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Fault Tolerance

1CS677: Distributed and Operating Systems

• Part 1: Agreement in presence of faults 
– Two army problem 
– Byzantine generals problem 

• Part 2: Reliable communication 
• Part 3: Distributed commit 

– Two phase commit 
– Three phase commit 

• Next class: 
– Paxos and RAFT 
– Failure recovery 

• Checkpointing 
• Message logging
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Fault Tolerance
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• Single machine systems 
– Failures are all or nothing  

• OS crash, disk failures 
• Distributed systems: multiple independent nodes 

– Partial failures are also possible (some nodes fail) 
• Question: Can we automatically recover from partial 

failures? 
– Important issue since probability of failure grows with number 

of independent components (nodes)  in the systems 
– Prob(failure) = Prob(Any one component fails)=1-P(no failure)
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A Perspective
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• Computing systems are not very reliable 
– OS crashes frequently (Windows), buggy software, unreliable hardware, 

software/hardware incompatibilities  
– Until recently: computer users were “tech savvy”  

• Could depend on users to reboot, troubleshoot problems 
– Growing popularity of Internet/World Wide Web 

• “Novice” users  
• Need to build more reliable/dependable systems 

– Example: what is your TV (or car) broke down every day? 
• Users don’t want to “restart” TV or fix it (by opening it up) 

• Need to make computing systems more reliable 
– Important for online banking, e-commerce, online trading, webmail…
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Basic Concepts
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• Need to build dependable systems 
• Requirements for dependable systems 

– Availability: system should be available for use at any given 
time  

• 99.999 % availability (five 9s) => very small down times 
– Reliability: system should run continuously without failure 
– Safety: temporary failures should not result in a catastrophic 

• Example: computing systems controlling an airplane, 
nuclear reactor 

– Maintainability: a failed system should be easy to repair
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Basic Concepts (contd)
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• Fault tolerance: system should provide services despite 
faults 
– Transient faults 
– Intermittent faults 
– Permanent faults
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Failure Models
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• Different types of failures.

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure 
     Receive omission 
     Send omission

A server fails to respond to incoming requests 
A server fails to receive incoming messages 
A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure 
     Value failure 
     State transition failure

The server's response is incorrect 
The value of the response is wrong 
The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times
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Failure Masking by Redundancy
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• Triple modular redundancy: can handle one failure in circuit
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Agreement in Faulty Systems
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• How should processes agree on results of a computation? 
• K-fault tolerant: system can survive k faults and yet 

function 
• Assume processes fail silently 

– Need  (k+1) redundancy to tolerant k faults 
• Byzantine failures: processes run even if sick 

– Produce erroneous, random or malicious replies 
• Byzantine failures are most difficult to deal with 

– Need ?  Redundancy to handle Byzantine faults
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Byzantine Faults
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• Simplified scenario: two perfect processes with unreliable channel 
– Need to reach agreement on a 1 bit message 

• Two Generals Problem:   Two armies waiting to attack 
– Each army coordinates with a messenger 
– Messenger can be captured by the hostile army 
– Can generals reach agreement? 
– Property: Two perfect process can never reach agreement in presence of unreliable 

channel 
– Concept of Common knowledge 

• Byzantine generals problem: Can N generals reach agreement with a perfect 
channel? 

– M generals out of N may be traitors
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Byzantine Generals Problem
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• Recursive algorithm by Lamport 
• The Byzantine generals problem for 3 loyal generals and 1 traitor. 
a) The generals announce their troop strengths (in units of 1 kilosoldiers). 
b) The vectors that each general assembles based on (a) 
c) The vectors that each general receives in step 3.
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Byzantine Generals Problem Example
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• The same as in previous slide, except now with 2 loyal generals and one traitor. 
• Property: With m faulty processes, agreement is possible only if 2m+1 processes function 

correctly out of 3m+1 total processes. [Lamport 82] 
– Need more than two-thirds processes to function correctly (for m=1, 3 out of 4 processes)
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Byzantine Fault Tolerance
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• Detecting a faulty process is easier 
– 2k+1 to detect k faults 

• Reaching agreement is harder 
– Need 3k+1 processes (2/3rd majority needed to eliminate the 

faulty processes) 
• Implications on real systems: 

– How many replicas? 
– Separating agreement from execution provides savings
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Reaching Agreement
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• If message delivery is unbounded,  
– No agreement can be reached even if one process fails 
– Slow process indistinguishable from a faulty one 

• BAR Fault Tolerance 
– Until now: nodes are byzantine or collaborative 
– New model:  Byzantine, Altruistic and Rational 
– Rational nodes: report timeouts etc
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Reliable One-One Communication
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• Issues were discussed in Lecture 3 
– Use reliable transport protocols (TCP) or handle at the application layer 

• RPC semantics in the presence of failures 
• Possibilities 

– Client unable to locate server 
– Lost request messages 
– Server crashes after receiving request 
– Lost reply messages 
– Client crashes after sending request 
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Reliable One-Many Communication
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•Reliable multicast 
– Lost messages => need to 

retransmit 
•Possibilities 

– ACK-based schemes 
• Sender can become 

bottleneck 
– NACK-based schemes
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Broadcast Ordering
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• Broadcast (or multicast) ordered important for replication 

• FIFO broadcast: if a process sends m1 and then m2, all other 
processes receive m1 before m2 

• Totally ordered: If a process receives m1 before m2 (regardless 
of sender), all processes receive m1 before m2 
– Does not imply FIFO, all processes just agree on order 

• Causally ordered: if send(m1)->send (m2)  => recv(m1)-> recv 
(m2) 

• State machine replication (SMR) 
– Broadcast requests to all replicas using totally ordered 

broadcast; replicas apply requests in order. 
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Atomic Multicast
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•Atomic multicast: a guarantee that all 
process received the message or none at all 

– Replicated database example 
– Need to detect which updates have been 

missed by a faulty process 
•Problem: how to handle process crashes? 
•Solution: group view 

– Each message is uniquely associated 
with a group of processes 

• View of the process group when 
message was sent 

• All processes in the group should 
have the same view (and agree on 
it)

Virtually Synchronous Multicast
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Implementing Virtual Synchrony in Isis
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a) Process 4 notices that process 7 has crashed, sends a view change 
b) Process 6 sends out all its unstable messages, followed by a flush message 
c) Process 6 installs the new view when it has received a flush message from everyone 

else
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Implementing Virtual Synchrony
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Distributed Commit
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• Atomic multicast example of a more general problem 
– All processes in a group perform an operation or not at all 
– Examples:  

• Reliable multicast: Operation = delivery of a message 
• Distributed transaction: Operation = commit transaction 

• Problem of distributed commit 
– All or nothing operations in a group of processes 

• Possible approaches 
– Two phase commit (2PC) [Gray 1978 ] 
– Three phase commit
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Two Phase Commit
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•Coordinator process coordinates 
the operation 
•Involves two phases 

– Voting phase: processes vote on 
whether to commit 

– Decision phase: actually commit 
or abort
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Implementing Two-Phase Commit
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• Outline of the steps taken by the coordinator in a 
two phase commit protocol

actions by coordinator: 

while START _2PC to local log; 
multicast VOTE_REQUEST to all participants; 
while not all votes have been collected { 
    wait for any incoming vote; 
    if timeout { 
        while GLOBAL_ABORT to local log; 
        multicast  GLOBAL_ABORT to all participants; 
        exit; 
    } 
    record vote; 
} 
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{ 
    write GLOBAL_COMMIT to local log; 
    multicast GLOBAL_COMMIT to all participants; 
} else { 
    write GLOBAL_ABORT  to local log; 
    multicast GLOBAL_ABORT to all participants; 
}
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Implementing 2PC
actions by participant: 
write INIT to local log; 
wait for VOTE_REQUEST from coordinator; 
if timeout { 
    write VOTE_ABORT to local log; 
    exit; 
} 
if participant votes COMMIT { 
    write VOTE_COMMIT to local log; 
    send VOTE_COMMIT to coordinator; 
    wait for DECISION from coordinator; 
    if timeout { 
        multicast DECISION_REQUEST to other participants; 
        wait until DECISION is received; /* remain blocked */ 
        write DECISION to local log; 
    } 
    if DECISION == GLOBAL_COMMIT 
        write GLOBAL_COMMIT to local log; 
    else if DECISION == GLOBAL_ABORT 
        write GLOBAL_ABORT to local log; 
} else { 
    write VOTE_ABORT to local log; 
    send  VOTE ABORT to coordinator; 
}

actions for handling decision requests:  /
*executed by separate thread */ 

while true { 

wait until any incoming DECISION_REQUEST 

 is received; /* remain blocked */ 
    read most recently recorded STATE from the 
local log; 
    if STATE == GLOBAL_COMMIT 
        send GLOBAL_COMMIT to requesting                
 participant; 
    else if STATE == INIT or STATE ==   
GLOBAL_ABORT 
        send GLOBAL_ABORT to requesting 
participant; 
    else 
        skip;  /* participant remains blocked */

23CS677: Distributed and Operating Systems
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Recovering from a Crash
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• If INIT :  abort locally and inform coordinator 
• If Ready, contact another process Q and examine Q’s 

state
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Three-Phase Commit
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Two phase commit: problem if coordinator crashes (processes block) 
Three phase commit: variant of 2PC that avoids blocking
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Replication for Fault Tolerance
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• Basic idea: use replicas for the server and data 

• Technique 1: split incoming requests among replicas 
– If one replica fails, other replicas take over its load 
– Suitable for crash fault tolerance (each replica produces correct 

results when it is us). 

• Technique 2: send each request to all replicas 
– Replicas vote on their results and take majority result 
– Suitable for BFT (a replica can produce wrong results) 

• 2PC, 3PC, Paxos are techniques 
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Consensus, Agreement
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• Consensus vs Byzantine Agreement vs Agreement 
• Achieve reliability in presence of faulty processes 

– requires processes to agree on data value needed for computation 
– Examples: whether to commit a transaction, agree on identity of a 

leader, atomic broadcasts, distributed locks 
• Properties of a consensus protocol with fail-stop failures 

– Agreement: every correct process agrees on same value 
– Termination: every correct process decides some value 
– Validity: If all propose v, all correct processes decides v 
– Integrity: Every correct process decided at most one value 

and if it decides v, someone must have proposed v.
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2PC, 3PC Problems
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• Both have problems in presence of failures 
– Safety is ensured but liveness is not 

• 2PC 
– must wait for all nodes and coordinator to be up 
– all nodes must vote 
– coordinator must be up 

• 3PC  
– handles coordinator failure 
– but network partitions are still an issue 

• Paxos : how to reach consensus in distributed systems 
that can tolerate non-malicious failures? 
– majority rather than all nodes particpate
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Paxos: fault-tolerant agreement
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• Paxos lets nodes agree on same value despite: 
– node failures, network failures and delays 

• Use cases: 
– Nodes agree X is primary (or leader) 
– Nodes agree Y is last operation (order operations)  

• General approach 
– One (or more) nodes decides to be leader (aka proposer) 
– Leader proposes a value and solicits acceptance from others 
– Leader announces result or tries again 

• Proposed independently by Lamport and Liskov 
– Widely used in real systems in major companies
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Paxos Requirements

30CS677: Distributed and Operating Systems

• Safety (Correctness) 
– All nodes agree on the same value 
– Agreed value X was proposed by some node 

• Liveness (fault-tolerance) 
– If less than N/2 nodes fail, remaining nodes will eventually 

reach agreement 
– Liveness not guaranteed if steady stream of failures 

• Why is agreement hard? 
– Network partitions 
– Leader crashes during solicitation or after deciding but before 

announcing results,  
– New leader proposes different value from already decided value,  
– More than one node  becomes leader simultaneously....
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Paxos Setup
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• Entities: Proposer (leader), acceptor, learner 
– Leader proposes value, solicits acceptance from acceptors 
– Acceptors are nodes that want to agree; announce chosen value to 

learners 
• Proposals are ordered by proposal # 

– node can choose any high number to try to get proposal accepted 
– An acceptor can accept multiple proposals 

• If prop with value v chosen, all higher proposals have value v 
• Each node maintains 

– n_a, v_a: highest proposal # and accepted value 
– n_h : highest proposal # seen so far 
– my_n:    my proposal # in current Paxos
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Paxos operation: 3 phase protocol

32CS677: Distributed and Operating Systems

• Phase 1 (Prepare phase) 
– A node decides to be a leader and propose 
– Leader chooses  my_n  > n_h 
– Leader sends <prepare, my_n> to all nodes 
– Upon receiving <prepare, n> at acceptor 

• If n < n_h 
–  reply <prepare-reject>  /* already seen higher # proposal */ 

• Else 
– n_h = n            /* will not accept prop lower than n */ 
– reply <prepare-ok, n_a, v_a>   /* send back previous prop, value/ 
–                                                   /* can be null, if first */
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Paxos operation
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• Phase 2 (accept phase) 
– If leader gets prepare-ok from majority 

• V = non-empty value from highest n_a received 
• If V = null, leader can pick any V 
• Send <accept, my_n, V> to all nodes 

– If leader fails to get majority prepare-ok 
• delay and restart Paxos 

– Upon receiving <accept, n, V> 
• If n < n_h 

– reply with <accept-reject> 
• else 

– n_a=n ; v_a = V; n_h = h;  reply <accept-ok>
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Paxos Operation
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• Phase 3 (decide) 
– If leader gets accept-ok from majority 

• Send <decide, v_a> to all learners 
– If leader fails to get accept-ok from a majority 

• Delay and restart Paxos 

• Properties 
– P1: any proposal number is unique 
– P2: any two set of acceptors have at least one node in common 
– P3: value sent in phase 2 is value of highest numbered proposal 

received in responses in phase 1
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Paxos Exampe
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Issues

36CS677: Distributed and Operating Systems

• Network partitions: 
– With one partition, will have majority on one side and can 

come to agreement (if nobody fails) 
• Timeouts 

– A node has max timeout for each message 
– Upon timeout, declare itself as leader and restart Paxos 

• Two leaders 
– Either one leader is not able to decide (does not receive 

majority accept-oks since nodes see higher proposal from other 
leader)  OR  

– one leader causes the other to use it value 
• Leader failures: same as two leaders or timeout occurs
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Raft Consensus Protocol
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• Paxos is hard to understand (single vs multi-paxos) 
• Raft - understandable consensus protocol 
• State Machine Replication (SMR) 

– Implemented as a replicated log 
– Each server stores a log of commands, executes in order 
– Incoming requests —> replicate into logs of servers 
– Each server executed request log in order: stays consistent 

• Raft: first elect a leader  
• Leader sends  requests (log entries) to followers 
• If majority receive entry: safe to apply -> commit 

– If entry committed, all entries preceding it are committed
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Recovery
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• Techniques thus far allow failure handling 
• Recovery: operations that must be performed after a 

failure to recover to a correct state 
• Techniques: 

– Checkpointing: 
• Periodically checkpoint state  
• Upon a crash roll back to a previous checkpoint with a 

consistent state
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Independent Checkpointing

39CS677: Distributed and Operating Systems

• Each processes periodically checkpoints independently of other 
processes 

• Upon a failure, work backwards to locate a consistent cut 
• Problem: if most recent checkpoints form inconsistenct cut, will need 

to keep rolling back until a consistent cut is found 
• Cascading rollbacks can lead to a domino effect.
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Coordinated Checkpointing
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• Take a distributed snapshot [discussed in Lec 11] 

• Upon a failure, roll back to the latest snapshot  
– All process restart from the latest snapshot
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Logging
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• Logging : a common approach to handle failures 
– Log requests / responses received by system on separate 

storage device / file (stable storage) 
• Used in databases, filesystems, ... 

• Failure of a node 
– Some requests may be lost 
– Replay log to “roll forward” system state
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Message Logging
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• Checkpointing is expensive 
– All processes restart from previous consistent cut 
– Taking a snapshot is expensive 
– Infrequent snapshots => all computations after previous 

snapshot will need to be redone [wasteful] 
• Combine checkpointing (expensive) with message 

logging (cheap) 
– Take infrequent checkpoints 
– Log all messages between checkpoints to local stable storage 
– To recover: simply replay messages from previous checkpoint 

• Avoids recomputations from previous checkpoint


