
CMPSCI 377: Operating Systems

Solutionto homework 2: SchedulingandSynchronization

1. (10pts)Scheduling. Giventhefollowing mix of job, job lengths,andarrival times,assumea timesliceof 15
andcomputethecompletionandaverageresponsetime of eachjob for theFIFO, RR,andSRTF algorithms.
Pleaseusethefollowing tableformatfor your solution.

Solution: Note,to getresponsetimes,we mustsubtractstarttimesfrom finish times.

SchedulingAlgorithms

Job length arrival time FIFO RT RR RT SRTF RT

0 75 0 75 75 190 190 205 205
1 40 10 115 105 110 100 80 70
2 25 10 140 130 85 75 40 30
3 20 80 160 80 160 80 100 20
4 45 85 205 120 205 120 145 60

Avg. RT 102 113 77

2. (10 pts) Scheduling. Given 3 jobs of length10, 30, and20 secondswith the samearrival time, schedule
themin job numberorder. The 10 secjob has1 secof I/0 every othersecstartingat 1 second(assumethe
I/O happensjust beforethe time slice). The context switch time is 0 sec,andthereare2 queues.The first
has1 sectime slice; the secondhasa 2 sectime slice. Using the Multilevel FeedbackQueuesAlgorithm,
fill in thefollowing tableswith theaverageresponse,execution,andcompletiontimesof thesejobs. Usethe
notationfrom class:make thesuperscripton thejob numbertheprogressof thejob, andthesubscripton the
job numberthesystemtime. For comparison,alsocomputethe job completionandaverageresponsetimes
for theRR algorithm.

Solution:

1

Completion
Time

Job length RR MLFB

1 10 28 28
2 30 60 60
3 20 50 51

avg. RT 46 46.33

Time
Queue Slice Job

1 1 1
�� , 2

�� , 3
�� , 1

�� , 1
� �
, 1

� ��� , 1
� ��� , 1

� ���
	
�
��
 ,

	���� ,
	
�� ,

	 ���� �

2 2 2
�� , 3

�
 , 2
� ��� , 3

� ��� , 2

�
� � , 3

�
��� , 2

� � , 3

� � , 2

���� , 3
����

2
����� , 3

����� , 2
���� � , 3

���� � , 2
� �� � , 3

� ��� , 2
��
� � , 3

��
� � , 2
����� , 3

����� , 2
����

3. (5 pts)Scheduling. Whatis theeffectontheRoundRobinAlgorithm of increasingthetimesliceto arbitrarily
largevalues.

Solution: Very largetimeslicesdecreasesRoundRobin’s ability to improve fairness,andmakesit look more
andmorelike FIFO.

4. (10 pts) Synchronization: What advantagesdoesthe test&setinstructionhave over enablinganddisabling
interrupts?In whichcircumstancesmaywestill perferenablinganddisablinginterupts?

Solution: test&setis lesserrorpronebecausetheOSdoesnot have to rememberto enableinterrupts,andit
doesnot let theusercontrolinterruptsin any way. Insidekernelcodeshortsequenceswith interruptsdisabled
will bebettersinceit eliminatesbusywaiting.

5. (15 pts) Semaphores. Supposea two-way (north-south),two-laneroadcontainsa long one-lanetunnel. A
southbound(or northbound)carcanonly usethetunnelif thereareno oncomingcarsin thetunnel.Because
of accidents,a signalingsystemhasbeeninstalledat theentrancesto thetunnel. Whena carapproachesthe
tunnel,a sensornotifiesthecontrollercomputerby calling a functionarrive with thecar’s travel direction
(northor south).Whena carexits thetunnel,thesensornotifiesthecontrollercomputerby callingdepart
with the car’s travel direction. The traffic controllersetsthe signal lights: greenmeansgo, andred means
stop. Constructanalgorithmfor controlling the lights suchthat they operatecorrectlyevenwhenmostcars
approachthetunnelfrom onedirection.

Solution: Thesolutionbelow enforcesalternationif carsarearriving in bothdirectionsregularly, andit lets
multiple carsgoing in thesamedirectionin thetunnelat once.It only switchesdirections,if all carsareout
of thetunnelandtherearecarswaiting to go in theoppositedirection.Every time it switchesdirections(say
from north to south),it letsall thewaiting (southbound)carsgo at once. It checksthenorthWait/southWait
variablesto determineif a car is waiting, otherwiseif no car is waiting, the arriving car goes. The north-
Bound/southBoundvariablestrackthenumberof carsin thetunnel.In thissolution,weonly signalto waiting
cars.As a result,somecarsmayskip waiting altogetherif no carsarein thetunnelor no car is waiting from
theoppositedirection.

enum Direction {North, South};
class Tunnel {

2

public:
Arrive(Direction dir); Depart(Direction dir);

private:
Semaphore mutex, goNorth, goSouth;

int northWait; // waiting to go north
int southWait; // waiting to go south
int northBound; // going north in Tunnel
int southBound; // going south in Tunnel

}
Tunnel::Tunnel() {

mutex.value = 1; // mutex for shared variables is available
goNorth.value = 0; // Cars do not wait if tunnel is empty - Depart
goSouth.value = 0; // signals only when car(s) wait (n/sWait > 0)
northWait = 0; // no one waiting
southWait = 0; // no one waiting
northBound = 0; // no one in tunnel
southBound = 0; // no one in tunnel

}
Tunnel::Arrive(Direction dir){

mutex.Wait();
// If no one in the tunnel, car goes
if ((northBound > 0) || (southBound > 0) {

if (dir == North) {
// if no one is waiting to go south, car goes north
if ((southWait > 0) || (southBound > 0)) {

// otherwise, we count north waiters, and wait for a signal
northWait++;
mutex.Signal(); // release mutex before waiting!
goNorth.Wait();
mutex.Wait();
northWait--;

}
else {

// if no one is waiting to go north, car goes south
if ((northWait > 0) || (northBound > 0)) {

southWait++;
mutex.Signal(); // release mutex before waiting!
goSouth.Wait();
mutex.Wait();
southWait--;

}
}

}
// count how many cars are in the tunnel
if (dir == North) northBound++;
else southBound++;
mutex.Signal();

}

// When a northbound car departs, we signal a southbound car if one is
// waiting only if no northbound cars are in the tunnel. Similarly,
// when a southbound car departs. Note, in the Arrive routine above
// the car only waits

3

Tunnel::Depart(Direction dir) {

mutex.Wait();
if (dir == North) {

northBound--;
if (southWait > 0) {

if (northBound == 0)
for (int i = 0; i++; i < southWait)

goSouth.Signal();
}

}
else {

southBound--;
if (northWait > 0) {

if (southBound == 0)
for (int i = 0; i++; i < northWait)

goNorth.Signal();
}

}
mutex.Signal();

}

4

