particular versions of the compilers, scripting languages, and the operating
system.

With virtual machines now available, a software developer can carefully con-
struct a virtual machine, load it with the required operating system, compilers, li-
braries, and application code, and freeze the entire unit, ready to run. This virtual
machine image can then be put on a CD-ROM or a Website for customers to in-
stall or download. This approach means that only the software developer has to
understand all the dependencies. The customers get a complete package that ac-
tually works, completely independent of which operating system they are running
and which other software, packages, and libraries they have installed. These
“shrink-wrapped” virtual machines are often called virtual appliances.

8.3.8 Virtual Machines on Multicore CPUs

The combination of virtual machines and multicore CPUs opens a whole new
world in which the number of CPUs available can be set in software. If there are,
say, four cores, and each one can be used to run, for example, up to eight virtual
machines, a single (desktop) CPU can be configured as a 32-node multicomputer
if need be, but it can also have fewer CPUs, depending on the needs of the soft-
ware. Never before has it been possible for an application designer to first choose
how many CPUs he wants and then write the software accordingly. This clearly
represents a new phase in computing.

Although it is not so common yet, it is certainly conceivable that virtual ma-
chines could share memory. All that has to be done is map physical pages into the

(’ J0v MUL LIFLE PKUCEDDUK D XD 1LEIVLD wHnar. s

N
‘address spaces of multiple virtual machines. If this can be done, a single computer
becomes a virtual multiprocessor. Since all the cores in a multicore chip share the
same RAM, a single quad-core chip could easily be configured as a 32-node mul-
tiprocessor or a 32-node multicomputer. as needed.

The combination of multicore, virtual machines, and hypervisors and micro-
kernels is going to radically change the way people think about computer systems.
Current software cannot deal with the idea of the programmer determining how
many CPUs are needed, whether they should be set up as a multicomputer or a
multiprocessor, and how minimal kernels of one kind or another fit into the pic-

different operating system, each of which has its own file system, and be under a
different administration. A typical example of a multicomputer is 512 nodes in a
single room at a company or university working on, say, pharmaceutical model-
ing, whereas a typical distributed system consists of thousands of machines
loosely cooperating over the Internet. Figure 8-29 compares multiprocessors,
multicomputers, and distributed systems on the points mentioned above.

Item Multiprocessor
Node configuration CPU

Multicomputer
CPU, RAM, net interface

Distributed System
Complete computer

ture. Future software will have to deal with these issues. Node peripherals All shared Shared exc. maybe disk | Full set per node
Location Same rack Same room Possibly worldwide
8.3.9 Licensing Issues Internode communication | Shared RAM Dedicated interconnect | Traditional network
Operating systems One, shared Multiple, same Possibly all different
Most software is licensed on a per-CPU basis. In other words, when you buy a File systems Gne, shared One, shared e

program, you have the right to run it on just one CPU. Does this contract give you

Administration One organization | One organization Many organizations

the right to run the software on multiple virtual machines all running on the same
physical machine? Many software vendors are somewhat unsure of what to do
here.

The problem is much worse in companies that have a license allowing them to
have n machines running the software at the same time, especially when virtual
machines come and go on demand.

In some cases, software vendors have put an explicit clause in the license for-
bidding the licensee from running the software on a virtual machine or on an
unauthorized virtual machine. Whether any of these restrictions will hold up in
court and how users respond to them remains to be seen.

8.4 DISTRIBUTED SYSTEMS

Having now completed our study of multiprocessors, multicomputers, and vir-
tual machines, it is time to turn to the last type of multiple processor system, the
distributed system. These systems are similar to multicomputers in that each
node has its own private memory, with no shared physical memory in the system.
However, distributed systems are even more loosely coupled than multicom-
puters.

To start with, the nodes of a multicomputer generally have a CPU, RAM, a
network interface, and perhaps a hard disk for paging. In contrast, each node in a
distributed system is a complete computer, with a full complement of peripherals.
Next, the nodes of a multicomputer are normally in a single room, so they can
communicate by a dedicated high-speed network, whereas the nodes of a distrib-
uted system may be spread around the world. Finally, all the nodes of a multicom-
puter run the same operating system, share a single file system, and are under a
common administration, whereas the nodes of a distributed system may each run a

Figure 8-29. Comparison of three kinds of multiple CPU systems.

Multicomputers are clearly in the middle using these metrics. An interesting
question is: “‘Are multicomputers more like multiprocessors or more like distrib-
uted systems?”” Oddly enough, the answer depends strongly on your perspective.
From a technical perspective, multiprocessors have shared memory and the other
two do not. This difference leads to different programming models and different
mindsets. However, from an applications perspective, multiprocessors and multi-
computers are just big equipment racks in a machine room. Both are used for
solving computationally intensive problems, whereas a distributed system con-
necting computers all over the Internet is typically much more involved in com-
munication than in computation and is used in a different way.

To some extent, loose coupling of the computers in a distributed system is
both a strength and a weakness. It is a strength because the computers can be
used for a wide variety of applications, but it is also a weakness, because pro-
gramming these applications is difficult due to the lack of any common underly-
ing model.

Typical Internet applications include access to remote computers (using rel-
net, ssh, and rlogin), access to remote information (using the World Wide Web
and FTP, the File Transfer Protocol), person-to-person communication (using e-
mail and chat programs), and many emerging applications (e.g., e-commerce,
telemedicine, and distance learning). The trouble with all these applications is
that each one has to reinvent the wheel. For example, e-mail, FTP, and the World
Wide Web all basically move files from point A to point B, but each one has its
own way of doing it, complete with its own naming conventions, transfer proto-
cols, replication techniques, and everything else. Although many Web browsers

