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Abstract

Getting multiple autonomic managers to work together
towards a common goal is a significant architectural and
algorithmic challenge, as noted in the ICAC 2006 panel
discussion regarding “Can we build effective multi-vendor
autonomic systems?” We address this challenge in a real
small-scale system that processes web transactions. An ad-
ministrator uses a utility function to define a set of power
and performance objectives. Rather than creating a cen-
tral controller to manage performance and power simulta-
neously, we use two existing IBM products, one that man-
ages performance and one that manages power by control-
ling clock frequency. We demonstrate that, with good archi-
tectural and algorithmic choices established through trial
and error, the two managers can indeed work together to
act in accordance with a flexible set of power-performance
objectives and tradeoffs, resulting in power savings of ap-
proximately 10%. Key elements of our approach include a)
a feedback controller that establishes a power cap (a limit
on consumed power) by manipulating clock frequency and
b) reinforcement learning, which adaptively learns models
of the dependence of performance and power consumption
on workload intensity and the powercap.

1 Introduction
Energy consumption is a major and growing concern for

customers, data centers, server vendors, government regu-
lators and non-governmental organizations concerned with
energy and environmental matters. To cite a prominent ex-
ample, the US Congress recently mandated a study of the
power efficiency of servers, including a feasibility study of
an Energy Star standard for servers and data centers [16].
Growing interest in power management is also apparent in
the formation of the Green Grid, a consortium of systems
and other vendors dedicated to improving data center power
efficiency [4]. Recent trade press articles also make it clear
that computer purchasers and data center operators are ea-

ger to reduce power consumption and the heat densities be-
ing experienced with current systems.

In response to these concerns, researchers are tack-
ling intelligent power control of processors, memory chips
and whole systems, using technologies such as processor
throttling, frequency and voltage manipulation, low-power
DRAM states, feedback control using measured power val-
ues, and packing and virtualization to reduce the number of
machines that need to be powered on to run a workload.

Power management mechanisms can affect other aspects
of system behavior such as performance and availability.
Moreover, power management mechanisms can affect per-
formance in ways that are highly dependent on workload
characteristics [7]. For example, for some workloads, per-
formance suffers linearly in proportion to CPU frequency
reductions, while other workloads are largely unaffected.
For these reasons, power cannot be managed independently:
uncoupled power and performance managers are practically
guaranteed to work at cross purposes.

Many previous research efforts have attempted to ad-
dress this problem through centralized approaches that
manage power and performance jointly. Although perhaps
feasible in prototype, centralized approaches do not recog-
nize the reality of today’s IT environments, which typically
contain multiple management products specialized to dif-
ferent disciplines including performance and power as well
as other characteristics such as availability [10]. In contrast,
we take as given the specialization of systems management
products into separate management disciplines, and seek to
augment these existing products with new algorithms and
protocols that allow them to work together effectively.

Our approach is based on the use of multi-criteriautility
functions, and is summarized briefly as follows:
• Establish a joint utility function for power and perfor-

mance.
• Convey the utility function or some aspect of it to the

separate power and performance managers.
• Develop a utility-optimizing power management pol-

icy that maps current system state to a management



action such as setting a power cap on a particular sys-
tem, or turning machines on and off.

• During runtime, execute the power management policy
within the power manager.

• Feed relevant information (e.g. processor frequency)
back to the performance manager.

The particular joint utility functionUpp(RT, Pwr) of the
vector of response timesRT and power consumed Pwr that
we use in this paper subtracts a linear power cost from a
performance-based utilityU(RT):

Upp(RT, Pwr) = U(RT) − ε ∗ Pwr (1)

whereε is a tunable coefficient expressing the relative value
of power and performance objectives. However, our ap-
proach also admits more general functional forms ofUpp.
For example, one could consider a “performance value per
watt” objective functionUpp = U(RT)/Pwr, or a simple
performance-based utilityUpp = U(RT) coupled with a
constraint on total power.

In essence, our approach is agent-based: the two man-
agers can be regarded as two interacting agents in a multi-
agent system. While multi-agent environments frequently
enable explicitnegotiationbetween agents, the initial ap-
proach described in this paper is negotiation-free. The
power manager receives state information from the perfor-
mance manager. Then, using its power measurements, it
applies a power policy attempting to maximize the joint util-
ity Upp, implicitly accounting for whatever power-unaware
decisions are made by the performance manager. The per-
formance manager is unmodified, with a single exception:
it receives information about the dynamically varying CPU
frequencies from the power manager. This is clearly a spe-
cial case of the more general situation where negotiation is
required; ultimately we wish to determine the amount and
type of negotiation that is needed.

Although our ultimate goal is to optimize multiple as-
pects of data center behavior such as performance, power,
and availability, the current study considers only how to
manage performance and power for a small cluster of blade
systems in a single chassis. A blade-based system shares
power and cooling resources among a number of separate
blades but offers some centralized control over both the in-
dividual blade systems and the shared resources. The shar-
ing of power and cooling requires that the blades be man-
aged as a group rather than as stand-alone systems.

After discussing related work in the following section,
Section 3 of the paper presents an overview of our system
architecture and implementation. Section 4 describes our
experimental setup (4.1), presents two approaches to deriv-
ing power policies, one hand-designed using offline mea-
surements, and one based on machine learning (4.2), and
presents experimental results (4.3). Section 5 discusses con-
clusions and next steps in our ongoing research.

2. Related work

Many studies have proposed using processor perfor-
mance states to meet an SLA performance requirement
while reducing energy use. Wang et al. simulate a tech-
nique that uses optimal control theory to derive a schedule
of processor frequency control [17]. It depends only on the
global queue length being broadcast to each server and can
therefore scale easily as the number of servers increases.
Chen et al. simulate a cluster using both predictive queuing
models and feedback controllers to derive frequency adjust-
ments for web serving clusters over control intervals lasting
several minutes [1]. Horvath et al. control end-to-end delay
across a three-tier web service by adjusting the processing
speed of the servers in each tier[5]. This technique uses
a 200 ms control period and is more reactive to surges in
workload and has been shown to save 30% energy use in
their implementation on real servers.

In our work, both the SLA and peak power consump-
tion are constraints. We cannot directly set the processor
frequencies as in other studies because the frequencies are
under the control of a server-level peak power manager,
which is required for ensuring power reliability and safety
at the enclosure and cluster level. The power manager in
the firmware of each server adjusts processor speed sev-
eral times a second, which would be impractical to do by
an external controller in a large cluster. Instead, we set
the power budgets that each server may use, which indi-
rectly raises and lowers the performance level of the server.
This methodology allows us to integrate our technique with
power management products that will soon be available in
the marketplace [2].

Previously, we have shown that a power manager em-
bedded in the firmware of a server can precisely control the
server’s power consumption using feedback control [18].
This technique consists of a proportional controller coupled
with a first-order sigma-delta modulator adjusting the clock
throttling setting of the processor to adhere to a given power
supply constraint. The work reported in this paper uses the
same feedback controller and power measurement circuit,
except that we have modified the firmware to improve the
precision of the power measurement tenfold.

Femal et al. [3] allocate power budgets among a cluster
of homogeneous servers using linear programming at each
control interval. They use forecasts of each node’s contri-
bution to work done by the cluster during each control in-
terval to set the budgets. Blade enclosure-level power opti-
mization has been studied by Ranganathan et al. [11] Their
enclosure controller takes a SLA performance requirement
and power constraint as input and directly manipulates the
processor frequencies to meet the constraints. Their results
are based on simulation of power management algorithms
which require modeling the dependence of server power
consumption to the OS-reported processor utilization. Our
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framework is different from these approaches in that we as-
sume the nodes are heterogeneous, and may therefore dis-
play different power and performance characteristics. We
employ a novel use of machine learning to identify these
unique characteristics for each server, reducing manual pa-
rameter tuning for large clusters.

3 System Architecture and Implementation
Figure 1 provides a high-level overview of our experi-

mental testbed. In brief, a Workload Generator produces a
single workload with dynamically varying intensity, which
is routed by a Workload Distributor to set of blades con-
tained in a single chassis. The Workload Distributor’s
routing policy is set within WebSphere Extended Deploy-
ment (WXD)[6], a managed multi-node webserver envi-
ronment comprising extensive data collection and perfor-
mance management functionality, described in more detail
below. WXD also manages control parameters on individ-
ual blades, such as the maximum workload concurrency.
Power on each blade is managed dynamically based on cur-
rent power and performance data, using a control policy set
by our Power Manager module as detailed below. Our ar-
chitecture also allows manager-to-manager interactions be-
tween the Power Manager and WXD, as discussed in sec-
tion 3.3.

Our data collection approach integrates several different
data sources to provide a single, consistent view. Several
dozen elements of performance data, such as mean response
time, queue length and number of CPU cycles per trans-
action, are collected by the WXD data server, a daemon
running on WXD’s deployment manager. We also run lo-
cal daemons on each blade to provide CPU utilization per
blade, and current CPU frequency, taking into account both
the true frequency and any effects due to the current level of
processor throttling. The CPU on each blade also contains
firmware that collects current power measurements [18];
these are polled using IPMI commands sent from the Blade-
Center management module. A data collector receives the
several streams of data described above and provides a syn-
chronized report to the policy evaluator at a configurable
logging intervalτl (typically set to 5 seconds). Data gen-
erated on much faster time scales thanτl are time-averaged
over the interval, otherwise the most recent values are re-
ported.

3.1 Power Manager details

The Power Manager module uses a collection of TCL
and C programs to compute the desired power management
actions (i.e. per-blade power budgets, or “powercaps”),
along with extensive standard Unix/ssh tooling to drive the
OS and middleware components. The powercaps are re-
layed by IPMI commands to blade firmware containing a
feedback controller to implement the desired cap. As de-
scribed in [18], the controller combines a proportional con-
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Figure 1: Overview of testbed environment.

troller with a first-order sigma-delta modulator adjustingthe
frequency setting of the processor to adhere to a given pow-
ercap. The controller is designed to work within the time
constraint of the power supply overload condition, mak-
ing adjustments every 64 msec. When the server uses less
power than the powercap, it runs at full speed. When it
seeks to use more power than the powercap, it runs at a
reduced frequency to precisely meet the constraint. Our im-
plementation increases the precision of the firmware power
measurement by a factor of 10, from 1 watt to 0.1 watt.

The performance overhead introduced by data collection
and power management has not been quantified, but it is
expected to be negligible because in neither instance does
the code execute on the managed blades.

3.2 WXD performance management

WebSphere Extended Deployment (WXD) is an ad-
vanced middleware application server environment. The
features of WXD most relevant to our experiments are as
follows. WXD provides a facility to set performance tar-
gets for each installed web application. It provides a load
balancing reverse proxy (the “On Demand Router”) that
directs requests to individual servers such that the perfor-
mance targets are met. WXD also has a resource controller
that monitors response times and other performance met-
rics, and periodically recomputes the resource allocationpa-
rameter values (concurrency limits) used by the proxy. This
is performed by first estimatingαs,a, the average CPU re-
source (cycles/second) required per request by application
a on servers, by linear regression on observations over the
last 20t time periods (= 5 minutes):

ρt
sΩ

t
s =

∑

a

αs,aN t
s,aλt

s,a (2)
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where, for each servers, ρs is the CPU utilization,Ωs is
its CPU capacity or frequency (in cycles/second),Ns,a is
the number of concurrent requests executed for application
a, andλs,a is the throughput per concurrent request. Given
theαs,a estimates, WXD then solves for new concurrency
limits N∗

s,a, with the aim of achieving 90% utilization on
each server, based on current empirical data at timet:

ρ∗sΩ
t
s =

∑

a

αs,aN∗

s,aλt
s,a. (3)

3.3 Autonomic Manager Interactions

We expect that integration of disparate autonomic man-
agers will be an important research and practical challenge,
since such managers may be made by multiple vendors,
may manage to different criteria and may operate on vastly
different time scales. For example, in our work we inad-
vertently discovered that WXD needed to be given current
CPU frequencies when collaborating with our Power Man-
ager module. This finding, while perhaps unsurprising in
hindsight, points out what we expect will be a general need
to identify a minimal data set to communicate between man-
agers in order for them to work together effectively.

To illustrate the above point, Figure 2(a) shows behavior
resulting when our power and performance managers oper-
ate without giving feedback to each other. The experiment
(the setup for which is described in the next section) is ex-
tremely simple: we hold the workload intensity (number of
clients) fixed, and we use a single blade with fixed power-
cappκ = 100W , so we’d expect WXD to have no trouble in
finding a steady-state performance management policy. Yet
we see numerous state variables such as CPU utilization and
frequency showing persistent large amplitude oscillations.

Careful study revealed that, in the absence of feedback,
WXD assumes that the server is running at its default CPU
speedΩ = 3000MHz whereas due to power management,
the speed was generally less than this, and variable. This
eventually causes WXD’sα estimates to become too large,
whereupon Equation 3 dictates that WXD should reduce the
concurrency levelN∗, effectively throttling the workload.
The throttling eventually leads to reduced CPU utilization
and power consumption, which causes the Power Manager
to increase CPU speed to keep power close to the desired
cap. Ultimately, this leads to reducedα values, leading
WXD to increaseN∗. The entire cycle repeats several times
during the experiment.

The obvious solution is to provide the correct CPU fre-
quency as measured by the power manager to WXD. This
quells the self-induced oscillations, as seen in Figure 2(b).
This minimal level of information feedback is sufficient to
stabilize the performance and power metrics over a long pe-
riod of time, signifying strong and enduring coordination
between the two autonomic managers.
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Figure 2: Effect of CPU frequency feedback on system behavior.
(a) WXD receives no feedback (b) WXD receives feedback.

4 Experiments

We ran a series of experiments to establish whether we
could effectively control the powercap dynamically to man-
age to a specified tradeoff between performance and power,
as expressed in a utility function. After describing the ex-
perimental setup in section 4.1, we discuss in detail two
methods for deriving dynamic powercap control policies in
section 4.2, following this with a description of experimen-
tal results in section 4.3.

4.1 Experimental setup

Our experiment setup contains a rack of 7 somewhat
heterogeneous IBM eServer xSeries HS20 blades running
SUSE Linux Enterprise 9 Service Pack 3. A single instal-
lation of WXD is configured with the deployment manager
residing on one blade and an ODR (On Demand Router)
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residing on another; the remaining 5 blades are available
as server nodes. While we have conducted experiments us-
ing multiple blades, here we focus on an in-depth analy-
sis of experiments involving a single blade, Goldensbridge
(GB). GB has an Intel Xeon 3.00 GHz processor with 1MB
of level 2 cache and 2GB of DRAM. It is configured with
hyperthreading enabled, so that two virtual processors are
visible to the OS. Like the other blades, GB includes ser-
vice processor firmware that supports peak power capping
and power measurement, as described in section 3. For the
test application, GB could serve up to 30-40 clients and still
meet the 1000 millisecond average response time threshold.
The power manager runs on a separate Windows-based sys-
tem located outside the BladeCenter enclosure.

The workload is generated by the Wide-Spectrum Stress
Tool (WSST) included in the IBM Web Services Toolkit.
WSST contains a simple web-based application, which we
configured to have a single service class. The workload
intensity is controlled by varying the number of clients
nc sending requests to the ODR. For each client, we use
a closed-loop workload generator [8] with a think time
drawn from an exponential distribution with mean 125
msec. We variednc using a statistical model of web traffic
derived from observations of a highly accessed Olympics
web site [13].

WXD permits an administrator to establish a simple per-
formance utility function expressing the value of attaining a
given average response time. One way in which the utility
function can be elicited is via a simple template: the admin-
istrator inputs a response time target RT0 and selects one of
seven importance levels ranging from very low to very high.
These two parameters are mapped to a simple utility func-
tion U(RT). In our experiments, we employed the type of
power-performance utility function given by Eq. 1, in which
the performance part of the utility function is 1.0 when
the response time is less than the response time threshold
and drops linearly with response time when it exceeds the
threshold. Formally, the combined power-performance util-
ity function can be expressed as:

Upp(RT, Pwr) = U(RT) − ε ∗ Pwr =

1.0 − (r − 1)Θ(r − 1) − ε ∗ Pwr (4)

whereΘ represents the step function andr = RT/RT0 de-
notes the ratio of the current mean response time to the re-
sponse time threshold. (Note that RT is now a scalar rather
than a vector because there is a single service class.)

In all of our experiments, the response target was RT0

= 1000 msec. Adjustingε allows one to explore a range
of power-performance tradeoffs. For low values ofε (ε ≤
0.01), the tradeoff is strongly biased in favor of perfor-
mance, and power savings are only considered if the per-
formance is less than 1000 msec. If the administrator seeks
greater power conservation and is willing to tolerate re-

sponse times somewhat higher than the nominal response
time target of 1000 msec, the value ofε can be increased to
0.05 or greater.

4.2 Deriving Powercap Policies

In order to understand how much power could be saved
by dynamically manipulating the powercap, we used three
different types of powercap policy:
• Unmanaged. Power management is turned off, and

therefore the processor always runs at the highest clock
frequency.

• Handcrafted. The powercap policy is a function of
the number of clientsnc, pκ(nc). It is established by
conducting exhaustive experiments to map the depen-
dency of power consumption and response time upon
the powercappκ andnc.

• Machine-learned. The powercap policy is a function
of measured state variables that could includenc, and
is derived via reinforcement-learning methods.
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Figure 3: Powercap policies: Unmanaged, Hand-crafted, and two
machine-learning derived policies for different values of the power
cost parameter (0.01 and 0.05).

Instances of these types of powercap policies are illus-
trated in Figure 3. For the handcrafted policy, the power-
performance tradeoff parameterε was set to 0.01. Two dif-
ferent policies derived via machine learning are displayed:
one forε = 0.01 and the other forε = 0.05. The policy for
the larger value ofε uniformly sets a lower powercap for
a given value ofnc because the emphasis is being shifted
from high performance towards power conservation.

Now we describe the derivation of the handcrafted and
machine-learned policies in greater detail.

4.2.1 Handcrafted policy from offline measurements

Suppose that we have an arbitrary utility function
Upp(RT, Pwr), whereRT represents a vector of response
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times (one for each service class) and Pwr represents the
total power allocated to the set of blades used by the ap-
plication. Then, given models of how response time and
consumed power depend upon the workload intensity (ex-
pressed in terms of the number of clientsnc) and the pow-
ercappκ, we follow [14], substituting them into our utility
functionUpp(RT, Pwr) to obtain an equivalent utility func-
tion U ′ that is purely a function ofpκ andnc:

U ′(pκ, nc) = Upp(RT(pκ, nc), Pwr(pκ, nc)) (5)

Then, fromU ′(pκ, nc) we compute the optimal powercap
for each possible value of the workload intensitync to gen-
erate a powercap policyp∗κ(nc):

p∗κ(nc) = arg max
pκ

U ′(pκ, nc) (6)

Since we use a single service class and a single blade,
the vectorRT is reduced to a scalar RT and Pwr represents
the power consumed by that blade. To obtain the scalar
models RT(pκ, nc) and Pwr(pκ, nc), we measured power
consumption on GB at extremely low (nc = 1) and high
(nc = 50) loads, finding that in all cases the power con-
sumption ranged between 75 and 120 watts. Given this
range, we established a grid of sample points, withpκ run-
ning from 75 watts to 120 watts in increments of 5 watts,
and the number of clients running from 0 to 50 in incre-
ments of 51. For each of the 10 possible settings ofpκ,
we heldnc fixed at 50 for 45 minutes to permit WXD to
adapt to the workload, and then decrementednc by 5 every
5 minutes. Then, for each of the resulting10 × 11 = 110
samples, we recorded the average response time and power
consumption. The results are summarized in Figure 4.

Figure 4a shows that the response time is a strongly non-
linear function of the powercap and the number of clients.
For the smallest values ofnc, the response time is very low
and well below the response time target regardless of the
power cappκ. For moderate to large values ofnc, the re-
sponse time can exceed 10000 msec whenpκ is 75 watts.
Raisingpκ to 80 watts has no discernible effect. On closer
examination, the reason is clear: atpκ = 80 watts the pro-
cessor stays in its lowest frequency state (375 MHz) the vast
majority of the time, so setting the powercap even lower
cannot yield significant additional savings. However, aspκ

is increased above 80 watts, the response time decreases
rapidly until pκ has increased to 110 watts, beyond which
there is no further reduction because at this point the chip is
already in its highest frequency state.

Figure 4b shows that the consumed power is also a non-
linear function of the powercap and the number of clients,
although there is linear dependence onpκ in a broad mid-
dle range ofpκ and nc. For any given value ofnc, the

1More precisely, the first measurement was taken for a single client, as
a measurement for zero clients is meaningless.
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Figure 4: a) Experimentally-determined models of a) RT(pκ, nc)
(note log scale) and b) Pwr(pκ, nc) for GB.

power consumed levels out below roughlypκ = 85 watts
and abovepκ = 110 watts. For any given value ofpκ, the
consumed power rises rapidly asnc is increased from zero
to some thresholdnc, beyond which the power consumption
does not increase further; the threshold value ofnc increases
nonlinearly withpκ.

The curve labeled HC01 in Figure 3 is a powercap pol-
icy computed by inserting the models of Figure 4 into Eq. 5
and then using Eq. 6. The utility function is as described
in Eq 4 with ε = 0.01. One subtlety in performing the
arg max operation of Eq 6 is that we need to interpolate
values of the response time and power consumption models
between sampled grid points of Figure 4. Following Nu-
merical Recipes [9], we simply identified the four nearest
neighbors of each point and did a simple linear weighting
of their values based on proximity.

Except for whennc ≤ 3, p∗κ(nc) for HC01 is a mono-
tonically increasing function. For extremely low numbers
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of clients, the powercap has very little effect on the power
consumption or the response time, so small model inaccu-
racies can strongly influence the computation of the optimal
powercap. For very smallnc, it matters very little whether
the powercap is set to 120 watts (as recommended by HC01)
or 85 watts (as one might expect given the monotonicity ev-
erywhere else).

4.2.2 Machine learning derived powercap policy

Our machine learning approach leverages our recent work
applying Hybrid Reinforcement Learning to autonomic re-
source allocation [15]. This entails devising an initial con-
trol policy, running the initial policy in the live system and
logging a set of (state, action, reward) tuples, and then us-
ing standard Reinforcement Learning (RL) to train in batch
mode a nonlinear function approximatorV (s, a) estimating
cumulative expected reward of taking actiona in states.
(SinceUpp is our reward function,V (s, a) estimates the ex-
pected sum of all discounted future values ofUpp starting
from states and actiona.) The learned value functionV
then implies a policy of selecting the action in states with
highest expected value, i.e.,a∗ = arg maxa V (s, a).

In implementing an initial policy to be used with Hybrid
RL, one would generally want to exploit the best available
human-designed policy, combined with sufficient random-
ized exploration needed by RL, in order to achieve the best
possible learned policy. However, in view of the difficulty
expected in designing such initial policies, it would be ad-
vantageous to learn effective policies starting from simplis-
tic initial policies, as was demonstrated in [15]. We have
therefore trained our RL policies using an extremely sim-
ple performance-biased random walk policy for setting the
powercap, which operates as follows: At every decision
point, pκ either is increased by 1 watt with probabilityp+,
or decreased by 1 watt with probabilityp− = (1 − p+).
The upward biasp+ depends on the ratior = RT/RT0 of
current mean response time to response time threshold ac-
cording to: p+ = r/(1 + r). Note that this rule implies
an unbiased random walk whenr = 1 and thatp+ → 1
for r � 1, while p+ → 0 whenr � 1. This simple rule
seems to strike a good balance between keeping the perfor-
mance near the desired threshold, while providing plenty of
exploration needed by RL, as can been seen in Figure 5.

Having collected training data during the execution of
an initial policy, the next step of Hybrid RL is to design
an (input, output) representation and functional form of the
value function approximator. For simplicity we use the ba-
sic input representation studied in [15], in which the state
s is represented using a single metric of workload intensity
(number of clientsnc), and the actiona is a single scalar
variable—the powercappκ. This scheme robustly produces
good learned policies, with little sensitivity to exact learn-
ing algorithm parameter settings.
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Figure 5: Random-walk powercap policy.

To representV , we propose an innovation taking advan-
tage of the fact that total utility (reward)Upp in our system,
expressed in equation 1, is a linear combination of perfor-
mance utilityU and power cost−ε ∗ Pwr. Since infor-
mation regarding the reward components is generally avail-
able, and since these should have completely different func-
tional forms relying on completely different state variables,
we propose training two separate function approximators
estimatingVperf andVpwr respectively. In such a “decom-
positional reward” approach, the sum of the learned value
function components provably converges to the correct to-
tal value function [12].

Our approach to learningVperf makes use of a standard
neural network (multilayer perceptron) architecture – we
use a single hidden layer with 12 sigmoidal hidden units
– combined with an innovative type of neuronal output unit.
This is motivated by the shape ofU , which is a piecewise
linear function of response time, with constant value for low
response times and linearly decreasing for large response
times. This functional form is is not naturally approximated
by either a linear or a sigmoidal transfer function. However,
we can devise an appropriate transfer function by noting
that the derivative ofU is a step function (changing from
0 to -1 at the threshold), and that sigmoids give a good ap-
proximation to step functions. This suggests using an out-
put transfer function that behaves as the integral of a sig-
moid function: specifically, our output transfer function has
the formY (x) = 1 − χ(x) whereχ(x) =

∫
σ(x)dx + C,

whereσ(x) = 1/(1 + exp(−x)) is the standard sigmoid
function, and the integration constantC is chosen so that
χ → 0 asx → −∞. We find that this type of output unit
is easily trained by standard back-propagation and provides
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quite a good approximation to the true expected rewards.
We have also trained separate neural networks to esti-

mate Vpwr using a similar hidden layer architecture and
a standard linear output unit. However, we found only a
slight improvement in Bellman error over a simple estima-
tor of predicted power∼= pκ (although this is not always a
good estimate, as seen earlier). Hence for simplicity we
usedVpwr = −ε ∗ pκ in computing the overall learned
policy maximizingV = Vperf + Vpwr. Experiments de-
scribed below used two differentε values, 0.01 and 0.05,
which nicely illustrate a range of power-performance trade-
offs. With ε = 0.01, the learned policy generally keeps the
performance quite close to the threshold value, with lim-
ited opportunities for power savings, while atε = 0.05 the
learned policy tolerates∼20-30% degradations in perfor-
mance in order to economize more aggressively on power
consumption. Both policies are illustrated in Fig. 3.

Again following [15], we use the standard Sarsa RL al-
gorithm, setting the discount parameterγ = 0.5. We usu-
ally obtain good convergence to Bellman error minima in
∼5-10K training epochs, requiring only a few CPU minutes
on a 3GHz workstation.

4.3 Dynamic power control

We ran all four of the powercap policies illustrated in
Fig. 3 on the same time-varying workload for approxi-
mately 10 hours, measuring approximately 50 state vari-
ables aggregated by the data collector every 5 seconds from
the four different data sources described in section 3. A
small subset of the measurements taken from the first 20000
seconds (nearly 6 hours) of each run are displayed in Fig-
ures 6-7.

First, we ran theUnmanagedpowercap policy, which
was achieved by setting the powercap to 120 watts. Dur-
ing the course of the experiment, we confirmed that the fre-
quency setting never dropped below the nominal frequency
setting for the processor, which was 3000 MHz. The work-
load intensitync, the response time, and the consumed
power are displayed in Fig. 6. Note that, during periods
of low workload intensity, the performance is considerably
better than necessary. This suggests that the powercap (and
thus the frequency) could be reduced during those periods,
potentially reducing power consumption without violating
the response-time target of 1000 msec.

Next, to see whether we could realize the power sav-
ings implied by Fig. 6, we ran the dynamic HC01 powercap
policy, with the result shown in Fig. 7(a). Overall, HC01
yields a response time that adheres much more closely to
the 1000 msec target by lowering the powercap, and hence
the consumed power, during periods of low workload in-
tensity, and raising it when the workload intensity increases
again. For example, att = 6000 sec, the unmanaged policy
consumes approximately 109 watts to generate a response
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Figure 6: Experimental results for powercap policy “Unman-
aged”.

time of about 350 msec, while HC01 consumes approxi-
mately 97 watts to generate a response time of about 900
msec. Since a response time of 350 msec is not regarded
by the utility function as being any more valuable than a re-
sponse time of 900 msec, HC01 is strictly superior at this
point in time because it is saving 12 watts of power. While
HC01 exceeds the response-time target more often than oc-
curs without power management, the excursions are gen-
erally tolerable, and more than made up for by the power
savings.

Finally, we ran both of the powercap policies derived
by machine learning, with results provided by Figures 7b
(ε = 0.01) and 7c (ε = 0.05). The resultant powercap po-
lices are referred to as ML01 and ML05, respectively. As
can be seen in Fig. 3, the powercap policies for HC01 and
ML01 are fairly similar, with ML01 being slightly less ag-
gressive about power conservation. Thus it is not surpris-
ing that ML01 yields a response-time curve that is slightly
lower than that of of HC01, and a power-consumption curve
that is slightly higher. In contrast, ML05 yields a noticeably
different behavior, in which the powercap and consumed
power are lower, and the response time target is exceeded
much more frequently. For example, att = 6000, the re-
sponse time is about 1000 msec while the consumed power
is only 92 watts, resulting in another 5 watts savings at this
particular moment in time.

Fig. 8 provides an alternative view of how the various
powercap policies affect power consumption and response
time by plotting these quantities as a function of the number
of clients. Each data point represents approximately 100-
200 samples of moments during the experimental run when
nc took on a particular value.
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Figure 7: Experimental results for powercap policy (a)HC01, ma-
chine learning (b)ε = 0.01, and (c)ε = 0.05.

Interestingly, the power savings occurs within a broad
range of moderate workload intensities, approximately
10 < nc < 30. A little reflection based on experimental
results presented earlier in this paper reveals why. When
nc is very low, the consumed power is small even when the
powercap is large, so very little savings are possible. When
nc is high, the powercap policies all push the powercap to
the highest possible value in order to bring the performance
within acceptable limits, so there is little opportunity tosave
power. Whenε = 0.01, a maximal savings of approxi-
mately 16 watts, or about 15%, occurs whennc ≈ 18 for
both the handcrafted and machine-learned policies, whereas
the maximal savings is about 18 watts, or about 17%, for
ε = 0.05 at nc ≈ 18. Since the power never drops much
below 80 watts in any case, it is not possible to save more
than 30 watts under any circumstances, so this represents
about half of the available power savings. Averaged over
the full statistical distribution ofnc, the unmanaged sys-
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Figure 8: a) Response time and b) consumed power as a func-
tion of number of clients for several different powercap policies:
FullPower, Policy1000, PolicyML01, PolicyML05.

tem consumes 104.9 watts on average, compared with 95.3
watts for HC01, or a 9.2% reduction. For ML01, the av-
erage power consumption is 96.1 watts, or a reduction of
8.4%, whereas for ML05 the average power consumption is
92.7 watts, or a reduction of 11.6%.

5 Conclusions
This paper presents an initial attempt to develop a coher-

ent policy for managing power and performance using two
separate managers. The problem is non-trivial since con-
trolling power can affect performance, and meeting perfor-
mance goals may conflict with maintaining power limits or
reducing the total amount of power required. The scheme
described here uses utility functions to express the relation-
ship between the power and performance goals. Once a
utility function is defined, it is still a challenge to devise
a policy to maximize it. Initial work with manually de-
veloped policies yields reasonable results, but it also rep-
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resents a very large effort, one that is probably too difficult
even for a two-blade environment, much less an entire data
center. However, by applying machine learning to the data
collected from the power and performance instrumentation
of the system, it becomes possible to develop policies to
fit the utility function and the configuration without a time-
consuming manual effort. It took roughly a week of ex-
periment time to generate the data in Figure 4, whereas the
machine learning just required 12 hours of data and much
less manual labor, and the amount of data required for train-
ing could almost certainly be reduced further. The hand-
crafted and machine-learned policies are very comparable
in form and in their engendered behavior, saving about the
same amount of power. A policy generated using a different
power-performance tradeoff in the utility function can save
even more power, especially when the load is relatively low.

However, this paper is only an initial step. We are be-
ginning to extend this work in several dimensions, includ-
ing scaling to more blades and more types of autonomic
managers (such as availability), as well as diversifying the
applications. For example, while all of the experiments re-
ported here use a single blade, we have begun to apply the
same scheme with minor modifications to two-blade config-
urations, and we believe that our general approach should
scale comfortably to a fully-populated BladeCenter with 14
blades. For multiple blade scenarios, we have implemented
a second power management control action: turning blades
on and off, offering an even greater potential for power sav-
ings. There is no inherent barrier to applying machine learn-
ing for this case as well.

Other potential extensions include studying whether it
would be advantageous to effect some power management
through the performance manager’s control actions, rather
than solely through the power manager, and exploring
whether various types of negotiation provide some benefit
over the present scheme, in which each manager reacts to
the other’s actions.

As power management implementations improve, the
opportunities for large power savings with limited perfor-
mance impact will emerge. But to take advantage of them,
data centers need scalable, realistic ways to make power,
performance and other types of autonomic managers work
together to meet the goals and tradeoffs specified by the ad-
ministrator.
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