
CMPSCI 677 Operating Systems Spring 2022

Lecture 5: February 9
Professor: Prashant Shenoy Scribe: Madhuvanthi Ramesh Kumar (2022), Josh Sennett (2019)

5.1 Overview

This lecture covers the following topics:

Part 1: Threads

Part 2: Concurrency Models

Part 3: Thread Scheduling

5.2 Lecture Notes

5.2.1 Part 1: Threads and Concurrency

5.2.1.1 Review of Processes and Threads

A process is a program that is executing on a system. Each process has its own address space with its
corresponding code, global and local variables, stack, and resources.

A thread is a traditional process that has multiple concurrent flows of control. Each flow of control executes a
sequence of instructions. Multiple threads can be part of the same process and can be executed concurrently.
All threads share the same address space, but have their own stack and control flow as they execute dif-
ferent parts of the process. Synchronization might be required if threads are accessing shared data structures.

Question: When there are multiple threads, in what order will they execute?
Ans: Order of execution depends on order of scheduling, which is done by OS, using various scheduling
algorithms.

Concurrency vs Parallelism
Concurrency enables handling of multiple requests. Multi-threading can be used to achieve concurrency
if we are using a machine with a single core. The different threads are time multiplexed onto the processor,
and different parts of the program can be executed by switching between threads.
Parallelism enable simultaneous processing of requests. Multi-threading can be used to achieve paral-
lelism on a multi-core machine, as two threads can simultaneously execute in parallel on different cores.

Question: Does the process decide how much memory is allocated to each thread?
Ans: The OS decides how much memory to give each process. Thread runtime decides how much stack
space to allocate to each thread. The heap is shared across threads.

5-1



5-2 Lecture 5: February 9

5.2.1.2 Why use threads?

Multi-threading allows for concurrency within a single process. On a a machine with a single processor,
threads achieve concurrency through time-sharing of the CPU. While one thread is doing I/O, another
thread can execute on the CPU, thereby improving performance. On a multiprocessor machine, we can
achieve true parallelism by running threads simultaneously on different cores.

Switching between threads of the same process or different processes is more efficient than switching between
processes. Thread operations such as thread creation, deletion, switching are much more efficient and
lightweight than the corresponding process operations.

Threads have access to the entire address space of the process, which gives programmers greater flexibility,
allowing for shared data rather than message passing.

If a single threaded process makes a blocking call, the entire process is blocked till the blocking operation is
completed. If you have multiple threads within that process, each thread is a synchronous sequential stream
of execution. If one thread makes a blocking call, other threads of the process can continue executing.

In between single and multi-threaded programming, there is finite-state machine (event-based) program-
ming. Event-based programming attempts to achieve concurrency with a single threaded process, using
non-blocking calls and asynchronous communication (which is more complex to program).

5.2.1.3 Use cases - Client and server

An example for a multi-threaded client would be a Web Browser. Each task that a browser performs could
be assigned to a different thread. If the browser was single threaded, upon clicking on a web link, images
would have to be sequentially downloaded from the server and then sent to be parsed and rendered. In a
multi-threaded browser, images can be downloaded in parallel while the page is parsed and parts of the page
can be rendered as they are ready. The browser does not have to wait for everything to be downloaded and
parsed before rendering. It can connect to different servers and exchange data using different threads. As a
result, the user will see parts of the page more quickly.

Multi-threading is also used within servers. If a server only runs a single thread, it might have a queue of
requests from clients which are blocked until the first request is completed. Using a pool of threads allows
the server to respond to multiple requests simultaneously, thereby reducing latency. The idea is for the server
to have a dispatcher and a few worker threads. When a client request comes in, the dispatcher assigns this
request to one of the idle worker threads. This model is efficient because, while some of the worker threads
are I/O bound, others can continue doing computation.

Question: If there’s a long sequential piece of code, is there any benefit to dividing it into smaller pieces?
Ans: If the smaller pieces are independent tasks, you can put them in threads and they will execute
concurrently (single processor) or even in parallel (multiprocessor). If the tasks are dependent, you can’t
parallelize it as there is a dependency.

Question: What is concurrency?
Ans: If there are multiple threads within a process, and a single core, one thread will execute for a small
time slice, and then switch to another thread for the next time slice, and so on. This is known as concurrent
execution.

Question: If there is a program that has no blocking calls, running on a single core machine, will having
multiple threads reduce the time needed for execution?
Ans: Multi-threaded program does not change the time required to execute instructions. It only interleaves



Lecture 5: February 9 5-3

the instructions.

5.2.2 Concurrency Models

All server applications involve a loop, called the event loop, to process incoming requests. Inside this loop,
the server waits for an incoming request from the client over a network and then processes the request.

5.2.2.1 Sequential Server

It is a single threaded server that processes incoming requests sequentially.
Advantage: It is very simple to implement.
Disadvantage: If a burst of requests arrive, they queue up at the server. As the server processes requests
sequentially, requests will queue up while one request is being processed. This increases the waiting time
and response time.

5.2.2.2 Multi-threaded Server

• Thread per request
In this model, every request is assigned to a new thread. The thread processes the request, and is then
terminated.
Advantage: Newly arriving requests don’t need to wait for older requests to be processed.
Disadvantage: Frequent creation and deletion of threads causes overhead.

Question: Is the time to finish a request longer because you need to share time with other requests?
Ans: The response time depends on what kind of processing the request involves. If the processing
involves I/O, you can process another request if you have multiple threads. If the request involves
CPU processing, by interleaving multiple requests, the request processing time will increase due to
switching. However, it is still better overall as wait times could be very high in a sequential model.

Question: How many threads can an application have? Is it limited by number of cores? Ans:
There is no restriction on number of threads. However, there is an overhead as each thread involves
maintaining some state, which requires memory.

• Thread pool
In this model, a fixed number (N) of threads are created when the server is started. This is known as a
thread pool. One thread acts as the dispatcher and the other threads are the workers. The dispatcher
pulls a request from the queue and assigns it to an idle thread to process.
Advantage: We do not need to create and delete threads for each request.
Disadvantage: It is difficult to choose the right N. If more than N requests arrive concurrently, there
will be blocking till a thread becomes idle. If we have a very large thread pool, resources will be wasted
as many threads will be idle.

Question: Is there any interleaving between idle threads?
Ans: If a thread is waiting, it will not be scheduled for execution. Only active threads get time slices
and are involved in the switching.

• Dynamic Thread pool
As we saw in the previous model, it is often difficult to choose the optimal pool size as it depends on
the rate of incoming requests. In this model, we have a dynamic pool where we start with N threads



5-4 Lecture 5: February 9

and monitor number of idle threads. If the number of idle threads fall below a certain threshold, we
increase N and start new threads. If the number of idle threads is greater than a threshold, we reduce
the size of the thread pool and terminate some idle threads. We can configure the size of the pool, and
even set a max and min limit. This model is pro-active as it creates/deletes threads before it reaches
the min/max.
Advantage: We need not worry about choosing an optimal pool size.
Disadvantage: Server is more complicated, requires monitoring and adjustment of pool size dynamically.

• Asynchronous Event Loop
It is a single threaded server, but uses non-blocking operations. It provides concurrency similar to
synchronous multi-threading, but with a single thread. If a blocking operation needs to be executed,
we switch to some other operation and let the blocking operation continue working in the background.
Switching between parts is driven by code, rather than the OS.

Question: How does the program know when a blocking call has finished executing?
Ans: Standard I/O operations such as read are blocking. Asynchronous read sends the request to the
OS and the control returns back to the process. When the read finishes, the OS sends a signal to the
process as an event, and the process goes back to what issued the asynchronous call and continues
execution from there.

Note: If you make a function async, you need to make all blocking calls inside the function also async.

• Process Pool Servers
These are multi process servers that use a separate process to handle each request. This can be done
by creating a (dynamic) process pool. As there are multiple processes involved, this model requires
inter-process communication.
Advantage: If a process crashes, other processes continue to run. Crashes only impact that request,
not the entire application. In a multi-threaded server, all threads are part of the same process. If one
thread crashes, the entire server crashes.
This model enables address space isolation. Sensitive operations can be carried out as one process
doesn’t have access to another process’ memory.
Disadvantage: More expensive, process switching is more heavyweight than thread switching.

5.2.2.3 Summary

Based on architecture, servers can be broadly classified into four categories:

1. Pure sequential

2. Event based

3. Thread based

4. Process based

Single threaded event based servers have high efficiency, but are the hardest to program. If there are multiple
cores, multi-threading is more efficient as you can achieve true parallelism. For best performance, we need
a multi-threaded event based architecture.



Lecture 5: February 9 5-5

5.2.3 Part 3: Thread Scheduling

5.2.3.1 User-Level Threads

User-level threads are created and managed by user libraries. The kernel is unaware of there being multiple
threads. The kernel sees the address space of the threads as a traditional single-threaded process.

Advantage: Creation of threads is very lightweight because it doesn’t require system calls.
Disadvantage: It cannot take advantage of parallelism. As the OS sees only a single thread, even if there
are multiple threads, they cannot run on multiple cores.

Question: How do you write a user level thread library?
Ans: The library has to use event based programming. It needs to see threads as being blocks of code, and
switch between them. Need to provide the same APIs.

5.2.3.2 Kernel-Level Threads

Kernel-level threads are created and managed by the OS. Kernel can see the presence of threads and can
schedule them.

Advantage: They allow for real parallelism between threads as the OS is aware of multiple threads and can
run different threads on different cores.
Disadvantage: They are more expensive as thread management is handled by the OS.


