CMPSCI 377: Operating Systems

Discussion 7
Adminstrivia

- Lab 1 will be graded by the end of the week

- Lab 2 will be posted today
 - Due two weeks from Friday (November 2)
 - As always, start early

- Today’s agenda
 - Deadlock review (no quiz)
 - Lab 2 overview
Deadlocks

- What is a **deadlock**?

- Multiple threads that are unable to proceed because they’re all waiting for something

- Example: thread 1 owns resource A and is waiting for resource B, thread 2 owns B and is waiting for A
 - Neither can proceed; threads 1 and 2 are *deadlocked*
Deadlock Conditions

- Four necessary conditions for deadlock

- **Mutual Exclusion**
 - Thread holds a non-sharable resource

- **Hold and Wait**
 - Thread holds a resource and is waiting for another

- **No Preemption**
 - Can’t force a thread to release its resources

- **Circular Wait**
 - List of waiting threads is circular (e.g., A→B→C→A)
Preventing Deadlocks

- Ensure that one of the four conditions doesn’t hold
 - Sharable resources (mutual exclusion)
 - Threads must acquire all resources at once (hold & wait)
 - OS can forcibly release resources (no preemption)
 - Request resources in a predetermined order (circular wait)

- Banker’s Algorithm
 - Only allocate resources if doing so doesn’t expose the system to possible deadlocks
 - Threads declare what resources they might need in advance

- How do most OSes actually prevent deadlocks?
 - They don’t!
 - Leave it to the programmer
Lab 2 Overview

- Lab 2: CPU Scheduling
- Implement multilevel feedback queue scheduling (MLFQ) in Nachos
- Start with a round-robin scheduler; replace it with a 3-level MLFQ scheduler