CMPSCI 377: Operating Systems

Solutionto homeavork 1: ProcesseandThreads

1. (10 pts) Whataredifferentiatesbetweera program,anexecutableanda process?

Solution: A programis a collectionof sourcefiles in somehigh level languagethat you write to do some
function, for example, C++ files that implementsorting lists. An executableis the file that the compiler
createdrom thesesourcefiles containingmachineinstructsthat can executeon the CPU. A processs the
active executionof the executableon the CPU andin the memory It includesthe memory management
information,the currentPC, SR HP, registers etc.

2. (10 pts) What happenson a contet switch? Shouldcontet switcheshappenfrequentlyor infrequently?
Explainyouranswer

Solution:
Onacontet switch,the OS mustsave the currentexecutioncontet (the PC, SB registers,memorymapping

information,etc.) in the OS’s PCB for this processandchangeshe programs statusto “ready”, “waiting”,
or “terminated’asappropriate.The OSthenselectsa procesgo executefrom the readyqueue changeghis
processs statusto “running”, andloadsthe process executioncontet from the OS’s PCB for this process

ontothehardware.

A contet switch shouldhappenfrequentlyenoughso that all jobs in the systemmale processg.g., short
jobs shouldnot have to wait for lots of long jobsto finish beforethey run. Context switchesshouldhappen
infrequentlyenoughthat their overheaddoesnot take up a significantamountof the total systemCPU time.

Usually we wantto keepcontext switchtime aroundl to 2% of total systemtime. Thelengthof atime slice

to forcea context switch shouldthusbetunedto this percentage.

3. (20 pts) Using the fork(), waitpid(), andkill() systemcalls, write a programin which a parentcreateswo
children. The parentthenwaitsfor thefirst child to complete andkills the secondvhenthefirst completes.
After that,the parentexits.

Solution:

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

#i ncl ude <sys/wait. h>
#i ncl ude <stdio. h>

#i ncl ude <signal . h>

mai n()
{
pid t pidl, pid2;

printf("PARENT: forking childl\n");



if ((pidl =fork()) == 0) {
/{1 Child process
printf("CH LD1: running\n");
sl eep(5);
printf("CH LDl: exiting\n");
exit(0);
}
el se {
printf("PARENT: forking child2\n");
if ((pid2 = fork()) == 0) {
[l Child process
printf("CH LD2: running\n");
while (1);
printf("CH LD2: exiting\n");
exit(0);

el se {
printf("PARENT: waiting for childl to finish\n");
wai t pid(pidl, 0, 0);
printf("PARENT: Childl dead\n"); fflush(stdout);
if ('kill(pid2, SIGHUP)) {

printf("PARENT: Killed child2\n");

}

}

}
}

/1 Qutput

I

Il > run

/1 PARENT: forking childl
/1 PARENT: forking child2
/1 CHI LD1: running

/1 PARENT: waiting for childl to finish
/1 CHI LD2: running

/1 CHI LDl: exiting

/'l PARENT: Childl dead

/1 PARENT: Killed child2

. (10pts)Whatarethe differencedetweeruserlevel threadsandkernelthreadsUnderwhatcircumstancess
onetypebetterthanthe other?

Solution: Userlevel threadsare created,destryed and scheduledby a userlevel library. The operating
systemds unavare of the presencef userlevel threads.Kernelthreads(alsocalledlightweight processes)
arethreadghatthe operatingsystemkernelis awareof.

Userlevel threadsarefasterthankernelthreadssinceno systemcalls areneededo createsuchthreadsand
the OSis notinvolved in their scheduling(no contet switch overheads incurredwhenswitchingfrom one



threadto another).Sincetheuserlevel threaddibrary canimplementheir own schedulingolicy, thesethread
aresuitablefor problemsthatrequirea specificschedulingechnique.

Sincethe OSis unavareof userlevel threadsa dravbackis thatthe OS canmake poorschedulingdecisions
(e.q.,by schedulinga processan which all its threadsare waiting) and affect throughput. Also, the process
getsthe samefraction of the CPU regardlesof the numberof userlevel threaddn its addresspace Kernel

threadsdo not suffer from thesedravbacks—thedSexplicitly schedulesuchthreadsandaprocesgetto run

moreoftenif it hasmorekernelthreads.



