

OS Mechanisms for LXC

- OS mechanisms for resource isolation and management
- Cgroups: limits, prioritization, accounting, control
- namespaces: process-based resource isolation
- chroot: apparent root directory
- Linux security module, access control
- Tools (e.g., docker) for easy management

Computer Science

Lecture 4, page 33

<text><list-item><list-item> Linux Namespaces Namespace: restrict what can a container see? Provide process level isolation of global resources Processes have illusion they are the only processes in the system MNT: mount points, file systems (what files, dir are visible)? PID: what other processes are visible? NET: NICs, routing Users: what uid, gid are visible? chroot: change root directory Corputer Science

Docker and Linux Containers

- Linux containers are a set of kernel features
 - Need user space tools to manage containers
 - Virtuoze, OpenVZm, VServer, Lxc-tools, Wardenm Docker
- What does Docker add to Linux containers?
 - Portable container deployment across machines
 - Application-centric: geared for app deployment
 - Automatic builds: create containers from build files
 - Component re-use
- Docker containers are self-contained: no dependencies

Lecture 4, page 37

Computer Science

Use of Virtualization Today

- Data centers:
 - server consolidation: pack multiple virtual servers onto a smaller number of physical server
 - saves hardware costs, power and cooling costs
- Cloud computing: rent virtual servers
 - cloud provider controls physical machines and mapping of virtual servers to physical hosts
 - User gets root access on virtual server
- Desktop computing:
 - Multi-platform software development
 - Testing machines

- Run apps from another platform

Lecture 4, page 41