Distributed Consensus

e Part 1: Consensus
e Part 2: Paxos
e Part 3: RAFT

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 1

Consensus

* Consensus: get a group of processes to agree on something
* Consensus vs Byzantine Agreement

Achieve reliability in presence of faulty processes
— requires processes to agree on data value needed for computation

— Examples: whether to commit a transaction, agree on identity of a
leader, atomic broadcasts, distributed locks

4 Properties of a consensus protocol with fail-stop failures
— Agreement: every correct process agrees on same value
— Termination: every correct process decides some value
— Validity: If all propose v, all correct processes decides v

— Integrity: Every correct process decided at most one value
and if it decides v, someone must have proposed v.
UMassAmherst CS677: Distributed and Operating Systems Lecture 19, page 2

2PC, 3PC Problems

Both have problems in presence of failures
— Safety is ensured but liveness is not

2PC

— must wait for all nodes and coordinator to be up

— all nodes must vote
— coordinator must be up

« 3PC

— handles coordinator failure
— but network partitions are still an issue

Paxos : how to reach consensus in distributed systems
that can tolerate non-malicious failures?
— majority rather than all nodes particpate

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 3

Paxos: fault-tolerant agreement

Paxos lets nodes agree on same value despite:
— node failures, network failures and delays
* Use cases:

— Nodes agree X is primary (or leader)
— Nodes agree Y is last operation (order operations)

General approach
— One (or more) nodes decides to be leader (aka proposer)
— Leader proposes a value and solicits acceptance from others
— Leader announces result or tries again

Proposed independently by Lamport and Liskov
— Widely used in real systems (ZooKeeper, Chubby, Spanner)

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 4

Paxos Requirements

» Safety (Correctness)
— All nodes agree on the same value
— Agreed value X was proposed by some node

» Liveness (fault-tolerance)

— If less than N/2 nodes fail, remaining nodes will eventually
reach agreement

— Liveness not guaranteed if steady stream of failures

* Why is agreement hard?
— Network partitions

— Leader crashes during solicitation or after deciding but before
announcing results,

— New leader proposes different value from already decided value,
— More than one node becomes leader simultaneously....

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 5

Paxos Setup

 Entities: Proposer (leader), acceptor, learner

— Leader proposes value, solicits acceptance from acceptors

— Acceptors are nodes that want to agree; announce chosen value to

learners

» Proposals are ordered by proposal #

— node can choose any high number to try to get proposal accepted

— An acceptor can accept multiple proposals

* If prop with value v chosen, all higher proposals have value v

* Each node maintains

— n_a, v_a: highest proposal # and accepted value

— n_h : highest proposal # seen so far

— my n: my proposal # in current Paxos

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 6

Paxos operation: 3 phase protocol

* Phase 1 (Prepare phase)
— A node decides to be a leader and propose
— Leader chooses my n >n _h
— Leader sends <prepare, my n> to all nodes
— Upon receiving <prepare, n> at acceptor

*Ifn<n h

— reply <prepare-reject> /* already seen higher # proposal */
* Else

—n h=n /* will not accept prop lower than n */

— reply <prepare-ok, n_a, v._a> /* send back previous prop, value/
- /* can be null, if first */

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 7

Paxos operation

* Phase 2 (accept phase)
— If leader gets prepare-ok from majority
* V = non-empty value from highest n_a received
» If V =null, leader can pick any V
» Send <accept, my n, V> to all nodes
— If leader fails to get majority prepare-ok
* delay and restart Paxos
— Upon receiving <accept, n, V>
*Ifn<n_h
- reply_ with <accept-reject>
* else
—n_a=n;v _a=V;n h=h; reply <accept-ok>

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 8

Paxos Operation

* Phase 3 (decide)

— If leader gets accept-ok from majority
» Send <decide, v_a> to all learners

— If leader fails to get accept-ok from a majority
* Delay and restart Paxos

* Properties
— P1: any proposal number is unique
— P2: any two set of acceptors have at least one node in common

— P3: value sent in phase 2 is value of highest numbered proposal
received in responses in phase 1

| \/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 9

Paxos Example

nh=NO0:0 nh=N1:0 nh=N2:0
na =va = null na = va = null na = va = null

Prepare,N1:1 Prepare,N1:1
nh= N1:1 \ nh: N1:1
Na=
na = null \f:‘:m"\ ok, na na = null
va = null =VaZ va = null
Accept,N1:1,va t N1:1.vall
nh=N1:1 K nh=N1:1
na=N1:1 \ na=N1:1
va =vall k K va =vall

NO N1 N2

| \/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 10

Issues

Network partitions:

— With one partition, will have majority on one side and can
come to agreement (if nobody fails)

Timeouts
— A node has max timeout for each message
— Upon timeout, declare itself as leader and restart Paxos

Two leaders

— Either one leader is not able to decide (does not receive

majority accept-oks since nodes see higher proposal from other
leader) OR

— one leader causes the other to use it value

Leader failures: same as two leaders or timeout occurs

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 11

Part 3: Raft Consensus Protocol

* Paxos is hard to understand (single vs multi-paxos)
» Raft - understandable consensus protocol
* State Machine Replication (SMR)

— Implemented as a replicated log

— Each server stores a log of commands, executes in order
— Incoming requests —> replicate into logs of servers

— Each server executed request log in order: stays consistent

« Raft: first elect a leader
* Leader sends requests (log entries) to followers

« If majority receive entry: safe to apply -> commit
— If entry committed, all entries preceding it are committed

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 12

Log replication

« Servers maintain log of commands: order to perform ops
» Replicated log: replicated state machine (SMR)

— all servers (replicas) execute commands in log order

CEEEEEE .
Hl‘\ CEEEEEE

2«6 I

Consensus

Module

Hash Table " '
o S @
y 2 Lo A
z 6 \ <—3[y<—2|x<—1|z<’—6\

Single server log Replicated log

Fig courtesy: D. Ongaro

[JMassAmherst CS677: Distributed and Operating Systems Lecture 19, page 13

Consensus Approaches

* Leaderless (symmetric)
— Client can contact any server

» Leader-based (asymmetric)
— One server 1s leader and other servers follow the leader

— Clients contact leader

* RAFT is a leader-based consensus protocol
— Two aspects: leader changes and normal operation

[JMassAmherst CS677: Distributed and Operating Systems Lecture 19, page 14

RAFT Overview

* Leader election
— Select one server to serve as a RAFT leader
— detect leader crash, elect new leader
* Normal operation
— Perform log replication
— Leader receives client commands, append to log
— Leader then replicates log to followers
 Detect and overwrite consistencies in log
» Safety
— Committed log entires are not impacted by leader crash
— Almost one leader

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 15

Terms

Term 1 Term2 Term 3 Term 4 Term 5

{

) {) -

Wi T

Elections Split Vote Normal Operation
Time 1s divided into terms

) Fig courtesy: D. Ongaro
— Election

— Normal operation with elected leader

— New term starts upon leader failure

At most one leader per term
— Some terms may have no leader (failed term)

All servers maintain current term value

At any time, each server is either:
— leader: receives all client requests and log replication
— follower: passively follows leader

UMassArshndidate: participates in leader clection Lectue 19, page 16

RAFT Election

 Election timeout: no RPCs received for a while ~100-500ms
* Increment current term and become candidate
» Vote for self (!)
« Send election (RequestVote RPC) message to followers
— Receive vote from majority: become leader
 send heartbeat message (AppendEntries RPC)
— Receive RPC from leader: become follower again
— Failed election: no majority votes within election timeout
* Increment term, start new election
« Safety: at most one server wins; servers vote once per term
* Liveness: someone eventually wins
— choose random election timeouts; one server times out/wins

UM assAmherst CS677: Distributed and Operating Systems Lecture 19, page 17

Normal RAFT Operation

Leader receives client commands and appends to log
Send AppendEntry RPC to all followers

Once entry safely committed to log
— execute command and return result to client

Followers catch up in background
— Notify followers of committees entries in subsequent RPCs
— Followers apply committed commands to their state m/c

Log entry: index, term, command (stored on disk)

index->1 2 3 4 5 6 7 8

term - | 1 1 1 2 3 3 3 3
command [X¢=3|y<«2[x«1|z<6|z«0|y<9|y«1[x<4

Fig courtesy: D. Ongaro

UM assAmherst CS677: Distributed and Operating Systems Lecture 19, page 18

Log consistency

« Consistency check: include index, term of prev entry
— follower must contain matching entry: reject otherwise

gl o Az elzo]
leader |X<—3Y<—2X‘—1 26|20 AppendEntries fails:
= mismatch
follower | o1 1 LT

X< 3ly<«2[x<1[x<4

Fig courtesy: D. Ongaro

* Log entries can become inconsistent due to leader failure

log index 1.2 3 4 5 6 7 8 9 10 11 12
tom s " [r[1]+]+]<]s[s]e]e]e]
@[T [e[oTsTole] |~ wissng
() nm E/ Entries
possible] (c)|1|1|1|4|4l5|5|6|6|6!l_‘2‘_|_;_\
f 1 I
ollowers | [1]1]1]4]4 |5|5|s [6] 6|7|7| L Extraneous
CIKIREnE NN /Enmes
(f)|1|1|1i|2|2|2|3|3|3|3|3|‘§ Fig courtesy: D. Ongaro
UM assAmherst CS677: Distributed and Operating Systems Lecture 19, page 19

Log Repair

* Leader tracks nextIndex for each follower
» If AppendEntry check fails, decrement and try again

— rewind to find match; follower deletes all subsequent entries

nextIndex

log index 1 2 3 45 6 7 8 910 1 1
1

leaderforterm?7 |1 |1 |1|4|4|5|5]|6 |6 (6!

NN ANANAN AN\

@ /|1|1]|1]4

followers AV AV AV AVAVAY A
(b)11122233333

Fig courtesy: D. Ongaro

(\/I assAmherst CS677: Distributed and Operating Systems Lecture 19, page 20

Recovery

* Techniques thus far allow failure handling

* Recovery: operations that must be performed after a
failure to recover to a correct state

« Techniques:
— Checkpointing:
* Periodically checkpoint state

» Upon a crash roll back to a previous checkpoint with a
consistent state

UM assAmherst CS677: DistiBitddiatiibOise4%ng Systems Lecture 19, page 21

Independent Checkpointing

Initial state Checkpoint

P1

WAV

Time —»

Each processes periodically checkpoints independently of other
processes

Upon a failure, work backwards to locate a consistent cut

Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

Cascading rollbacks can lead to a domino effect.

UM assAmherst CS677: DistiBitddiatiibOise4%ng Systems Lecture 19, page 22

Coordinated Checkpointing

» Take a distributed snapshot [discussed in Lec 13]

» Upon a failure, roll back to the latest snapshot
— All process restart from the latest snapshot

UM assAmherst CS677: DistiBitddiatiibOise4%ng Systems Lecture 19, page 23

Logging

* Logging : a common approach to handle failures

— Log requests / responses received by system on separate
storage device / file (stable storage)

» Used in databases, filesystems, ...
 Failure of a node
— Some requests may be lost
— Replay log to “roll forward” system state

UM assAmherst CS677: Distributed and Operating Systems Lecture 19, page 24

Message Logging

¢ Checkpointing is expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive
— Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]
* Combine checkpointing (expensive) with message
logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
» Avoids recomputations from previous checkpoint

UM assAmherst CS677: DistiBitddiatiibOise4%ng Systems Lecture 19, page 25

