
Computer Science Lecture 4, page

OS Virtualization

• Emulate OS-level interface with native interface
• “Lightweight” virtual machines

– No hypervisor, OS provides necessary support

• Referred to as containers
– Solaris containers, BSD jails, Linux containers

31

Computer Science Lecture 4, page

Linux Containers (LXC)

• Containers share OS kernel of the host
– OS provides resource isolation

• Benefits
– Fast provisioning, bare-metal like performance, lightweight

32

Material courtesy of
“Realizing Linux Containers”

by Boden Russell, IBM

Computer Science Lecture 4, page

OS Mechanisms for LXC

• OS mechanisms for resource isolation and management

• Cgroups: limits, prioritization, accounting, control

• namespaces: process-based resource isolation

• chroot: apparent root directory
• Linux security module, access control
• Tools (e.g., docker) for easy management

33

Computer Science Lecture 4, page

Linux cgroups
• Resource isolation

– what and how much can a container use?
• Set upper bounds (limits) on resources that can be used
• Fair sharing of certain resources

• Examples:
– cpu: weighted proportional share of CPU for a group
– cpuset: cores that a group can access
– block io: weighted proportional block IO access
– memory: max memory limit for a group

34

Computer Science Lecture 4, page

Linux Namespaces
• Namespace: restrict what can a container see?

– Provide process level isolation of global resources
• Processes have illusion they are the only processes in the

system
• MNT: mount points, file systems (what files, dir are

visible)?
• PID: what other processes are visible?
• NET: NICs, routing
• Users: what uid, gid are visible?

• chroot: change root directory
35

Computer Science Lecture 4, page

Putting it all together

• Images: files/data for a container
– can run different distributions/apps on a host

• Linux security modules and access control
• Linux capabilities: per process privileges

36

Computer Science Lecture 4, page

Docker and Linux Containers

• Linux containers are a set of kernel features
– Need user space tools to manage containers
– Virtuoze, OpenVZm, VServer,Lxc-tools, Wardenm Docker

• What does Docker add to Linux containers?
– Portable container deployment across machines
– Application-centric: geared for app deployment
– Automatic builds: create containers from build files
– Component re-use

• Docker containers are self-contained: no dependencies

37

Computer Science Lecture 4, page

Docker

• Docker uses Linux containers

38

Computer Science Lecture 4, page

LXC Virtualization Using Docker

• Portable: docker images run anywhere docker runs
• Docker decouples LXC provider from operations

– uses virtual resources (LXC virtualization)
• fair share of physical NIC vs use virtual NICs that are fair-shared

39

Computer Science Lecture 4, page

Docker Images and Use

• Docker uses a union file system (AuFS)
– allows containers to use host FS safely

• Essentially a copy-on-write file system
– read-only files shared (e.g., share glibc)
– make a copy upon write

• Allows for small efficient container images

40

Computer Science Lecture 4, page

Use of Virtualization Today

• Data centers:
– server consolidation: pack multiple virtual servers onto a

smaller number of physical server
• saves hardware costs, power and cooling costs

• Cloud computing: rent virtual servers
– cloud provider controls physical machines and mapping of

virtual servers to physical hosts
– User gets root access on virtual server

• Desktop computing:
– Multi-platform software development
– Testing machines
– Run apps from another platform

41

