
Lecture 5, page CS677: Distributed OS

Concurrency in Distributed Systems

1

• Part 1: Threads

• Part 2: Concurrency Models

• Part 3: Thread Scheduling

Lecture 5, page CS677: Distributed OS

Part 1: Threads and Concurrency

2

• Traditional process
– One thread of control through a large, potentially sparse address

space
– Address space may be shared with other processes (shared mem)
– Collection of systems resources (files, semaphores)

• Thread (light weight process)
– A flow of control through an address space
– Each address space can have multiple concurrent control flows
– Each thread has access to entire address space
– Potentially parallel execution, minimal state (low overheads)
– May need synchronization to control access to shared variables

Lecture 5, page CS677: Distributed OS

Threads

3

• Each thread has its own stack, PC, registers
– Share address space, files,…

Lecture 5, page CS677: Distributed OS

Why use Threads?

4

• Large multiprocessors/multi-core systems need many
computing entities (one per CPU or core)

• Switching between processes incurs high overhead
• With threads, an application can avoid per-process

overheads
– Thread creation, deletion, switching cheaper than processes

• Threads have full access to address space (easy sharing)
• Threads can execute in parallel on multiprocessors

Lecture 5, page

Threads Example

5

Single threaded program

Lecture 5, page

Threads Example

6

Multi-threaded version

https://www.pythontutorial.net/advanced-python/
python-threading/

Lecture 5, page CS677: Distributed OS

Why Threads?

7

• Single threaded process: blocking system calls, no
concurrency/parallelism

• Finite-state machine [event-based]: non-blocking with
concurrency

• Multi-threaded process: blocking system calls with
parallelism

• Threads retain the idea of sequential processes with
blocking system calls, and yet achieve parallelism

• Software engineering perspective
– Applications are easier to structure as a collection of threads

• Each thread performs several [mostly independent] tasks

Lecture 5, page CS677: Distributed OS

Multi-threaded Clients Example : Web
Browsers

8

• Browsers such as IE are multi-threaded
• Such browsers can display data before entire document

is downloaded: performs multiple simultaneous tasks
– Fetch main HTML page, activate separate threads for other

parts
– Each thread sets up a separate connection with the server

• Uses blocking calls
– Each part (gif image) fetched separately and in parallel
– Advantage: connections can be setup to different sources

• Ad server, image server, web server…

Lecture 5, page CS677: Distributed OS

Multi-threaded Server Example

9

• Apache web server: pool of pre-spawned worker threads
– Dispatcher thread waits for requests (“dispatcher-workers”

architecture)
– For each request, choose an idle worker thread
– Worker thread uses blocking system calls to service web request

Lecture 5, page

Part 2: Concurrency Models

10

• Concurrency for server-side applications

• All server-side applications involve using a loop to
process incoming requests

while(1) {
 wait for incoming request;
 process incoming request;
}

called
event loop

Lecture 5, page

Sequential Server

11

• Simplest model: single process, single thread
– Process incoming requests sequentially

• Advantage: very simple
• Disadvantages:

– Requests queue up while one request is being processed
– Increases waiting time (queuing delay) and response time

Lecture 5, page

Multi-threaded Server

12

• Use threads for concurrent processing
• Simple model: thread per request

– For each new request: start new thread, process request, kill thread

• Advantage: Newly arriving requests don’t need to wait
– Assigned to a thread for concurrent processing

• Disadvantage: frequent creation and deletion of threads

while(1){
 req = waitForRequest();// get next request in queue

 // wait until one arrives
 thread = createThread(); // start a new thread
 thread.process(req); // assign request to thread
}

Lecture 5, page

Server with Thread Pool

13

• Use Thread Pool
– Pre-spawn a pool of threads
– One thread is dispatcher, others are worker threads
– For each incoming request, find an idle worker thread and assign

• Advantage: Avoids thread creation overhead for each request
• Disadvantages:

– What happens when >N requests arrive at the same time?
– How to choose the correct pool size N?

CreateThreadPool(N);
while(1){
 req = waitForRequest();
 thread = getIdleThreadfromPool();

thread.process(req)
 }

Lecture 5, page

Dynamic Thread Pools

14

• Optimal size of thread pool depends on request rate
• Online services see dynamic workload

– Request rate of a web server varies over time
• Dynamic thread pool: vary the number of threads in pool based on workload

– Start with N threads and monitor number of idle threads
– If # of idle threads < low threshold, start new threads and add to pool
– If # < idle threads > high threshold, terminate some threads

• Many modern servers (e.g., apache) use dynamic thread pools to handle
variable workloads

– IT Admin need not worry about choosing optimal N for thread pool

Lecture 5, page

Async Event Loop Model

15

• Async Event loop servers: single thread but need to process multiple
requests
– Use non-blocking (asynchronous) calls
– Asynchronous (aka, event-based) programming
– Provide concurrency similar to synchronous multi-threading but with single

thread

Async version Synchronous version

Lecture 5, page

Event Loop Model

16

• https://python.readthedocs.io/en/stable/library/asyncio-eventloop.html

• async function in python: “coroutine”
• await/async pair

• https://python.plainenglish.io/build-your-own-event-loop-from-scratch-in-python-da77ef1e3c39
• https://docs.python.org/3.9/library/asyncio-task.html

async def foo():
await bar()

await: suspend execution of foo
and wait for bar

Lecture 5, page

Process Pool Servers

17

• Multi-process server
– Use a separate process to handle each request
– Process Pool: dispatcher process and worker processes
– Assign each incoming request to an idle process

• Apache web server supports process pools
• Dynamic Process Pools: vary pool size based on workload
• Advantages

– Worker process crashes only impact the request, not application
– Address space isolation across workers

• Disadvantages
– Process switching is more heavy weight than thread switching

Lecture 5, page CS677: Distributed OS

Server Architecture

18

• Sequential
– Serve one request at a time
– Can service multiple requests by employing events and

asynchronous communication
• Concurrent

– Server spawns a process or thread to service each request
– Can also use a pre-spawned pool of threads/processes (apache)

• Thus servers could be
– Pure-sequential, event-based, thread-based, process-based

• Discussion: which architecture is most efficient?

Lecture 5, page

Parallelism versus Concurrency

19

• Concurrency enables handling of multiple requests
– Request processing does not block other requests
– Achieved using threads or async (non-blocking) calls
– Concurrency can be achieved on single core/processor

• Parallelism enable simultaneous processing of requests
– Does not block other requests; requests processed in parallel
– Needs multiple threads or multiple processes

• Threads/processes simultaneously run on multiple cores
• Async event loops? Will need multiple threads

Lecture 5, page CS677: Distributed OS

Part 3: Thread Scheduling

20

• Key issues:

• Cost of thread management
– More efficient in user space

• Ease of scheduling
• Flexibility: many parallel programming models and

schedulers
• Process blocking – a potential problem

Lecture 5, page CS677: Distributed OS

User-level Threads

21

• Threads managed by a threads library
– Kernel is unaware of presence of threads

• Advantages:
– No kernel modifications needed to support threads
– Efficient: creation/deletion/switches don’t need system calls
– Flexibility in scheduling: library can use different scheduling

algorithms, can be application dependent
• Disadvantages

– Need to avoid blocking system calls [all threads block]
– Threads compete for one another
– Does not take advantage of multiprocessors [no real parallelism]

Lecture 5, page CS677: Distributed OS

User-level threads

22

Lecture 5, page CS677: Distributed OS

Kernel-level threads

23

• Kernel aware of the presence of threads
– Better scheduling decisions, more expensive
– Better for multiprocessors, more overheads for uniprocessors

Lecture 5, page

Thread Scheduling Example

24

• CPU scheduler uses round-robin time slices

foo() bar()program

single threaded process
time-sliced schedulersequential

multi-threaded process
time-sliced scheduler

concurrent

I/O I/O I/O I/Osequential
with I/O

single threaded process
time-sliced scheduler

I/O I/O I/O I/O

concurrent
with I/O

disk or network I/O
(does not block CPU)

multi-threaded process
time-sliced scheduler

I/O

I/O

I/O

I/O

parallel
with I/O multi-threaded process

time-sliced scheduler on 2 cores

Lecture 5, page

Scheduler Activation

25

• User-level threads: scheduling both at user and kernel levels
– user thread system call: process blocks
– kernel may context switch thread during important tasks

• Need mechanism for passing information back and forth
• Scheduler activation: OS mechanism for user level threads

– Notifies user-level library of kernel events
– Provides data structures for saving thread context

• Kernel makes up-calls : CPU available, I/O is done etc.
• Library informs kernel: create/delete threads

– N:M mapping: n user-level threads onto M kernel entities
• Performance of user-level threads with behavior of kernel threads

Lecture 5, page CS677: Distributed OS

Light-weight Processes

26

• Several LWPs per heavy-weight process
• User-level threads package

– Create/destroy threads and synchronization primitives
• Multithreaded applications – create multiple threads,

assign threads to LWPs (one-one, many-one, many-many)
• Each LWP, when scheduled, searches for a runnable

thread [two-level scheduling]
– Shared thread table: no kernel support needed

• When a LWP thread block on system call, switch to kernel
mode and OS context switches to another LWP

Lecture 5, page CS677: Distributed OS

LWP Example

27

Lecture 5, page CS677: Distributed OS

Process Scheduling

28

• Priority queues: multiples queues, each with a different
priority
– Use strict priority scheduling
– Example: page swapper, kernel tasks, real-time tasks, user tasks

• Multi-level feedback queue
– Multiple queues with priority
– Processes dynamically move from one queue to another

• Depending on priority/CPU characteristics
– Gives higher priority to I/O bound or interactive tasks
– Lower priority to CPU bound tasks
– Round robin at each level

