
Lecture 19, page

Fault Tolerance

1CS677: Distributed and Operating Systems

• Part 1: Agreement in presence of faults
– Two army problem
– Byzantine generals problem

• Part 2: Reliable communication
• Part 3: Distributed commit

– Two phase commit
– Three phase commit

• Next class:
– Paxos and RAFT
– Failure recovery

• Checkpointing
• Message logging

Lecture 19, page

Fault Tolerance

2CS677: Distributed and Operating Systems

• Single machine systems
– Failures are all or nothing

• OS crash, disk failures
• Distributed systems: multiple independent nodes

– Partial failures are also possible (some nodes fail)
• Question: Can we automatically recover from partial

failures?
– Important issue since probability of failure grows with number

of independent components (nodes) in the systems
– Prob(failure) = Prob(Any one component fails)=1-P(no failure)

Lecture 19, page

A Perspective

3CS677: Distributed and Operating Systems

• Computing systems are not very reliable
– OS crashes frequently (Windows), buggy software, unreliable hardware,

software/hardware incompatibilities
– Until recently: computer users were “tech savvy”

• Could depend on users to reboot, troubleshoot problems
– Growing popularity of Internet/World Wide Web

• “Novice” users
• Need to build more reliable/dependable systems

– Example: what is your TV (or car) broke down every day?
• Users don’t want to “restart” TV or fix it (by opening it up)

• Need to make computing systems more reliable
– Important for online banking, e-commerce, online trading, webmail…

Lecture 19, page

Basic Concepts

4CS677: Distributed and Operating Systems

• Need to build dependable systems
• Requirements for dependable systems

– Availability: system should be available for use at any given
time

• 99.999 % availability (five 9s) => very small down times
– Reliability: system should run continuously without failure
– Safety: temporary failures should not result in a catastrophic

• Example: computing systems controlling an airplane,
nuclear reactor

– Maintainability: a failed system should be easy to repair

Lecture 19, page

Basic Concepts (contd)

5CS677: Distributed and Operating Systems

• Fault tolerance: system should provide services despite
faults
– Transient faults
– Intermittent faults
– Permanent faults

Lecture 19, page

Failure Models

6CS677: Distributed and Operating Systems

• Different types of failures.

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure
 Receive omission
 Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure
 Value failure
 State transition failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

Lecture 19, page

Failure Masking by Redundancy

7CS677: Distributed and Operating Systems

• Triple modular redundancy: can handle one failure in circuit

Lecture 19, page

Agreement in Faulty Systems

8CS677: Distributed and Operating Systems

• How should processes agree on results of a computation?
• K-fault tolerant: system can survive k faults and yet

function
• Assume processes fail silently

– Need (k+1) redundancy to tolerant k faults
• Byzantine failures: processes run even if sick

– Produce erroneous, random or malicious replies
• Byzantine failures are most difficult to deal with

– Need ? Redundancy to handle Byzantine faults

Lecture 19, page

Byzantine Faults

9CS677: Distributed and Operating Systems

• Simplified scenario: two perfect processes with unreliable channel
– Need to reach agreement on a 1 bit message

• Two Generals Problem: Two armies waiting to attack
– Each army coordinates with a messenger
– Messenger can be captured by the hostile army
– Can generals reach agreement?
– Property: Two perfect process can never reach agreement in presence of unreliable

channel
– Concept of Common knowledge

• Byzantine generals problem: Can N generals reach agreement with a perfect
channel?

– M generals out of N may be traitors

Lecture 19, page

Byzantine Generals Problem

10CS677: Distributed and Operating Systems

• Recursive algorithm by Lamport
• The Byzantine generals problem for 3 loyal generals and 1 traitor.
a) The generals announce their troop strengths (in units of 1 kilosoldiers).
b) The vectors that each general assembles based on (a)
c) The vectors that each general receives in step 3.

Lecture 19, page

Byzantine Generals Problem Example

11CS677: Distributed and Operating Systems

• The same as in previous slide, except now with 2 loyal generals and one traitor.
• Property: With m faulty processes, agreement is possible only if 2m+1 processes function

correctly out of 3m+1 total processes. [Lamport 82]
– Need more than two-thirds processes to function correctly (for m=1, 3 out of 4 processes)

Lecture 19, page

Byzantine Fault Tolerance

12CS677: Distributed and Operating Systems

• Detecting a faulty process is easier
– 2k+1 to detect k faults

• Reaching agreement is harder
– Need 3k+1 processes (2/3rd majority needed to eliminate the

faulty processes)
• Implications on real systems:

– How many replicas?
– Separating agreement from execution provides savings

Lecture 19, page

Reaching Agreement

13CS677: Distributed and Operating Systems

• If message delivery is unbounded,
– No agreement can be reached even if one process fails
– Slow process indistinguishable from a faulty one

• BAR Fault Tolerance
– Until now: nodes are byzantine or collaborative
– New model: Byzantine, Altruistic and Rational
– Rational nodes: report timeouts etc

Lecture 19, page

Reliable One-One Communication

14CS677: Distributed and Operating Systems

• Issues were discussed in Lecture 3
– Use reliable transport protocols (TCP) or handle at the application layer

• RPC semantics in the presence of failures
• Possibilities

– Client unable to locate server
– Lost request messages
– Server crashes after receiving request
– Lost reply messages
– Client crashes after sending request

Lecture 19, page

Reliable One-Many Communication

15CS677: Distributed and Operating Systems

•Reliable multicast
– Lost messages => need to

retransmit
•Possibilities

– ACK-based schemes
• Sender can become

bottleneck
– NACK-based schemes

Lecture 19, page

Broadcast Ordering

16CS677: Distributed and Operating Systems

• Broadcast (or multicast) ordered important for replication

• FIFO broadcast: if a process sends m1 and then m2, all other
processes receive m1 before m2

• Totally ordered: If a process receives m1 before m2 (regardless
of sender), all processes receive m1 before m2
– Does not imply FIFO, all processes just agree on order

• Causally ordered: if send(m1)->send (m2) => recv(m1)-> recv
(m2)

• State machine replication (SMR)
– Broadcast requests to all replicas using totally ordered

broadcast; replicas apply requests in order.

Lecture 19, page

Atomic Multicast

17CS677: Distributed and Operating Systems

•Atomic multicast: a guarantee that all
process received the message or none at all

– Replicated database example
– Need to detect which updates have been

missed by a faulty process
•Problem: how to handle process crashes?
•Solution: group view

– Each message is uniquely associated
with a group of processes

• View of the process group when
message was sent

• All processes in the group should
have the same view (and agree on
it)

Virtually Synchronous Multicast

Lecture 19, page

Implementing Virtual Synchrony in Isis

18CS677: Distributed and Operating Systems

a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message
c) Process 6 installs the new view when it has received a flush message from everyone

else

Lecture 19, page

Implementing Virtual Synchrony

19CS677: Distributed and Operating Systems

Lecture 19, page

Distributed Commit

20CS677: Distributed and Operating Systems

• Atomic multicast example of a more general problem
– All processes in a group perform an operation or not at all
– Examples:

• Reliable multicast: Operation = delivery of a message
• Distributed transaction: Operation = commit transaction

• Problem of distributed commit
– All or nothing operations in a group of processes

• Possible approaches
– Two phase commit (2PC) [Gray 1978]
– Three phase commit

Lecture 19, page

Two Phase Commit

21CS677: Distributed and Operating Systems

•Coordinator process coordinates
the operation
•Involves two phases

– Voting phase: processes vote on
whether to commit

– Decision phase: actually commit
or abort

Lecture 19, page

Implementing Two-Phase Commit

22CS677: Distributed and Operating Systems

• Outline of the steps taken by the coordinator in a
two phase commit protocol

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
 wait for any incoming vote;
 if timeout {
 while GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
 exit;
 }
 record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
 write GLOBAL_COMMIT to local log;
 multicast GLOBAL_COMMIT to all participants;
} else {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
}

Lecture 19, page

Implementing 2PC
actions by participant:
write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {
 write VOTE_ABORT to local log;
 exit;
}
if participant votes COMMIT {
 write VOTE_COMMIT to local log;
 send VOTE_COMMIT to coordinator;
 wait for DECISION from coordinator;
 if timeout {
 multicast DECISION_REQUEST to other participants;
 wait until DECISION is received; /* remain blocked */
 write DECISION to local log;
 }
 if DECISION == GLOBAL_COMMIT
 write GLOBAL_COMMIT to local log;
 else if DECISION == GLOBAL_ABORT
 write GLOBAL_ABORT to local log;
} else {
 write VOTE_ABORT to local log;
 send VOTE ABORT to coordinator;
}

actions for handling decision requests: /
*executed by separate thread */

while true {

wait until any incoming DECISION_REQUEST

 is received; /* remain blocked */
 read most recently recorded STATE from the
local log;
 if STATE == GLOBAL_COMMIT
 send GLOBAL_COMMIT to requesting
 participant;
 else if STATE == INIT or STATE ==
GLOBAL_ABORT
 send GLOBAL_ABORT to requesting
participant;
 else
 skip; /* participant remains blocked */

23CS677: Distributed and Operating Systems

Lecture 19, page

Recovering from a Crash

24CS677: Distributed and Operating Systems

• If INIT : abort locally and inform coordinator
• If Ready, contact another process Q and examine Q’s

state

Lecture 19, page

Three-Phase Commit

25CS677: Distributed and Operating Systems

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

Lecture 19, page

Replication for Fault Tolerance

26CS677: Distributed and Operating Systems

• Basic idea: use replicas for the server and data

• Technique 1: split incoming requests among replicas
– If one replica fails, other replicas take over its load
– Suitable for crash fault tolerance (each replica produces correct

results when it is us).

• Technique 2: send each request to all replicas
– Replicas vote on their results and take majority result
– Suitable for BFT (a replica can produce wrong results)

• 2PC, 3PC, Paxos are techniques

Lecture 19, page

Consensus, Agreement

27CS677: Distributed and Operating Systems

• Consensus vs Byzantine Agreement vs Agreement
• Achieve reliability in presence of faulty processes

– requires processes to agree on data value needed for computation
– Examples: whether to commit a transaction, agree on identity of a

leader, atomic broadcasts, distributed locks
• Properties of a consensus protocol with fail-stop failures

– Agreement: every correct process agrees on same value
– Termination: every correct process decides some value
– Validity: If all propose v, all correct processes decides v
– Integrity: Every correct process decided at most one value

and if it decides v, someone must have proposed v.

Lecture 19, page

2PC, 3PC Problems

28CS677: Distributed and Operating Systems

• Both have problems in presence of failures
– Safety is ensured but liveness is not

• 2PC
– must wait for all nodes and coordinator to be up
– all nodes must vote
– coordinator must be up

• 3PC
– handles coordinator failure
– but network partitions are still an issue

• Paxos : how to reach consensus in distributed systems
that can tolerate non-malicious failures?
– majority rather than all nodes particpate

Lecture 19, page

Paxos: fault-tolerant agreement

29CS677: Distributed and Operating Systems

• Paxos lets nodes agree on same value despite:
– node failures, network failures and delays

• Use cases:
– Nodes agree X is primary (or leader)
– Nodes agree Y is last operation (order operations)

• General approach
– One (or more) nodes decides to be leader (aka proposer)
– Leader proposes a value and solicits acceptance from others
– Leader announces result or tries again

• Proposed independently by Lamport and Liskov
– Widely used in real systems in major companies

Lecture 19, page

Paxos Requirements

30CS677: Distributed and Operating Systems

• Safety (Correctness)
– All nodes agree on the same value
– Agreed value X was proposed by some node

• Liveness (fault-tolerance)
– If less than N/2 nodes fail, remaining nodes will eventually

reach agreement
– Liveness not guaranteed if steady stream of failures

• Why is agreement hard?
– Network partitions
– Leader crashes during solicitation or after deciding but before

announcing results,
– New leader proposes different value from already decided value,
– More than one node becomes leader simultaneously....

Lecture 19, page

Paxos Setup

31CS677: Distributed and Operating Systems

• Entities: Proposer (leader), acceptor, learner
– Leader proposes value, solicits acceptance from acceptors
– Acceptors are nodes that want to agree; announce chosen value to

learners
• Proposals are ordered by proposal #

– node can choose any high number to try to get proposal accepted
– An acceptor can accept multiple proposals

• If prop with value v chosen, all higher proposals have value v
• Each node maintains

– n_a, v_a: highest proposal # and accepted value
– n_h : highest proposal # seen so far
– my_n: my proposal # in current Paxos

Lecture 19, page

Paxos operation: 3 phase protocol

32CS677: Distributed and Operating Systems

• Phase 1 (Prepare phase)
– A node decides to be a leader and propose
– Leader chooses my_n > n_h
– Leader sends <prepare, my_n> to all nodes
– Upon receiving <prepare, n> at acceptor

• If n < n_h
– reply <prepare-reject> /* already seen higher # proposal */

• Else
– n_h = n /* will not accept prop lower than n */
– reply <prepare-ok, n_a, v_a> /* send back previous prop, value/
– /* can be null, if first */

Lecture 19, page

Paxos operation

33CS677: Distributed and Operating Systems

• Phase 2 (accept phase)
– If leader gets prepare-ok from majority

• V = non-empty value from highest n_a received
• If V = null, leader can pick any V
• Send <accept, my_n, V> to all nodes

– If leader fails to get majority prepare-ok
• delay and restart Paxos

– Upon receiving <accept, n, V>
• If n < n_h

– reply with <accept-reject>
• else

– n_a=n ; v_a = V; n_h = h; reply <accept-ok>

Lecture 19, page

Paxos Operation

34CS677: Distributed and Operating Systems

• Phase 3 (decide)
– If leader gets accept-ok from majority

• Send <decide, v_a> to all learners
– If leader fails to get accept-ok from a majority

• Delay and restart Paxos

• Properties
– P1: any proposal number is unique
– P2: any two set of acceptors have at least one node in common
– P3: value sent in phase 2 is value of highest numbered proposal

received in responses in phase 1

Lecture 19, page

Paxos Exampe

35CS677: Distributed and Operating Systems

Lecture 19, page

Issues

36CS677: Distributed and Operating Systems

• Network partitions:
– With one partition, will have majority on one side and can

come to agreement (if nobody fails)
• Timeouts

– A node has max timeout for each message
– Upon timeout, declare itself as leader and restart Paxos

• Two leaders
– Either one leader is not able to decide (does not receive

majority accept-oks since nodes see higher proposal from other
leader) OR

– one leader causes the other to use it value
• Leader failures: same as two leaders or timeout occurs

Lecture 19, page

Raft Consensus Protocol

37CS677: Distributed and Operating Systems

• Paxos is hard to understand (single vs multi-paxos)
• Raft - understandable consensus protocol
• State Machine Replication (SMR)

– Implemented as a replicated log
– Each server stores a log of commands, executes in order
– Incoming requests —> replicate into logs of servers
– Each server executed request log in order: stays consistent

• Raft: first elect a leader
• Leader sends requests (log entries) to followers
• If majority receive entry: safe to apply -> commit

– If entry committed, all entries preceding it are committed

Lecture 19, page CS677: Distributed OS

Recovery

38CS677: Distributed and Operating Systems

• Techniques thus far allow failure handling
• Recovery: operations that must be performed after a

failure to recover to a correct state
• Techniques:

– Checkpointing:
• Periodically checkpoint state
• Upon a crash roll back to a previous checkpoint with a

consistent state

Lecture 19, page CS677: Distributed OS

Independent Checkpointing

39CS677: Distributed and Operating Systems

• Each processes periodically checkpoints independently of other
processes

• Upon a failure, work backwards to locate a consistent cut
• Problem: if most recent checkpoints form inconsistenct cut, will need

to keep rolling back until a consistent cut is found
• Cascading rollbacks can lead to a domino effect.

Lecture 19, page CS677: Distributed OS

Coordinated Checkpointing

40CS677: Distributed and Operating Systems

• Take a distributed snapshot [discussed in Lec 11]

• Upon a failure, roll back to the latest snapshot
– All process restart from the latest snapshot

Lecture 19, page

Logging

41CS677: Distributed and Operating Systems

• Logging : a common approach to handle failures
– Log requests / responses received by system on separate

storage device / file (stable storage)
• Used in databases, filesystems, ...

• Failure of a node
– Some requests may be lost
– Replay log to “roll forward” system state

Lecture 19, page CS677: Distributed OS

Message Logging

42CS677: Distributed and Operating Systems

• Checkpointing is expensive
– All processes restart from previous consistent cut
– Taking a snapshot is expensive
– Infrequent snapshots => all computations after previous

snapshot will need to be redone [wasteful]
• Combine checkpointing (expensive) with message

logging (cheap)
– Take infrequent checkpoints
– Log all messages between checkpoints to local stable storage
– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

