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Human Mobility Nature

* Human Mobility Nomadic in nature
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Importance of Human Mobility

Understanding and Modeling mobility is a fundamental problem with
wide applications:

* Urban Planning
* Smart Cities : Urban Transportation

* |ocation Based Services

Personalized Systems

Smart Buildings

Systems modeling and design



Motivation

* Indoor Outdoor Mobility
* Users spend 80% of their lives indoors.
* Indoor and outdoor mobility are different.
* Prior Indoor mobility work focus from network perspective.

* Problems modeling indoor mobility
« the absence of easily acquirable, reliable, low-cost indoor mobility datasets
* high prediction space in modeling the frequent indoor mobility
« multi-scalar periodicity and correlations in mobility.




Problem Statement

«  We focus on the problem of modeling indoor mobility trajectories of users over
the timescale of several hours to a day using easily acquirable, reliable, and low-
cost data source.




Data Source for indoor mobility

* Mobile Phones are ubiquitous
Smartphone mobility is a proxy for user mobility

* WiFi logs collected for network performance analysis and network
attack analysis.
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Syslog to Trajectories
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Syslog to Trajectories

Syslog
Assoc : Timestamp, MAC ID, AP ID
Dis-assoc :Timestamp, MAC ID, AP




Syslog to Trajectories
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Syslog to Trajectories
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Syslog to Trajectories

Authorization



Syslog to Trajectories
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Device to User Mapping

User 1 -> Mac 1
User 1 -> Mac 2
User 2 -> Mac 3
User 3 -> Mac 4

osersMect



Privacy and Security

1. Data (MAC ID, Username) is anonymized
2. Approved IRB and Signed DUA
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Human Mobility — Hierarchical View
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Human Mobility — Hierarchical View

Features impacting indoor mobility prediction:
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WiFiMod : Architecture
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Input to the Transformer(off-the-shelf GPT, trained
from scratch) is a multi-scale sampled trajectory of

users.
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WiFiMod : Baseline Evaluations

sample Takeaways:

701 o somine - DNN show superior
eof T performance in capturing long
= term performance.
> - Impact of Temporal Granularity:
& * As the model temporal
Y 301 granularity becomes coarser,
< ) the indoor mobility accuracy

Lo increases.

O - Non-regular visits are hard to

bi-gram  tri-gram  four-gram  HMM LSTM  WiFiMod predict, predictions for some

Model

spaces such as dining halls have
large variations and high error.



-valuations: Multimodal Embedding
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“valuations: Spatial Granulity
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WiFiMod System
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WiFiMod: CaseStudy
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Heatmap of predicted indoor occupancy of educational building with classrooms, research labs, faculty

office, kitchenette



Summary

* Presented WiFiMod, a Transformer-based, data-driven approach

that models indoor human mobility at multiple spatial scales using
WiFi system log.

* Mobility is inherently hierarchical in nature.

* Practical real-lite usecases of WiFiMod.




Questions?




