Greening the Internet with Nano Data Centers

V. Valancius (Georgia Institute of Technology), N. Laoutaris (Telefonica Research), L. Massoulie, C. Diot (Thomson), P. Rodriguez (Telefonica Research)

Presented by Sean Barker

Gateway vs. Set-top-box

Gateway as new center of media experience

The current model: Data centers

Limitations

• Expensive

- High capital investment
- Customer generally pays per byte
- Location constraints in order to be "central"
- Requires a lot of redundancy to be robust
 - Electricity shortage
 - Content availability
- Power, power, power
- New service deployment is slow
 - ISPs not encouraged to take risks, nor to deploy new services

Take advantage of always-on gateways

- Add memory and stronger CPU to home gateways
- Push content to gateways when bandwidth is cheap
- Manage millions of gateways as a logical 'single server' using P2P infrastructure

The nano data center model

The nano data center

PROS

- Multiple applications can take advantage of the model (VoD, gaming, catchTV, UGC)
- ISP friendly
- Reduces traffic volumes and variability on backbones.
- Highly scalable and robust by design
- Cheap for ISPs
- Flexible for users
- Localized & personalized services

• CONS

- Uplink bandwidth often limited
- Millions of boxes to manage using P2P
- Cost of gateway
- Incentive?
- Privacy?
- Always on?

Gateway uptime (*)

⁹ (*) Courtesy of Krishna Gummadi

Push phase

Pull phase

Placement strategy

THOMSO

images & beyon

12

Placement strategy

• Replicate content according to popularity

- Popular content served by gateways
 slack bandwidth from original content servers
- Number of replicas determined by solving optimization problem
 - Constraints on available upload and storage, number of clients, request rates, etc.

Popularity aware placement

• Partition content into hot / warm / cold categories

- Hot: replicate on all gateways
- Warm: use code-based placement
- Cold: no proactive placement (stays on servers)

Energy issues

• Variables

- Network topology
- Hardware power consumption
- Placement algorithms
- Content popularity
- User behavior

Data available

- DSL gateways and VoD servers power (Thomson)
- Routers power (Cisco data)
- Telefonica Spain and Peru network topologies
- Imagenio VoD platform (Telefonica Spain)
- Telefonica IPTV
- Netflix movie popularity

VoD server power

Gateway power

When would NaDa not work ?

bytes transferred

When does NaDa work ?

Trace driven simulations

Traces from

- Netflix, IPTV (Telefonica), YouTube
- Content popularity from Netflix
- Topologies and workload from Telefonica
- Power numbers from Thomson's gateway and IPTV servers
- Popularity aware placement

Simulation parameters

Gateway Storage Gateway Upstream Content characteristics Users Content window Replicas for warm content Simulation duration Router energy/bit Server energy/bit Gateway energy/bit Power Usage Effectiveness (PUE) Home electricity cost factor Hops to server Hops to peer

100MB-10GB 0.1-2Mbps from data set 10k-30k 10s-120s 1 (20s windows) 1 day - 86400 s 150 10⁻⁹ 40 10⁻⁹ 18 10⁻⁹ 1.7 1.1 4 2

Total energy use (YouTube)

Gateway storage

Number of users

- Free-riding on existing infrastructure can significantly reduce load on conventional servers
- Simulations demonstrated energy savings ranging from 20% to 60% versus data centers
- Gateways can accomplish this with only modest resources (a few GB of storage, limited upload)

Questions?

- Potential QoS issues moving control from content providers (YouTube) to ISPs
- Effects of consumer line overprovisioning
- Security of content serving from home gateways

