CMPSCI 677 Operating Systems Spring 2014

Lecture 6: February 10
Lecturer: Prashant Shenoy Scribe: Aditya Sundarrajan

6.1 Virtualization continued

6.1.1 Case Study: Planet Lab

Planet Lab is a distributed set of machines (contributed by many different universities) that are used for
research. It is used mainly for networking/distributed systems research. If a student doing research in, say,
networking needs a distributed set of machines at ‘n’ different locations, they can get them from Planet Lab.
Planet Lab makes this possible via virtualization. They have many physical machines physically sitting at
several different locations. They create a VM at ‘n’ of those locations and give the student access to them.
Where as most others have used hardware level virtualization, Planet Lab uses OS level virtualization. They
assign a slice of the machine to a user by giving them a container (like the Solaris container or BSD jails
that were described earlier). Therefore, the user does not get a VM running another copy of the OS, but
they get a container with the allocated amount of resources (including memory, CPU etc.). This enables
users to run experiments without impacting other users. This could have been implemented using hardware
virtualization as well, however, OS level virtualization makes it more efficient as another copy of the kernel
does not need to be there for container.

6.2 Code and Process Migration

As part of distributed scheduling, code/processes may need to be migrated from one machine to the other.
In some cases, entire VMs may need to be migrated. Both these cases will be discussed.

6.2.1 Motivation

e Performance and flexibility are two important reasons why code/process migration is done. By moving
code/processes, the load on a system can be redistributed for better performance. The program can
be executed on any machine, which offers the flexibility of not being tied to just one machine.

e Process Migration (aka strong mobility): In this case, a process that is running is moved to another
machine. This is more complicated than code migration, as every process has state (like an address
space and resources) that needs to be transferred, and then it needs to be resumed from where it was
suspended.

e Code Migration (aka weak mobility): In this case, code is shipped from one machine to another. Code
migration can only be done before the process begins, once the code starts executing, it is essentially
process migration. Code migration is somewhat simpler as only the code needs to be moved and
started on the receiving machine. This is much more common than process migration. Here are some
examples: 1) Filling a form on a browser which then sends a query that is executed in the server., 2) A

6-1

Lecture 6: February 10

Java applet is another example of of code migration, where the client downloads the applet code from
sever and executes it on the local machine.

Flexibility: Many operating systems today let you plug in any device without having the driver software
pre-installed. If the driver software is not present, the OS will offer to download it from a repository
or from the internet. This is another example of code migration. Hence code migration offers more
flexibility as you don’t need to have every piece of software/driver pre-installed and can be downloaded
on demand.

6.2.2 Migration Models

e Processes have an address space that consists of a code segment, a stack segment, and a heap segment.

Apart from these, the processes could also have associated resources that it uses. If a process is
migrated, then all its associated code and resources need to be transferred.

Migrating code is simpler than migrating an entire precess. During weak mobility, the binary code or
the script is transferred to the new system and is executed from the initial state.

Migration can either be sender-initiated or receiver-initiated. There is a difference between whether
the sender pushed the code (sender-initiated) or whether the receiver requested it (receiver-initiated).
E.g. a query that is sent to the server is sender-initiated code migration. A Java applet is an example
of receiver-initiated code migration in that the client can request it from the server which it then
downloads to its own system.

6.2.3 Executing Migrated Entity

e Code migration : In code migration the entire code is transferred to the new system and is executed

from the initial state.

e Process migration : In process migration, the existing process including the code and execution seg-

ments and the resources it is using, is moved to the new system from where it continues executing.
This can be implemented int two ways.

— Remote cloning : In this technique, the process is cloned to the new system. Once this is
completed, the cloned process continues executing and the former process in the old system is
stopped.

— In the second technique, cloning is not involved. The actual process is moved to a new machine
where it registers with the new system and it continues executing.

6.2.4 Models of Migration

As discussed previously, mobility is of two types, strong and weak mobility, and each of them can be sender
and receiver initiated mobility, thus combinations of these lead to 8 different migration models.

6.2.5 Resource Migration

Migrating a process from one machine to another requires stopping the process at the point of execution on
one machine and then starting from the same point in other machine. When process migration takes place
then code segment, resource segment and execution segment needs to be migrated to the new machine. This

Lecture 6: February 10 6-3

can be a tedious task as many constraints are involved. For instance, if a process on the original system is
accessing a file and the process is migrated, an error would be caused when the same file is accessed in the
new system as that file doesn’t exist. Before we look at how to handle these resources, we discuss different
types of process to resource bindings.

e Binding by identifier : This is a hard binding (accessing local files on A), such kind of resources need
to be moved to system B since the process will use them as is i.e use the same file name to access the
open file in System B. Other examples include specific web pages that will need to accessed.

e Binding by value : Suppose the process was running in JVM 2.0 environment in system A, then when
it migrates to system B, it will expect JVM 2.0 environment to be present to continue execution. Thus
when process migrates to B, a reference to the JVM 2.0 present on B has to be provided to the process.

e Binding by type :This is the weakest form of binding. Suppose the process was accessing hardware
devices such as a printer, then when it moves to machine B, this particular process can use the device
that is attached to machine B.

The above bindings show that some resources allow more flexibility when a process is moved than other
resources. Now we need to discuss if we can move the resources to different machines i.e. resource to
machine binding.

e Unattached resources : These are generally data files that have been opened by the process for read /
write operation. These resources can be moved easily and quickly to another machine but they need
be referenced properly in the new system so that process can access the path of the files correctly.

e Fastened resources : These are generally local databases on machine A that are used by the process.
Moving these resources to new machine B is possible but can be expensive. Thus, it is preferable to
create global references for such resources that can be accessed over network.

e Fixed Resources : These are resources like printer or other devices which cant be moved. For these
generally global referencing technique is used. For example, open socket connections can be accessed
through tunneling.

Different combinations of the bindings produce different type of complexity and each has to be handled in a
different way. For example, if we have a resource bound by the identifier like a url and it is unattached, then
we would need to move that resource to the new machine. If however, the resource is fixed, then we would
need to provide remote access to the old machine over a network. If no access is provided to the resource
then the process will break.

6.2.5.1 Network Socket Migration

If a process has a socket open on the original machine A and that process is moved to machine B, then a
tunnel needs to created that will be used forward all the packets received on the original socket in machine
A from the source to machine B. Though complicated, this is the only way the connection remains active
since the process is not aware of the migration. If the process is aware, then it could communicate the new
port and IP information with the source.

6-4 Lecture 6: February 10

6.2.6 Migration in Heterogeneous Systems

When a process is moved in a heterogeneous environment, i.e. between machines using different architectures
(Intel / ARM), this leads to a real challenge since the binaries, assembly code instructions are all different
for different architectures. The code will need to be recompiled according to new architecture and care has
to be taken about little Endian and big Endian formats etc. One way to achieve migration on heterogeneous
system is binary translation of code on the fly, i.e. each instruction received is converted to new machine-
readable instruction. However, this is not the efficient way to do migration. These issue can be resolved
using virtual machines or for instance programs running on JVM since it is platform independent. Other
instances include migrating scripts such as python programs. As long as a python interpreter is present in
the new machine, the code can be executed.

6.2.7 Migration in Today’s Systems

e Web : In the web, code migration is very prevalent. Many HTML pages have javascript code embedded
in it that is downloaded and executed in the browser.

e Batch schedulers : Batch jobs such as large scale simulations or other computations, that are sent to
compute clusters are examples of weak mobility.

e Virtual machine migration : In this case, the entire OS and all the associated processes are moved to
a new machine. This is discussed in the following section.

e Malware : This is another example of code mobility where malicious/harmful code spreads across
systems affecting its operation.

6.2.8 Virtual Machine Migration

VMs are migrated when the server it is on cannot handle more capacity. One way to do this is to shut down
the VM and copy the virtual disk from one machine to another where it can be restarted. There will be a
downtime in this method of migration since the VM has to be suspended, moved and then resumed. This
downtime can be averted using live migration. For live migration we can assume that the disk is shared
between the two machines. This is the case in a LAN environment. However, the memory state is moved
using iterative copying. In this technique, while the VM is running on machine A the memory state of the
processes running in the VM is copied to the new machine B, and once the copy is completed, the VM in
machine B can start executing after the VM in machine A is terminated. Thus user will not see any delay
while switching. During live migration of process, the RAM pages are copied from old machine A to new
machine B while process is still being executed in A. During the duration of copy, the process in machine A
would have made some changes to the RAM pages in machine A. Thus to overcome this, iterative copying of
the new pages is done until only a fraction of pages remain. The idea is that in each iteration, the number
of pages transferred decreases since each consecutive iteration is shorter than the previous one. When this
fraction is small enough, all the new pages are copied to the new machine, the original machine is paused
and the new machine resumes from where the old machine paused.

Now suppose, the process in VM of machine A uses network connection to access data through an open
port, then in this scenario, the switch can be informed to reroute the data to a new IP address of machine
B. This won’t create a problem because the process inside the VM was assigned a virtual IP address and it
can remain same when moved to machine B, only the VM needs to connect to the physical address of new
machine which is hidden from the process.

Lecture 6: February 10 6-5

6.2.9 Case study : Viruses and Malware

Viruses and malware can be propagated using code mobility. It can be sender-initiated (proactive viruses
go and affect other machines) or receiver-initiated (user clicks on malicious link and the virus code gets
downloaded onto host machine).

6.3 Server Design Issues

6.3.1 Server Design

There are two types of server design choices:

e Iterative : It is a single threaded server which processes the requests in a queue. While processing the
current request it adds incoming requests in the wait queue, and once the processing is done, it takes
in the next request in the queue. Essentially, requests are not executed in parallel at anytime on the
server.

e Concurrent or multi-threaded server : In this case when a new request comes in, the server spawns a
new thread to service the request. Thus all processes are executed in parallel in this scenario. This
is the thread-per-request model There is also one more flavor to the multi-threaded server. Unlike
the previous case where new thread is spawned every time a new request comes in, there is a pool of
pre-spawned threads in the server which are ready to serve the requests. A dispatcher or scheduler
thread handles this pool of pre-spawned threads.

6.3.2 How to find servers?

The client can determine the server it need to communicates using one of the two techniques.

e Hard code the port number of the server in the client. If the server moves then the client will need to
be recompiled.

e In the second technique, a directory service is used to register a service with a port number and IP
address. The client then connects with the directory service to determine the location of the server
with a particular service, and then sends it the request. In this case, the client only needs to know the
location of the directory service.

6.3.3 Stateful or Stateless Servers

Stateful servers are those, which keep a state of their connected clients. For example, push servers are
stateful servers since the server need to know the list of clients it needs to send messages to.

Stateless servers on the other hand don’t keep any information about the connected clients. In this case,
the client will keep its own session information. Pull servers are examples of stateless servers where the
clients send requests to the servers as and when required.

Soft state servers maintain the state of the client for a limited period of time on the server and when the
session timeouts it discards the information.

6-6 Lecture 6: February 10

6.3.4 Server Clusters

In a cluster, the servers are segregated according to their functionality into tiers and each tier is replicated so
as to enhance serviceability. For example, the database tier of the system can be replicated and distributed
on several different machines, thus when a request comes in, the dispatcher needs to identify which machine
should the request be directed to. These dispatchers are typically called load balancers. It keeps track of load
on each server in the cluster and is also responsible for maintaining session details of clients, so that it can
send the request to the correct server upon concurrent requests by the same client. Maintaining consistency
among replicated data is important to ensure correct operation. Once the dispatcher gets the request from
the client, it uses the following techniques to transfer the request to the correct sever.

e TCP Splicing The client connects to the dispatcher through TCP connection but there is no direct
connection between the client and server. The dispatcher sets up a separate connection between the
server and itself and then splices the client connection and server connection together so that data
transmission is possible between server and client.

e TCP Handoff The dispatcher hands off the request from the client directly to the server at TCP Level
or using HTTP redirect.

6.3.5 Server architecture

The different types of server architectures are:

e Pure sequential : In this architecture, a single-threaded process is used to serve requests one at a time
and no concurrency is achieved.

e Concurrent : This could be of two kinds.

— Multi-threaded server : In this design, a new thread is spawned each time a request is received.
This is the thread-per-request mode. A pre-spawned pool of threads could also be used to serve
incoming requests.

— Multi-process server : Similar to the multi-threaded server design, a process-per-request model or
a pre-spawned pool pf processes could be used to serve incoming requests.

e Event-based server : In this technique, asynchronous non-blocking calls are used in a single-threaded
server. For example when asynchronous I/0 is used, file reads which are usually blocking calls are no
longer blocked, and are instead handed over to the OS. In the meantime, the next request in the queue
could be processed. When the I/O operation is complete, an interrupt is received and the original
request resumes execution. This way, we can use have a single thread of execution but still achieve
concurrency since non-blocking calls are used.

6.3.5.1 Which architecture is most efficient?

In the uni-core environment, Event-based implementation > thread-based implementation > process-based
implementation > pure sequential based implementation.

Event-based implementation though sequential offers concurrency because asynchronous non-blocking calls
are used. Hence when a request being executed issues a non-blocking I/O call, it is passed onto the OS,
and the next request in the queue is executed until the response for the I/0 is received via an interrupt.
Moreover the event-based implementation is a sequence of function calls rather than context-switches (among

Lecture 6: February 10 6-7

threads or processes) that are present in both the thread-based or process-based implementations making
it an efficient design. However, it is more difficult to develop event-based programs when compared to
multi-threaded or multi-process programs. Threads are more light-weight to create than processes. Hence
thread-based implementation is more efficient than process-based implementation. In general, concurrent
implementation is more efficient than pure sequential implementation since more requests could be served
at once in concurrent servers. In sequential servers, only one request can be served at a time.

However, in the multi-core environment, event-based servers will not achieve true parallelism since it has
only one thread of execution. In this scenario, a thread-based implementation would perform better as it
could run on multiple cores simultaneously.

