
COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 41

The role of an operating system (OS) is to mediate
and multiplex the access of multiple application pro-
grams to the computing resources provided by the
underlying hardware. Ideally, the operating system
should not itself consume a significant share of these
resources. Unfortunately, current operating systems
are threatening to become bottlenecks in delivering
input/output (I/O) data streams to application pro-
grams at high rates [5, 7, 21, 22]. In particular, data
streams between applications on hosts connected by
high-speed networks suffer bandwidth degradation
and added latency due to the operating system run-
ning on the hosts.

This article looks at the I/O bottleneck in operat-
ing systems, with particular focus on high-speed net-
working. We start by identifying the causes of this
bottleneck, which are rooted in a mismatch of oper-
ating system behaviors with the performance charac-
teristics of modern computer hardware. Then
traditional approaches to supporting I/O in operat-
ing systems are reevaluated in light of current hard-
ware performance tradeoffs. This reevaluation gives
rise to a set of novel techniques that eliminate the
I/O bottleneck.

The root cause of the OS I/O bottleneck is that
speed improvements of main memory have lagged

Operating System Support for

HIGH-SPEED
COMMUNICATION

Techniques to eliminate processing bottlenecks in
high-speed networking are presented.

P e t e r D r u s c h e l

E
MERGING network technologies such as fiber-optic transmission facilities and

Asynchronous Transfer Mode (ATM) hold the promise of delivering data

rates on the order of gigabits per second between individual workstations

on local- and wide-area networks [11]. This increase in network capacity,

combined with the explosive growth in microprocessor performance,

enables a range of innovative new distributed computing applications. Dis-

tributed multimedia, including real-time audio and video, and supercom-

puting on clusters of workstations are examples of such emerging applications. One important factor

that could dramatically influence the success of these new technologies is the degree to which oper-

ating systems can make these networking resources available to application programs.

behind those of the central processing unit (CPU)
and I/O devices during the past decade [6]. In state-
of-the-art computer systems, the bandwidth of main
memory is orders of magnitude lower than the band-
width of the CPU, and the bandwidths of the fastest
I/O devices approach that of main memory.1 The
previously existing gap between memory and I/O
bandwidth has almost closed, and a wide gap has
opened between CPU and memory bandwidth, leav-
ing memory as a potential bottleneck.

To bridge the gap between CPU and memory
speed in modern computers, system designers
employ sophisticated cache systems. A cache exploits
locality of reference in memory accesses to reduce main
memory traffic. Locality of reference is the property
of a sequence of memory accesses to reference pref-
erentially those memory locations that were either
accessed recently (temporal locality), or that are
close to recently accessed locations in the address
space (spatial locality). A cache is a high-speed mem-
ory that holds a recently accessed subset of the data
stored in main memory. When the CPU accesses a
main memory location for which the cache holds a
copy, no main memory access is necessary, and the
operation can complete at the speed of the cache
memory. A cache reduces main memory traffic and
lowers the average memory access latency experi-
enced by the CPU. The effectiveness of the cache in
bridging the CPU/memory speed gap depends on
the degree of locality in the memory accesses of the
executed program.

U
NFORTUNATELY, in most current systems the
accesses to I/O data buffers generated by operat-
ing system and applications do not have sufficient
locality to allow the cache system to minimize
memory traffic. As a result, excess memory traffic
is causing a substantial drop in I/O performance,

that is, throughput and latency. This poor locality is
primarily caused by

• data movements (copying),
• inappropriate scheduling of the various I/O pro-

cessing steps, and
• a system structure that requires OS kernel involve-

ment in all I/O activity.

Moving or copying data from one main memory
location to another has poor temporal locality,
because the target locations of the copy are not likely
to have been accessed prior to the copy, and the
source locations will not likely be accessed after the
copy. As a result, accesses to the target locations will
cause many cache misses, and useful cache contents
are replaced by useless cached copies of source loca-
tions, causing further cache misses after the copy.
Both effects contribute substantially to memory traf-

fic. Data copying occurs in current systems due to a
lack of integration in the design of I/O adaptors,
buffer management schemes, interfaces, and mecha-
nisms for the transfer of data across protection
domain boundaries.

Locality can suffer further because various I/O pro-
cessing steps and their associated data accesses occur
in the context of multiple, separately scheduled
threads of control (e.g., interrupt handlers, kernel
threads, application processes). In a multipro-
grammed environment, these processing steps may
not be scheduled to execute in strict succession. That
is, the processing steps of a data unit may be inter-
leaved with the execution of unrelated tasks, with
their own distinct set of memory references. Thus,
accesses to a particular I/O data unit are temporally
separated, resulting in poor data access locality.2

Finally, current systems require that the operating
system kernel be involved in each individual I/O
operation that an application initiates. Thus, I/O
requires a protection domain switch between appli-
cation and operating system, and the transfer of data
across the user/kernel protection boundary. Both
entail a drop in memory access locality, which can
limit I/O bandwidth and significantly contribute to
I/O latency.

In summary, limited memory bandwidth in mod-
ern computer systems is a potential source of perfor-
mance problems. Cache systems can hide the slow
speed of main memory only when the memory access-
es generated by a program have good locality of ref-
erence. Accesses to I/O data generated by operating
systems and applications tend to have poor locality,
rendering the cache unable to avoid the memory bot-
tleneck in processing network I/O.

The goal of our work is to remove the I/O bottle-
neck, without sacrificing modularity in the structure of
operating system and applications. This article
describes two novel techniques that are part of a coor-
dinated design to minimize main memory traffic. We
present a novel OS facility, called fast buffers (fbufs),
for the management and transfer of I/O data buffers
across protection-domain boundaries, both in mono-
lithic and server-based operating systems. Then we
introduce an innovative OS facility that takes advan-
tage of user-level network protocols and limited sup-
port from the network adaptor. It gives applications
direct but controlled access to the network adaptor,
which significantly reduces network message latency.
This facility, called application-device channels (ADCs),
leaves control of the network adaptor to the operating
system, thus allowing transparent sharing of the device
among multiple, non-privileged application programs.

Fast Buffers (fbufs)
In any operating system that supports protection and
security, protection boundaries separate user process-

42 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

1We define CPU bandwidth as the maximal sustained rate, in bytes per second, at which the CPU can absorb data; memory bandwidth as the sustained rate
at which the CPU can read data from main memory; and the I/O bandwidth as the sustained rate at which data can be transferred to and from I/O devices.
2An additional problem can occur on shared-memory multiprocessors, when not all processing steps are scheduled to run on the same processor.

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 43

es from each other, and from the OS kernel.3 When
an application and/or the operating system make use
of user-level servers, many protection boundaries may
occur in the I/O data path. Supporting high-speed
I/O requires an efficient means of transferring I/O
data across protection domain boundaries. More-
over, an appropriate transfer facility must be inte-
grated with the application programming interface
(API) and buffer manager to be effective [8].

This section describes a high-bandwidth cross-
domain transfer and buffer management facility, and
shows how it can be optimized to support data that
originates and/or terminates at an I/O device, poten-
tially traversing multiple protection domains. Fbufs
build on two well-known techniques for transferring
data across protection domains—-page remapping and
shared memory—but overcome the disadvantages of
either method. It is equally correct to view fbufs as

using shared memory (where sharing is read-only and
page remapping is used to dynamically change the set
of pages shared among a set of domains), or using
page remapping (where pages that have been
mapped into a set of domains are retained for use by
future transfers).

A complete description of the design and imple-
mentation of fbufs, along with a detailed perfor-
mance study, can be found in [10]. A number of
research projects have recently adopted variations of
the fbuf mechanism [16, 23]. Also, work is currently
under way at Rice University to build an integrated,
copy-free I/O and file caching system based on fbufs
for a commercial Unix system.

I/O data is stored in memory buffers called fbufs,
each of which consists of one or more contiguous vir-

tual memory pages. A protection domain gains access
to an fbuf either explicitly by allocating the fbuf, or
implicitly by receiving the fbuf via inter-process com-
munication (IPC). In the former case, the domain is
called the originator of the fbuf; in the latter case, the
domain is a receiver of the fbuf.

An abstract data type (ADT) is layered on top of
fbufs to support buffer aggregation. This ADT can com-
bine multiple (discontiguous) fbufs, and allows the
manipulation of the resulting buffer aggregate as a sin-
gle data object. This is important because data arrives
from a network generally in the form of multiple
independent fragment packets that are stored in sep-
arate fbufs. In the interest of avoiding data copying,
this initial, discontiguous storage layout must be pre-
served even after the packet data is reassembled.
Buffer aggregates support this in a convenient and
efficient manner. Similar buffer aggregation facilities

are widely used inside
many operating system
kernels. Examples include
the BSD Unix mbufs [17],
and x-kernel messages [14].

Operations supported
by the buffer aggregate
ADT include concatena-
tion, splitting, truncation,
and logical copying of
buffer aggregates. Our
implementation uses a
directed acyclic graph
(DAG) data structure
(depicted in Figure 1) to
keep track of the con-
stituent fbufs of a buffer
aggregate.

The ADT treats fbufs as
immutable buffers, that is,
they are created with initial
data contents that may no

be subsequently changed
until the buffer is (logical-

ly) destroyed. This allows the ADT to implement log-
ical copying and other operations efficiently by
creating multiple references to the underlying fbufs
and maintaining reference counts. It should be
emphasized that the immutability of fbufs does not
imply that buffer aggregates are immutable. It mere-
ly requires that the ADT implementation must store
modified portions of an aggregate in a new fbuf.

Passing buffer aggregates across protection bound-
aries requires the transfer of constituent fbufs from
one protection domain to another. The design of the
fbuf transfer mechanism is best described by starting
with a basic mechanism based on page remapping,
and then evolving the design with a series of opti-
mizations.4

We use a conventional remapping facility with

Buffer Aggregate

Fbufs

Figure 1. Buffer aggregate

3In Unix and most other operating systems, a protection domain corresponds to a (heavyweight) process.
4Some of the optimizations can be applied independently, giving rise to a set of possible implementations with different restrictions and costs.

copy semantics (copy-on-write) as the baseline for our
design. A virtual page remapping facility logically
copies (or moves) a set of virtual memory pages
among protection domains by modifying virtual
memory mappings. The use of such a facility to cre-
ate, destroy, and transfer a buffer aggregate involves
the following steps. The complexity of each step is
given in brackets.

1. Allocate a Buffer Aggregate (Originator)
(a) Find and allocate a free virtual address range in
originator’s address space [O(#fbufs)]
(b) Allocate physical memory pages and clear con-
tents [O(#pages x pagesize)]
(c) Enter mappings in originator’s page table
[O(#pages)]

2. Send Buffer Aggregate (Originator)
(a) Generate a list of fbufs from the buffer aggregate
[O(#fbufs)]
(b) Raise protection of fbufs’ address ranges in origi-
nator to read-only [O(#fbufs)]
(c) Update page table entries, ensure TLB/cache
consistency [O(#pages)]

3. Receive Buffer Aggregate (Receiver)
(a) Find and reserve a free virtual address range in
receiver’s address space [O(#fbufs)]
(b) Enter shared mappings in receiver’s page tables
[O(#pages)]
(c) Construct a buffer aggregate from the received
list of fbufs [O(#fbufs)]

4. Free a Buffer Aggregate (Originator, Receiver)
(a) Deallocate fbufs’ virtual address ranges
[O(#fbufs)]
(b) Remove mappings from page table, ensure
TLB/cache consistency [O(#pages)]
(c) Free physical memory pages if there are no more
references to the fbufs [O(#pages)]

Even in a careful implementation, these actions can
result in substantial overhead. In modern virtual
memory (VM) systems, modifying a mapping
requires updates to at least three data structures: the
machine-independent address space map, the
machine-dependent virtual-to-physical translation
table (page table), and the physical-to-virtual transla-
tion table. All of these tend to be large, pointer-based
data structures with poor access locality. Moreover,
page table modifications that increase protection for
a page (i.e., reduce access permissions) require sub-
sequent actions to ensure consistency of the transla-
tion lookaside buffer (TLB). If the machine uses a
cache with virtual address tags, cache consistency
operations may also be required. In multiprocessor
machines, these consistency actions may need to be
performed simultaneously on all CPUs, which can be
very expensive.

For example, given an I/O data path with two
domain crossings, six page-table updates are required

for each page of I/O data, three of which may require
TLB/cache consistency actions. Each allocated physi-
cal page may need to be cleared—-that is, filled with
zeroes—-to ensure data privacy. In summary, page
remapping suffers from significant per-page costs,
even though it avoids data copying. Also, the relative
cost of remapping is likely to increase as CPUs
become faster, since it involves memory accesses with
poor locality. The following set of optimizations are
designed to eliminate virtual memory mapping
changes and other per-page and per-fbuf costs associ-
ated with the baseline remapping mechanism.

The first optimization, called restricted dynamic read
sharing, places two functional restrictions on data
transfer. First, only pages from a limited range of vir-
tual addresses can be remapped. This address range,
called the fbuf region, is reserved in all domains’
address spaces. Note that domains do not have unre-
stricted access to the memory that is mapped into the
fbuf region. Second, write accesses to an fbuf by
either a receiver, or the originator while a receiver is
holding a reference to the fbuf, are illegal and result
in a memory access violation exception. That is, an
fbuf cannot be written by a receiver, and it can be
written by its originator only if no receiver is refer-
encing it. An fbuf is referenced by a receiver if it was
passed to that receiver via IPC, and the receiver has
not yet deallocated the fbuf.

The first restriction implies that an fbuf can be
mapped at the same virtual address in the originator
and all receivers. This eliminates the need for action
(3a) during transfer. Shared mapping at the same vir-
tual address also precludes virtual address aliasing,
which simplifies and speeds up the management of
virtually tagged caches in machines that employ such
caches. Also, this form of sharing permits the transfer
of pointer-based data structures in fbufs without
pointer translation. The second restriction eliminates
the need for a copy-on-write mechanism, since shar-
ing of read-only buffers trivially ensures copy seman-
tics. Eliminating copy-on-write simplifies the VM data
structures needed to represent the fbuf region, and
thus increases efficiency.

Restricted dynamic read sharing places two con-
straints on the use of fbufs. (1) A special allocator
must be used for fbufs, since fbufs occupy a dedicat-
ed address range. (2) Fbufs are immutable, that is,
they are allocated with an initial data content that
may not be subsequently changed. Fortunately,
these constraints are already satisfied due to the use
of a buffer aggregate abstract data type on top of
fbufs. Buffer aggregates already use special alloca-
tors, and they use immutable buffers to facilitate
logical copying.

The next optimization, fbuf caching, takes advan-
tage of locality in interprocess communication.
Specifically, it exploits the fact that once a network
packet has followed a certain data path—-that is, vis-
ited a certain sequence of protection domains—-
more packets can be expected to travel the same
path soon.

44 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 45

C
ONSIDER what happens when a packet arrives from
the network. An fbuf is allocated in the kernel,
filled with data, and then transferred one or more
times until the data is consumed by the destina-
tion domain. At that point, the fbuf is mapped
with read-only permission into the set of domains

that participate in an I/O data path. Ordinarily, the
fbuf would now be unmapped from these domains,
and the physical pages returned to the free-memory
pool. Instead, write permissions are returned to the
originator, and the fbuf is placed on a free-list associ-
ated with the I/O data path. When another packet
arrives on the same data path, the fbuf can be reused.
In this case, no clearing of the buffers is required to
ensure data privacy (since all domains with access
have already seen the fbuf’s contents during its previ-
ous use), and the appropriate mappings in the
receivers already exist.

Fbuf caching eliminates actions (1a–c), (3a–b),
and (4a–c) in the common case where fbufs can be
reused. It reduces the number of page table updates
required to two, irrespective of the number of trans-
fers. Moreover, it eliminates expensive clearing of
pages, and increases locality of reference at the level
of TLB, cache, and main memory. Figure 2 depicts
the operation of cached fbufs: A buffer aggregate is
allocated by its originator (a); the aggregate is then
transferred twice (b); finally, all aggregates have been
deallocated, but the fbufs and their mappings are
retained for future use (c).

The fbuf caching optimization requires that the
originator be able to determine the I/O data path at
the time of fbuf allocation. Application programs that
generate output data can specify the I/O data path at
the time of an fbuf allocation simply by referring to
the communication endpoint that they intend to use
for transmitting the data. The OS kernel allocates
fbufs for incoming network packets. To take advan-
tage of cached fbufs, the packet headers must be
inspected to determine the data’s destination end-

point. This determination must be made prior to the
transfer of the message body into main memory. A
packet filter/classifier inspects the headers, deter-
mines the endpoint and associated data path, then
the packet body is transferred into an appropriately
allocated fbuf.

Recall that a buffer aggregate ADT is layered on
top of fbufs. The transfer facility described so far
transfers fbufs, not buffer aggregates, across protec-
tion boundaries. A buffer aggregate is translated into
a list of fbufs in the sending domain (2a); this list is
then passed to the kernel to effect a transfer, and the
buffer aggregate is rebuilt on the receiving side (3c).
Any internal data structures used in the implementa-
tion of buffer aggregates to link the constituent fbufs
(e.g., interior DAG nodes) are stored in memory that
is private to each domain.

Consider now an optimization that incorporates

knowledge about the buffer aggregate ADT into the
transfer facility, thereby eliminating steps (2a) and
(3c). The optimization integrates buffer manage-
ment and cross-domain data transfer facility by plac-
ing the entire buffer aggregate into fbufs. Since the
fbuf region is mapped at the same virtual address in
all domains, no internal pointer translations are
required. During a send operation, a reference to the
root node of the buffer aggregate DAG is passed to
the kernel. The kernel inspects the aggregate and
transfers all fbufs in which reachable nodes reside,
unless shared mappings already exist. The receiving
domain receives a reference to the root node of the
buffer aggregate. Steps (2a) and (3c) are eliminated
under this optimization.

Under the previous optimizations, the transport of
an fbuf from the originator to a receiver still requires
two page table updates per page: one to remove write
permissions from the originator when the fbuf is
transferred, and one to return write permissions to
the originator after the fbuf was freed by all the
receivers.

Receiver 2 Receiver 1 Originator Receiver 2 Receiver 1 Originator Receiver 2 Receiver 1 Originator

(a) after allocation (b) after transfer (c) after deallocation

Private address space Fbuf window R/W Read only

Agg Agg AggAgg

�
�
�� �
�
�� �
�
�� �
�
��� �

�
��

��
��

Figure 2. Fbuf caching

The need for removing write permissions from the
originator can be eliminated in many cases by weak-
ening the fbuf transfer semantics. We call the result-
ing fbufs volatile. A receiver must conservatively
assume that the contents of a received volatile fbuf
may change at any time unless the receiver explicitly
requests that the fbuf be secured, that is, write permis-
sions are removed from the originator—removing
write permissions is unnecessary in many cases.

Consider the case where an fbuf is passed by its
originator to a receiver domain. A correct and well-
behaved originator will not attempt to write to the
(immutable) fbuf after the transfer. If the originator
is a trusted domain—-that is, the OS kernel has allo-
cated the buffer for an incoming packet—-then the
buffer’s immutability clearly need not be enforced.
That is, there is no need to remove write permissions
from a trusted originator.

The situation is more interesting when the origi-
nator is an (untrusted) application that generated
some data. In general, a receiver of an fbuf could fail
while processing the buffer’s contents if and when
the fbuf is concurrently modified by a malicious or
faulty originator. However, depending on the type of
processing performed by the receiver, such an origi-
nator-induced “failure” may not violate the system’s
security and protection policies. For example, pro-
cessing performed by layers of the I/O subsystem typ-
ically consists of data transformations such as adding
redundancy (CRC), compression, encryption, or data
presentation conversions. Almost all of these compu-
tations have the property that concurrent changes to
the input data will result in garbled output data, with-
out adverse effects to the state of the system and no
violation of the system’s protection and security poli-
cies. Thus, a faulty application merely interferes with
its own output operation by modifying the buffer.

I
T should be emphasized that volatile fbufs, when
properly used, do not weaken or compromise pro-
tection and security. Proper use requires that pro-
grammers determine if their code is vulnerable to
concurrent modifications of received fbufs’ con-
tents.5 If violations of the system’s protection and

security policies as a result of such modifications can
be ruled out, then volatile fbufs can be used without
change. Else, the receiver code must be modified to
explicitly request that write permissions are removed
from all received fbufs with untrusted originators.
Our buffer aggregate ADT supports an appropriate
operation that has this effect.

In practice, we have found that in most cases
where a receiver cannot tolerate concurrent modifi-
cations, the originator is a trusted domain. Intuitive-
ly, this is because most input data originates from the
trusted OS kernel. Output data, which often origi-
nates from untrusted application domains, is gener-
ally not interpreted but merely transformed by
receivers.

When combined, the optimizations described
eliminate all virtual memory mapping changes and
other per-page and per-fbuf costs associated with
cross-domain data transfer in the common case. This
common case requires that the data path can be iden-
tified at fbuf allocation time, an appropriate fbuf is
already cached, and removing write permissions from
the originator is unnecessary. In the less common
cases where one of these conditions is not satisfied,
some VM mapping changes remain, but data copying
can always be avoided.

In order to achieve a copy-free end-to-end data
path (i.e., from source to sink device), applications
should directly manipulate buffer aggregates. From
the perspective of the programmer, this has two con-
sequences: the data contained in an aggregate is not
necessarily stored contiguously; and, the data cannot
be modified in place, since fbufs are immutable.
Applications that read I/O data mostly sequentially
can easily be modified to work with buffer aggregates.
They can use operations supported by the buffer
ADT that generate pointers to the contiguous fbufs of
the aggregate. Applications that read input data
sequentially and write modified output data store the
modified data into a new fbuf. If only a portion of the
input data is modified, that portion is stored in a new
fbuf, and then joined with the original fbufs to form
a new aggregate, using operations provided by the
buffer ADT. This is efficient, as long as there is not an
excessive number of small, scattered modifications.

A large class of applications reads and writes I/O
data mostly sequentially, and can be modified with lit-
tle effort to use buffer aggregates, resulting in a copy-
free I/O data path. Scientific applications often read
large arrays of data from input devices. For such
applications, the buffer aggregate representation
may be inappropriate, since the program may
depend on contiguous storage and in-place modifica-
tions for efficiency. In these cases, the cost of copying
the data into a contiguous array can be recovered by
the increased efficiency of subsequent accesses to the
array.

The original prototype implementation of fbufs
was done in the context of CMU’s Mach 3.0 micro-
kernel (MK74), augmented with a network subsystem
based on the University of Arizona’s x-kernel (Ver-
sion 3.2) [14]. The hardware platform consists of a
pair of DecStation 5000/200 workstations, each of
which was attached to a prototype OSIRIS ATM net-
work interface board, designed by Bellcore for the
Aurora Gigabit testbed [9]. The OSIRIS boards were
connected by a null modem, and they support a link
speed of 622Mbps (OC-12).

Micro-benchmarks of a single protection bound-
ary crossing show that fbufs perform an order of mag-
nitude better than the baseline page-remapping
scheme described previously. This page-remapping
facility is our reimplementation of one of the more
highly tuned implementations of page remapping

46 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

5For example, it can be shown that any program that reads each input buffer location only once can be safely used with volatile fbufs.

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 47

described in the literature [25]. Moreover, we found
that fbufs consistently outperform Mach’s native IPC
facility over all message sizes. In a second experiment,
application-to-application throughput is measured
using the UDP/IP protocol suite in a local loopback
test. The throughput achieved with fbufs exceeds that

of page remapping by a factor of two in this experi-
ment. Finally, the throughput of a simple sliding win-
dow protocol on top of UDP/IP was measured
between two DecStations connected by an OC-12
ATM link. Results show that fbufs can increase
throughput by up to a factor of two, or reduce CPU
load by up to 45%, when compared with the baseline
remap scheme. Detailed performance results can be
found in [10].

Application-Device Channels
The work on fbufs shows how to avoid bandwidth
degradation due to protection boundary crossings
along the I/O data path. Protection boundaries also
have the effect of adding latency to I/O operations,
due to the necessary argument validation, protection
domain switch, and the resulting drop in memory
access locality. Fbufs cannot eliminate the added
latency caused by protection domain boundaries. In
this section, we describe a new approach that gives
applications direct access to a network device for
common I/O operations, thus bypassing the OS ker-
nel and removing protection boundaries from simple
application-network data paths.

In the past, I/O operations had inherently long
latencies due to slow hardware devices (disks, slow
network links). Additional software latencies due to
OS kernel involvement were insignificant. With the
low delays of high-speed local-area networks, on the

other hand, OS software latencies can easily domi-
nate the end-to-end communication delays experi-
enced by applications. For example, parallel
programming systems implemented on workstation
clusters are very communication-intensive. The per-
formance and scalability of such systems can suffer

from added communica-
tion latencies caused by
the lack of direct access
to the network hardware.

The design of applica-
tion-device channels
(ADCs) recognizes com-
munication as a fine-
grained, performance-
critical operation, and
allows applications to
bypass the operating sys-
tem kernel during net-
work send and receive
operations. The OS is
normally only involved in
the establishment and
termination of network
connections. Protection,
safety, and fairness are
maintained, because the
network adaptor vali-
dates send and receive
requests from applica-
tion programs based on
information provided by

the OS during connection establishment. Unlike
other systems that support user-level network access
using special-purpose, dedicated network interfaces,
[3, 4, 12, 19], ADCs can be used with many commer-
cial, general-purpose network adaptors.

The basic approach taken in designing ADCs is
depicted in Figure 3. First, instead of centralizing the
network communication software inside the operat-
ing system, a copy of this software is placed into each
user domain as part of the standard library that is
linked with application programs. This user-level net-
work software supports the standard application pro-
gramming interface. Thus, the use of ADCs is
transparent to application programs, except for per-
formance.

Second, the user-level network software is granted
direct access to a restricted set of functions provided
by the network adaptor. This set of functions is suffi-
cient to support common network send and receive
operations without involving the OS kernel. As a
result, the OS kernel is removed from the critical
network send/receive path. An application process
communicates with the network adaptor through an
application device channel, which consists of a set of
data structures that is shared between network adap-
tor and the user-level network software. These data
structures include queues of buffer descriptors for
the transmission and reception of network messages.

When an application opens a network connection,

Network InterfaceADC

ADC

Protocol
Library

Application

Send Receive

Connection
Management

OS

Network Protocols

Figure 3. Application-device channel

the operating system informs the network adaptor
about the mapping between network connection and
ADC, creates the associated shared data structures,
and grants the application process access to these
data structures. The network adaptor passes subse-
quently arriving network messages to the appropriate
ADC, and transmits outgoing messages queued on an
ADC by an application using the appropriate network
connection. An application cannot gain access to net-
work messages destined for another application, nor
can it transmit messages other than through network
connections opened on its behalf by the OS.

There are a number of compelling advantages to
the use of application device channels. First, network
send and receive operations
bypass the OS kernel. This
eliminates protection
domain boundary crossings,
which would otherwise
entail data transfer opera-
tions, domain switching,
and the associated drop in
memory access locality. In
traditional implementa-
tions, these costs account
for a significant portion of
the application-to-applica-
tion latency experienced on
a high-speed local-area net-
work.

Second, since applica-
tion device channels give
application domains low-
level network access, it is
possible to use customized
network protocols and soft-
ware. This flexibility can
lead to further performance improvements, since it
allows the use of application-specific knowledge to
optimize communications performance. For exam-
ple, a parallel programming system implemented on
a workstation cluster can gain efficiency by using spe-
cialized message-passing protocols and buffering
strategies instead of generic TCP/IP network con-
nections.

Finally, with application device channels, all pro-
cessing and resources necessary for network commu-
nication are associated with an application process.
This eliminates kernel resource constraints and
scheduling anomalies that plague traditional network
implementations.

There are three components to the implementa-
tion of ADCs: first, a user-level implementation of the
networking software, including device driver, net-
work protocols, and communications API; second,
the actual ADC mechanism, which provides a shared-
memory communication channel between applica-
tion process and network adaptor; and third, network
adaptor support for ADC-based networking. A gener-
al discussion of possible approaches for each compo-
nent and a description of our prototype

implementation follows.
User-level implementations of TCP/IP network

software have been described in [18, 24]. The gener-
al approach is to separate and decentralize common-
case operations and link the resulting code with user
applications. A complete implementation of the net-
work software remains in the kernel. The in-kernel
software handles exceptional cases and tasks that
require centralized control.

Several approaches are possible for the implemen-
tation of the ADCs, depending on the capabilities of
the network adaptor and the I/O architecture of the
host. If the network adaptor contains memory that is
accessible on the host’s I/O bus, a portion of this

memory can be divided into
VM page-sized portions and
mapped individually into
user processes. These pages
then serve as shared-memo-
ry channels between appli-
cations and network
interface. We call this
approach network interface-
based ADCs. Alternatively,
ordinary main memory
pages can be used for the
same purpose. The user
process accesses the ADC
through its mapping of a
main memory page. The
network interface accesses
the ADC using direct mem-
ory access (DMA) of the
corresponding physical
page. This approach is
called main memory-based
ADCs.

A second distinction concerns the type of data
exchanged through ADCs. One approach is to only
pass control/status information through the ADC.
Here, the ADC pages contain essentially queues of
buffer descriptors for transmission and reception.
The actual network (payload) data is stored in ordi-
nary pageable application memory and accessed by
the network adaptor using DMA. This solution allows
copy-free (zero-copy) I/O. Hardware limitations on a
given host machine may preclude this approach. The
host I/O bus may support DMA to only a subset of
main memory, and/or the network adaptor may not
support DMA at all. In this case, payload data can be
passed directly through the ADC.

The final component of an ADC-based network
architecture is ADC support in the network adaptor.
The network adaptor must be able to demultiplex
incoming network packets to the correct ADC, handle
transmission requests on ADCs while exercising
appropriate network access control, interact with the
OS kernel to establish/relinquish ADCs, and handle
exceptional cases. We shall refer to this set of tasks col-
lectively as ADC multiplexing. Naturally, appropriate
support is not likely to be found in off-the-shelf net-

48 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

The goal of our work is

to remove the I/O bottleneck

without sacrificing modularity

in the structure of operating

system and applications.

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 49

work interfaces. Fortunately, the necessary support
can be implemented relatively easily by modifying the
firmware that controls the on-board CPU found in
many commercial high-performance network adap-
tors.

Even with primitive network adaptors that do not
contain a programmable CPU or otherwise lack the
necessary support, it is still possible to implement
ADCs. The approach in this case is to perform the
ADC multiplexing task inside the OS kernel. ADCs
are implemented as shared memory channels
between user processes and the OS kernel. A kernel
thread monitors ADCs and multiplexes traffic from
and to the network device. On a single-processor
machine, a context switch to this kernel thread is nec-
essary during send and receive operations, which
comes at some cost in latency. However, the advan-
tages of customizable network software and improved
resource control can still be retained. An ADC imple-
mentation using this approach on a uniprocessor
machine is similar to the user-level protocol architec-
tures described in the literature [18, 24].

The implementation of ADCs with uncooperative
network adaptors can be as efficient as one with
appropriate NI support when executed on a shared-
memory multiprocessor machine. Here, one of the
host CPUs is scheduled to execute the in-kernel ADC
multiplexing thread. The remaining CPUs execute
user applications and perform network I/O through
their ADCs, bypassing the kernel. The system behaves
similar to one with a smart network interface, except
that a host CPU takes care of the ADC multiplexing.
Note that it is not necessary to permanently dedicate
a CPU to the task of ADC multiplexing. A CPU can be
scheduled for this task when it is otherwise idle. If all
CPUs are busy executing applications, then network
communication again requires a context switch to the
ADC multiplexing thread, at some cost in latency.

W
E next describe our prototype implementation
of ADCs. The system was realized in a Mach
3.0/x-kernel environment, using the OSIRIS
ATM network adaptor. Here, the OSIRIS on-
board memory is divided into 16 4KB pages,
each of which contains a free buffer queue, a

send and a receive queue. One set of queues is used
by the operating system in the usual way. The remain-
ing 15 sets are available as application device chan-
nels.

When an application opens a network connection,
the operating system maps a set of queues into the
application’s address space to form an application
device channel. Linked with the application is an
ADC channel driver, which performs essentially the
same functions as the in-kernel OSIRIS device driver.
Also linked with the application is a replicated, user-
level implementation of the network protocol soft-
ware.

As part of the connection establishment, the oper-
ating system assigns a set of ATM virtual circuit iden-
tifiers (VCIs) and a priority to the ADC. The OSIRIS

receive processor queues incoming messages on the
receive queue of an ADC if the VCI of the message is
in the set of VCIs assigned to that ADC. Applications
can send messages through an ADC using the VCIs
assigned to that ADC. Therefore, applications can
only receive and transmit messages on connections
that they have opened with the authorization of the
operating system. The ADC priority is used by the
OSIRIS transmit processor to determine the order of
transmissions from the various ADCs’ transmit
queues. Using these priorities, the OS can enforce
network resource allocation policies.

For each ADC, the OSIRIS on-board processors
maintain a virtual-to-physical address translation
table. This table provides address translation for the
application’s virtual buffer addresses (needed for
DMA) and ensures memory access protection. When
an application queues a buffer with an address not
contained in this table, the on-board processor
asserts a host interrupt. The operating system’s inter-
rupt handler in turn looks up the address in the
application’s page table. If a valid mapping exists, the
kernel provides the appropriate translation informa-
tion to the network adaptor, paging in the page if
necessary; otherwise, an access violation exception is
raised in the offending application process. When
the kernel selects a page for replacement, it asks the
network interface to flush the corresponding map-
ping from its translation table.

All host interrupts are fielded by the OS kernel’s
interrupt handler. If the interrupt indicates an event
affecting an ADC, such as the transition of an ADC’s
receive queue from the empty to a non-empty state,
the interrupt handler directly signals a thread in the
ADC channel driver linked with the application. A
full context switch to an OS kernel thread does not
occur in this case. Note also that due to the use of
interrupt-reducing techniques, the average number
of host interrupts per network message is less than
one [9]. For example, when a message is added to a
non-empty receiver queue, no host interrupt is nec-
essary, because the host has already been notified of
a non-empty receiver queue when the first message
arrived.

The number of application processes with open
network connections can exceed the maximal num-
ber of ADCs (15 in our implementation). In this case,
only a subset of the processes can use ADCs, and the
remaining processes must use the normal I/O path
through the OS kernel. For best performance, the OS
tries to assign the available ADCs to the processes
with the most network traffic. An ADC can be reas-
signed from one application to another. To do this,
the OS deactivates the ADC channel driver in one
application, causing subsequent I/O requests to fol-
low the normal path through the kernel. Then,
another ADC channel driver is activated, causing fur-
ther network traffic to use the ADC. ADC reassign-
ment is transparent to application programs, except
for performance.

Performance results of our prototype ADC imple-

mentation were obtained on DEC 3000/600
(175MHz Alpha) workstations connected by a pair of
OSIRIS boards, linked back-to-back. The latency fig-
ures include interrupt latency, that is the receiver
does not poll the network device. A short message (1
byte) round-trip latency of 154µsecs was measured
between test programs configured directly on top of
the user-level OSIRIS device driver. This number is sig-
nificant since it is a lower bound for the latency an
application can achieve using customized network
protocols on top of ADCs. With a user-level imple-
mentation of the UDP/IP protocol suite, the short
message round-trip latency is 316µsecs. For compari-
son, the short message round-trip latency for the stan-
dard UDP/IP implementation in DEC OSF/1 V3.0
on the same hardware is 550µsecs. In other words,
ADCs reduce the UDP/IP round-trip latency by 42%
on our platform. We suspect that this reduction could
be even more substantial if our user-level UDP/IP
code were as highly tuned as the production-strength
DEC OSF/1 implementation. Further results show
that on a pair of 3000/600s, applications can saturate
the OC-12 network link for message sizes of 16KB and
above. More comprehensive performance results are
presented in [9].

Summary
Recall that the OS I/O bottleneck is rooted in poor
memory-access locality during I/O processing. This
poor locality is primarily caused by (1) data copying,
(2) inappropriate scheduling of I/O processing
steps, and (3) OS kernel involvement in all I/O activ-
ity. Application device channels allow common case
send and receive operations to bypass the OS kernel,
eliminating one source of poor memory access local-
ity (3). When combined with an appropriate applica-
tion programming interface, ADCs allow copy-free
I/O, thus eliminating data copying (1). Finally, since

ADCs concentrate all processing and resources asso-
ciated with I/O in the application process, it is possi-
ble to schedule I/O activities for improved memory-
access locality (2).

ADCs eliminate protection domain crossings—-
and the resulting overheads—-from I/O data paths
that involve a single application process. Unfortu-
nately, many applications require I/O data paths that
intersect several user processes. For example, audio
and video playback using a WWW browser typically
involves the browser process, an audio/video server,
and the GUI server. Additional domain crossings
occur when the operating system relies on user-level
servers. Fbufs can substantially reduce the cost of
transferring data across multiple protection domain
boundaries, and thus complement ADCs.

Related Work
Many operating systems provide some form of virtual
memory (VM) support for transferring data from one
domain to another. For example, DASH [25] sup-
ports page remapping, while Mach supports copy-on-
write (COW) [1]. Container Shipping [20] is a Unix
I/O system that uses page remapping. As mentioned
previously, we found that fbufs consistently outper-
form our reimplementation of the DASH page-
remapping facility, and also Mach’s native
copy-on-write facility on the DecStation 5000/200.

A
NOTHER approach is to statically share virtual
memory among two or more domains, and to use
this memory to transfer data. Using statically
shared memory to eliminate all copying poses
problems: globally shared memory compromises
security, pairwise shared memory requires copy-

ing when data is either not immediately consumed or
is forwarded to a third domain, and group-wise
shared memory requires that the data path of a buffer
is always known at the time of allocation. All forms of
read/write shared memory may compromise protec-
tion between the sharing domains.

Several recent systems attempt to avoid data copy-
ing by transferring data directly between Unix appli-
cation buffers and network interface [7, 15]. This
approach works when data is accessed only in a single
application domain. A substantial amount of memory
may be required in the network adaptor when inter-
facing to high-bandwidth, high-latency networks.
Moreover, this memory is a limited resource dedicat-
ed to network buffering. With fbufs, on the other
hand, network data is buffered in main memory; the
network subsystem can share physical memory
dynamically with other subsystems, applications, and
file caches.

A number of specialized network interfaces exist
that support user-level network access, for example
SHRIMP [3], Memory Channel [12], Hamlyn [4],
Telegraphos [19], and MAGIC [13]. These interfaces
are specialized to support a shared-memory abstrac-
tion on loosely coupled multicomputers, and they
attach to dedicated networks. An ADC, on the other

50 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

Achieving a high-

performance I/O system requires

an integrateddesign of application

programming interface, cross-

domain data transfer, buffer

management, and network

interface.

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 51

hand, is a software mechanism implemented with
minimal assist from a general-purpose network adap-
tor. As such, it can support general TCP/IP internet-
work access along with highly efficient
message-passing traffic.

The U-Net project has recently built a system sim-
ilar to ADCs, using the commercial Fore SBA-200
ATM network adaptor [2]. In our terminology, U-
Net uses main memory based ADCs, where the net-
work data is passed directly through the ADCs (the
Sun SBUS does not support DMA to arbitrary main
memory locations.) The SBA-200 firmware was mod-
ified to add support for the necessary ADC multi-
plexing.

Recommendations for Network Adaptor Designers

W
E conclude this article with a recommendation
for designers of general-purpose, high-perfor-
mance network adaptors. Achieving a high-per-
formance I/O system requires an integrated
design of application programming interface,
cross-domain data transfer, buffer manage-

ment, and network interface. As demonstrated in this
article, small amounts of support by the network
adaptor can facilitate large performance gains in the
I/O system. In particular, fbufs require that incoming
packets can be classified (demultiplexed) prior to
their transfer into main memory. Application device
channels additionally benefit from a network adap-
tor’s ability to multiplex among several sets of trans-
mit/receive queues associated with open network
connections.

Neither of these facilities require additional hard-
ware support. They merely require an appropriate
interface between operating system and NI, plus a
small amount of processing on an already existing on-
board CPU. On the other hand, it seems infeasible
for network interface designers to anticipate the
needs of all operating systems and new innovative OS
mechanisms. Thus, our recommendation is to (1)
avoid design decisions that preclude facilities such as
fbufs and ADCs, and (2) allow operating systems to
download OS-specific firmware into the network
adaptor, so that OS designers have the flexibility to
tailor and optimize the NI–OS interface.

References
1. Accetta, M., Baron, R., Bolosky, W., et al. Mach: A new kernel

foundation for Unix development. In Proceedings of the USENIX
Summer ‘86 Conference (July 1986).

2. Bas, A., Buch, V., Vogels, W., et al. U-Net: A user-level network
interface for parallel and distributed computing. In Proceed-
ings of the 15th ACM Symposium on Operating System Principles
(1995).

3. Blumrich, M.A., Li, K., Alpert, R., et al. Virtual memory
mapped network interface for the SHRIMP multicomputer. In
Proceedings of the 21st Annual International Symposium on Comput-
er Architecture (Apr. 1994), pp. 142–153.

4. Buzzard, G., Jacobson, D., Marovich, S., et al. Hamlyn: A high-
performance network interface with sender-based memory
management. In Proceedings of the Hot Interconnects III Symposium
(Palo Alto, CA, Aug. 1995).

5. Clark, D.D. and Tennenhouse, D.L. Architectural considera-
tions for a new generation of protocols. In Proceedings of the SIG-
COMM ‘90 Symposium (Sept. 1990), pp. 200–208.

6. Comerford, R. and Watson, G.F. Memory catches up. IEEE Spec-
trum 29, 10 (Oct. 1992), 34–57.

7. Dalton, C., Watson, G., Banks, D., et al. Afterburner. IEEE Net-
work 7, 4 (July 1993), 36–43.

8. Druschel, P., Abbott, M.B., Pagels, M. Network subsystem
design. IEEE Network 7, 4 (July 1988), 8–17.

9. Druschel, P., Davie, B.S., and Peterson, L.L. Experiences with a
high-speed network adaptor: A software perspective. In Pro-
ceedings of the SIGCOMM ‘94 Conference (London, UK, Aug.
1994), pp. 2–13.

10. Druschel, P. and Peterson, L.L. Fbufs: A high-bandwidth cross-
domain transfer facility. In Proceedings of the 14th ACM Sympo-
sium on Operating System Principles, (Dec. 1993).

11. Gigabit network testbeds. IEEE Computer (Sept. 1990), 77–80.
12. Gillett, R.B. Memory channel network for PCI. IEEE Micro 16, 2

(Feb. 1996), 12–18. Also in Proceeding of the Hot Interconnects III
Symposium (August 1995).

13. Heinlein, J., Charachorloo, K., Dresser, S., et al. Integration of
message passing and shared memory in the Stanford flash mul-
tiprocessor. In Proceedings of the 6th Conference on Architectural
Support for Programming Languages and Operating Systems (San
Jose, CA, Oct. 1994), pp. 38–50.

14. Hutchinson, N.C. and Peterson, L.L. The x-kernel: An archi-
tecture for implementing network protocols. IEEE Trans. Softw.
Engineering 17, 1 (Jan. 1991), 64–76.

15. Jacobson, V. Efficient protocol implementation. In ACM SIG-
COMM ‘90 tutorial (Sept. 1990).

16. Jones, M.B, Leach, P.J., Draves, R.P., et al. Modular real-time
resource management in the Rialto operating system. In Pro-
ceedings of the 5th Workshop on Hot Topics in Operating Systems
(HotOS-V), (Orcas Island, WA, May 1995).

17. Leffler, S.J., McKusick, M.K., Karels, M.J., et al. The Design and
Implementation of the 4.3BSD UNIX Operating System. Addison-
Wesley, Reading, Mass., 1989.

18. Maeda, C. and Bershad, B. Protocol service decomposition for
high-performance networking. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles (Dec. 1993).

19. Markatos, E.P. and Katevenis, M.G. Telegraphos: High-perfor-
mance networking for parallel processing on workstation clus-
ters. In Proceedings of the 2nd International Symposium on
High-Performance Computer Architecture (San Jose, CA, Feb. 1996),
pp. 144–153.

20. Pasquale, J., Anderson, E., and Muller, P.K. Container Ship-
ping: Operating system support for I/O-intensive applications.
IEEE Comput. 7, 3 (Mar. 1994), 84–93.

21. Ramakrishnan, K.K. Performance considerations in designing
network interfaces. IEEE Journal on Selected Areas in Communica-
tions 11, 2 (Feb. 1993), 203–219.

22. Smith, J.M. and Traw, C.B.S. Giving applications access to Gb/s
networking. IEEE Network 7, 4 (July 1993), 44–52.

23. Thadani, M.N. and Khalidi, Y.A. An efficient zero-copy I/O frame-
work for UNIX. Tech. Rep. SMLI TR-95-39, Sun Microsystems
Laboratories, Inc., May 1995.

24. Thekkath, C., Nguyen, T., Moy, E., et al. Implementing net-
work protocols at user level. In Proceedings of the SIGCOMM ‘93
Symposium (Sept. 1993).

25. Tzou, S.-Y. and Anderson, D.P. The performance of message-
passing using restricted virtual memory remapping. Software—-
Practice and Experience 21 (Mar. 1991), 251–267.

PETER DRUSCHEL is Assistant Professor of Computer Science at
Rice University; email: druschel@cs.rice.edu

Permission to make digital/hard copy of part or all of this work for person-
al or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that copying
is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a
fee.

© ACM 0002-0782/96/0900 $3.50

C

