Distributed Web Applications

* WWW principles

» Case Study: web caching as an illustrative example
— Invalidate versus updates
— Push versus Pull
— Cooperation between replicas

| \/] aSSAmherst CS677: Distributed and Operating Systems Lecture 20, page 1|

Traditional Web-Based Systems

2. Server fetches

Client machine Server machine document from
local file
Browser Web server / Eﬁ
A A
O
_ 3.Response)

/\ J

4
1. Get document request (HTTP)

* Client-server web applications

| \/] aSSAmherst CS677: Distributed and Operating Systems Lecture 20, page 2

Web Browser Clients

User interface

@1— Browser engine

Rendering engine

pus 3oeq Ae|dsig

Client-side
Network script HTML/XML
comm. interpreter parser
|

* The logical components of a Web browser.

| \/I assAmherst CS677: Distributed and Operating Systems Lecture 20, page 3

The Apache Web Server

Module Module Etifiehian Module

IS S o1

Link between
function and hook

> Hook > Hook » Hook[——=7=-==== —>Hook
Udd, g, A, 1l
7 Apache core [€
Functions called per hook
Request T l Response

» The general organization of the Apache Web server.

| \/I assAmherst CS677: Distributed and Operating Systems Lecture 20, page 4

Proxy Servers

HTTP t FTP t
request request |

Browser Web proxy FTP server

< <€
HTTP response FTP response

» Using a Web proxy when the browser does not speak FTP (or for
caching and offloading)

| \/] assAmherst CS677: Distributed and Operating Systems Lecture 20, page 5

Multitiered Architectures

3. Start process to fetch document

- Getreques » HTTP \ | cal 4. Datab|ase interaction
& 1 request | ~ program [
6. Return result handler \
5. HTML document @
crealted
Yxebiselver CGl process Database server

» Three tiers: HTTP, application, and database tier

| \/] assAmherst CS677: Distributed and Operating Systems Lecture 20, page 6

Web Server C

Web
server

Web
server

Web
server

usters

Web
server

I L) I
MY

Front end handles
Front all incoming requests
end and outgoing responses

Request ? ¢Response

* Clients connect to front-end dispatcher, which forwards requests
to a replica (recall discussion from Cluster scheduling)

» Each replica can be a tiered system

— For consistency, database can be a common/non-replicated
UMassAmherst CS677: Distributed and Operating Systems Lecture 20, page 7

Web Server Clusters (2)

6. Server responses
Web
5. Forward server 3. Hand off
other TCP conndction
messages Distributor
. Other messages> ' Dis-
Client > Switch 4. Inform patcher
Setup request

V\iwi’(ch /
1. Pass setup request Distributor

S 2. Dispatcher selects
to a distributor server

Web
server

* A scalable content-aware cluster of Web servers.

CS677: Distributed and Operating Systems Lecture 20, page 8

UMassAmbherst

Web Clusters

Request-based scheduling

— Forward each request to a replica based on a policy

Session-based scheduling
— Forward each session to a replica based on a policy

Scheduling policy: round-robin, least loaded

HTTP redirect vs TCP splicing vs TCP handoff

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 20, page 9

Elastic Scaling

* Web workloads: temporal time of day, seasonal variations
— Flash crowds: black friday, sports events, news events
* Overloads can occur even with clustering and replication

* FElastic scaling: dynamically vary application capacity based on
workload (aka auto-scaling, dynamic provisioning)

* Two approaches:
— Horizontal scaling: increase or decrease # of replicas based on load

— Vertical scaling: increase or decrease size of replica (e.g., # of cores
allocated to container or VM) based on load

— Proactive versus reactive scaling
— Proactive: predict future load and scale in advance
— Reactive: scale based on observed workload

* Common in large cloud-based web applications
UMassAmherst CS677: Distributed and Operating Systems Lecture 20, page 10

Micro-services Architecture

» Micro-services: application is a collection of smaller

services

« Example of service-oriented architecture

* Modular approach to overcome “monolith hell”

others

UMassAmbherst

Each microservice is small and can be maintained independently of

Each 1s independently deployable

Clustering and auto-scaling can be performed independently

CS677: Distributed and Operating Systems Lecture 20, page 11

Scaling Web applications

* Three approaches for scaling

3 dimensions to scaling

Y axis -
functional
decomposition

Scale by

splitting
different things

UMassAmbherst

X axis - horizontal duplication 23

Scale by cloning

https://microservices.io/articles/scalecube.html

CS677: Distributed and Operating Systems Lecture 20, page 12

Web Documents

Type Subtype Description

Text Plain Unformatted text
HTML Text including HTML markup commands
XML Text including XML markup commands

Image GIF Still image in GIF format
JPEG Still image in JPEG format

Audio Basic Audio, 8-bit PCM sampled at 8000 Hz
Tone A specific audible tone

Video MPEG Movie in MPEG format
Pointer Representation of a pointer device for presentations

Application | Octet-stream | An uninterpreted byte sequence
Postscript A printable document in Postscript
PDF A printable document in PDF

Multipart Mixed Independent parts in the specified order
Parallel Parts must be viewed simultaneously

 Six top-level MIME types and some common subtypes.

UMassAmbherst

CS677: Distributed and Operating Systems

HTTP Connections

Client Server
=
References T -
L A A 4
0OS

TCP connection

(a)

» Using nonpersistent connections.

UMassAmbherst

CS677: Distributed and Operating Systems

Lecture 20, page 13

Lecture 20, page 14

* (b) Using persistent connections.

Client

References

| ! I
| | I
\ | 1
\ | /

P 1.1 Connections

Server

e

P
& o

Iy g

0OS \AT‘/
g

TCP connection

UMassAmbherst CS677: Distributed and Operating Systems Lecture 20, page 15
HTTP Methods
Operation Description
Head Request to return the header of a document
Get Request to return a document to the client
Put Request to store a document
Post Provide data that are to be added to a document (collection)
Delete Request to delete a document

* Operations supported by HTTP.

UMassAmbherst

CS677: Distributed and Operating Systems

Lecture 20, page 16

H

P20

« Http 1.1 allows pipelining over same connection
— Most browsers do not use this feature

« HTTP v2: Designed to reduce message latency
— No new message or response types

« Key features

— Binary headers (over text headers of http 1.1)

— Uses compression of headers and messages

— Multiplex concurrent connection over same TCP connection

* each connection has multiple “streams”, each carrying a
request and response
— No blocking caused by pipelining in http 1.1

See https://developers.google.com/web/fundamentals/performance/http2/
(\/I assAmherst CS677: Distributed and Operating Systems

Lecture 20, page 17

Web Services Fundamentals

Client machine

Look up
a service Client
application
> Stub

Server machine

Communication
subsystem

Server

Publish service

application

A

Stub

SOAP

Communication
subsystem

Generate stub
from WSDL
description

Generate stub
from WSDL
description

Irﬂ Service description

(WSDL) !
7]

Y

A

Directory service (UDDI)

* The principle of a Web service.

(\/I assAmherst CS677: Distributed and Operating Systems

Lecture 20, page 18

Simple Object Access Protocol

<env:Envelope xmins:env="http://www.w3.0rg/2003/05/soap-envelope">

<env:Header>
<n:alertcontrol xmins:n="http://example.org/alertcontrol">
<n:priority>1</n:priority>
<n:expires>2001-06-22T14:00:00-05:00</n:expires>
</n:alertcontrol>
</env:Header>
<env:Body>
<m:alert xmIns:m="http://example.org/alert">
<m:msg>Pick up Mary at school at 2pm</m:msg>
</m:alert>
</env:Body>
</env:Envelope>

* An example of an XML-based SOAP message.

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 20, page 19

RESTful Web Services

* SOAP heavy-weight protocol for web-based
distributed computing
— RESTful web service: lightweight , point-to-point XML
comm
* REST=representative state transfer
— HTTP GET => read
— HTTP POST => create, update, delete
— HTTP PUT => create, update
— HTTP DELETE => delete

* Simpler than RPC-sytle SOAP

— closer to the web

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 20, page 20

RESTful Example

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8

GET /StockPrice/IBM HTTP/1.1 Content-Length: nnn

Host: example.org
Accept: text/xml
Accept-Charset: utf-8

<?xml version="1.0"?>

<s:Quote xmlns:s="http://example.org/stock-service">
<s:TickerSymbol>IBM</s:TickerSymbol>
<s:StockPrice>45.25</s:StockPrice>

</s:Quote>

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 20, page 21

Corresponding SOAP Call

GET /StockPrice HTTP/1.1

Host: example.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?2>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:s="http://www.example.org/stock-service">
<env:Body>
<s:GetStockQuote>
<s:TickerSymbol>IBM</s:TickerSymbol>
</s:GetStockQuote>
</env:Body>
</env:Envelope>

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:s="http://www.example.org/stock-service">
<env:Body>
<s:GetStockQuoteResponse>
<s:StockPrice>45.25</s:StockPrice>
</s:GetStockQuoteResponse>
</env:Body>
</env:Envelope>

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 20, page 22

SOAP vs RESTful WS

* Language, platform and * Language and platform
transport agnostic agnostic

* Supports general * Point-to-point only; no
distributed computing intermediaries

 Standards based (WSDL, * Lack of standards support
UDDI dir. service...) for security, reliability (“roll

¢ Builtin error handling you own”

« Extensible * Simpler, less learning curve,

less reliance on tools
* Tied to HTTP transport layer

e More concise

* More heavy-weight

* Harder to develop

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 20, page 23

