Distributed Consensus
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Consensus

* Consensus: get a group of processes to agree on something
* Consensus vs Byzantine Agreement

Achieve reliability in presence of faulty processes
— requires processes to agree on data value needed for computation

— Examples: whether to commit a transaction, agree on identity of a
leader, atomic broadcasts, distributed locks

4 Properties of a consensus protocol with fail-stop failures
— Agreement: every correct process agrees on same value
— Termination: every correct process decides some value
— Validity: If all propose v, all correct processes decides v

— Integrity: Every correct process decided at most one value
and if it decides v, someone must have proposed v.
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2PC, 3PC Problems

Both have problems in presence of failures
— Safety is ensured but liveness is not

2PC

— must wait for all nodes and coordinator to be up

— all nodes must vote
— coordinator must be up

« 3PC

— handles coordinator failure
— but network partitions are still an issue

Paxos : how to reach consensus in distributed systems
that can tolerate non-malicious failures?
— majority rather than all nodes particpate
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Paxos: fault-tolerant agreement

Paxos lets nodes agree on same value despite:
— node failures, network failures and delays
* Use cases:

— Nodes agree X is primary (or leader)
— Nodes agree Y is last operation (order operations)

General approach
— One (or more) nodes decides to be leader (aka proposer)
— Leader proposes a value and solicits acceptance from others
— Leader announces result or tries again

Proposed independently by Lamport and Liskov
— Widely used in real systems (ZooKeeper, Chubby, Spanner)
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Paxos Requirements

» Safety (Correctness)
— All nodes agree on the same value
— Agreed value X was proposed by some node

» Liveness (fault-tolerance)

— If less than N/2 nodes fail, remaining nodes will eventually
reach agreement

— Liveness not guaranteed if steady stream of failures

* Why is agreement hard?
— Network partitions

— Leader crashes during solicitation or after deciding but before
announcing results,

— New leader proposes different value from already decided value,
— More than one node becomes leader simultaneously....
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Paxos Setup

 Entities: Proposer (leader), acceptor, learner

— Leader proposes value, solicits acceptance from acceptors

— Acceptors are nodes that want to agree; announce chosen value to

learners

» Proposals are ordered by proposal #

— node can choose any high number to try to get proposal accepted

— An acceptor can accept multiple proposals

* If prop with value v chosen, all higher proposals have value v

* Each node maintains

— n_a, v_a: highest proposal # and accepted value

— n_h : highest proposal # seen so far

— my n: my proposal # in current Paxos
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Paxos operation: 3 phase protocol

* Phase 1 (Prepare phase)
— A node decides to be a leader and propose
— Leader chooses my n >n _h
— Leader sends <prepare, my n> to all nodes
— Upon receiving <prepare, n> at acceptor

*Ifn<n h

— reply <prepare-reject> /* already seen higher # proposal */
* Else

—n h=n /* will not accept prop lower than n */

— reply <prepare-ok, n_a, v._a> /* send back previous prop, value/
- /* can be null, if first */
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Paxos operation

* Phase 2 (accept phase)
— If leader gets prepare-ok from majority
* V = non-empty value from highest n_a received
» If V =null, leader can pick any V
» Send <accept, my n, V> to all nodes
— If leader fails to get majority prepare-ok
* delay and restart Paxos
— Upon receiving <accept, n, V>
*Ifn<n_h
- reply_ with <accept-reject>
* else
—n_a=n;v _a=V;n h=h; reply <accept-ok>
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Paxos Operation

* Phase 3 (decide)

— If leader gets accept-ok from majority
» Send <decide, v_a> to all learners

— If leader fails to get accept-ok from a majority
* Delay and restart Paxos

* Properties
— P1: any proposal number is unique
— P2: any two set of acceptors have at least one node in common

— P3: value sent in phase 2 is value of highest numbered proposal
received in responses in phase 1
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Paxos Example

nh=NO0:0 nh=N1:0 nh=N2:0
na =va = null na = va = null na = va = null

Prepare,N1:1 Prepare,N1:1
nh= N1:1 \ nh: N1:1
Na=
na = null \f:‘:m"\ ok, na na = null
va = null =VaZ va = null
Accept,N1:1,va t N1:1.vall
nh=N1:1 K nh=N1:1
na=N1:1 \ na=N1:1
va =vall k K va =vall

NO N1 N2
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Issues

Network partitions:

— With one partition, will have majority on one side and can
come to agreement (if nobody fails)

Timeouts
— A node has max timeout for each message
— Upon timeout, declare itself as leader and restart Paxos

Two leaders

— Either one leader is not able to decide (does not receive

majority accept-oks since nodes see higher proposal from other
leader) OR

— one leader causes the other to use it value

Leader failures: same as two leaders or timeout occurs
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Part 3: Raft Consensus Protocol

* Paxos is hard to understand (single vs multi-paxos)
» Raft - understandable consensus protocol
* State Machine Replication (SMR)

— Implemented as a replicated log

— Each server stores a log of commands, executes in order
— Incoming requests —> replicate into logs of servers

— Each server executed request log in order: stays consistent

« Raft: first elect a leader
* Leader sends requests (log entries) to followers

« If majority receive entry: safe to apply -> commit
— If entry committed, all entries preceding it are committed
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Log replication

« Servers maintain log of commands: order to perform ops
» Replicated log: replicated state machine (SMR)

— all servers (replicas) execute commands in log order
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Consensus Approaches

* Leaderless (symmetric)
— Client can contact any server

» Leader-based (asymmetric)
— One server 1s leader and other servers follow the leader

— Clients contact leader

* RAFT is a leader-based consensus protocol
— Two aspects: leader changes and normal operation
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RAFT Overview

* Leader election
— Select one server to serve as a RAFT leader
— detect leader crash, elect new leader
* Normal operation
— Perform log replication
— Leader receives client commands, append to log
— Leader then replicates log to followers
 Detect and overwrite consistencies in log
» Safety
— Committed log entires are not impacted by leader crash
— Almost one leader
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Terms

Term 1 Term2 Term 3 Term 4 Term 5
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Time 1s divided into terms

) Fig courtesy: D. Ongaro
— Election

— Normal operation with elected leader

— New term starts upon leader failure

At most one leader per term
— Some terms may have no leader (failed term)

All servers maintain current term value

At any time, each server is either:
— leader: receives all client requests and log replication
— follower: passively follows leader
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RAFT Election

 Election timeout: no RPCs received for a while ~100-500ms
* Increment current term and become candidate
» Vote for self (!)
« Send election (RequestVote RPC) message to followers
— Receive vote from majority: become leader
 send heartbeat message (AppendEntries RPC)
— Receive RPC from leader: become follower again
— Failed election: no majority votes within election timeout
* Increment term, start new election
« Safety: at most one server wins; servers vote once per term
* Liveness: someone eventually wins
— choose random election timeouts; one server times out/wins
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Normal RAFT Operation

Leader receives client commands and appends to log
Send AppendEntry RPC to all followers

Once entry safely committed to log
— execute command and return result to client

Followers catch up in background
— Notify followers of committees entries in subsequent RPCs
— Followers apply committed commands to their state m/c

Log entry: index, term, command (stored on disk)

index->1 2 3 4 5 6 7 8

term - | 1 1 1 2 3 3 3 3
command [X¢=3|y<«2[x«1|z<6|z«0|y<9|y«1[x<4

Fig courtesy: D. Ongaro
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Log consistency

« Consistency check: include index, term of prev entry
— follower must contain matching entry: reject otherwise
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leader |X<—3Y<—2X‘—1 26|20 AppendEntries fails:
= mismatch
follower | o1 1 LT

X< 3ly<«2[x<1[x<4

Fig courtesy: D. Ongaro

* Log entries can become inconsistent due to leader failure
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Log Repair

* Leader tracks nextIndex for each follower
» If AppendEntry check fails, decrement and try again

— rewind to find match; follower deletes all subsequent entries

nextIndex

log index 1 2 3 45 6 7 8 910 1 1
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Fig courtesy: D. Ongaro
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Recovery

* Techniques thus far allow failure handling

* Recovery: operations that must be performed after a
failure to recover to a correct state

« Techniques:
— Checkpointing:
* Periodically checkpoint state

» Upon a crash roll back to a previous checkpoint with a
consistent state
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Independent Checkpointing

Initial state Checkpoint

P1

WAV

Time —»

Each processes periodically checkpoints independently of other
processes

Upon a failure, work backwards to locate a consistent cut

Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

Cascading rollbacks can lead to a domino effect.
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Coordinated Checkpointing

» Take a distributed snapshot [discussed in Lec 13]

» Upon a failure, roll back to the latest snapshot
— All process restart from the latest snapshot
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Logging

* Logging : a common approach to handle failures

— Log requests / responses received by system on separate
storage device / file (stable storage)

» Used in databases, filesystems, ...
 Failure of a node
— Some requests may be lost
— Replay log to “roll forward” system state
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Message Logging

¢ Checkpointing is expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive
— Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]
* Combine checkpointing (expensive) with message
logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
» Avoids recomputations from previous checkpoint
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