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Abstract— While the current generation of peer-to-peer

networks share predominantly static files, future peer-

to-peer networks will support sharing of files that are

modified frequently by their users. In this paper, we

present techniques to maintain temporal consistency of

replicated files in a peer-to-peer network. We consider the

Gnutella network and present techniques for maintaining

consistency even when peers containing replicated files

dynamically join and leave the network. We present

extensions to the Gnutella protocol to incorporate our

consistency techniques and implement them into a Gtk-

Gnutella prototype. An experimental evaluation of our

techniques shows that: (i) a push-based approach achieves

near-perfect fidelity in a stable P2P network, (ii) a hybrid

approach based on push and pull achieves high fidelity

in highly dynamic P2P networks and (iii) the run-time

overheads of our techniques are small, making them a

practical choice for P2P networks.

Keywords: Consistency maintenance, Peer-to-peer

file sharing, Gnutella, Push, Adaptive Pull

I. INTRODUCTION

A. Motivation

The past few years have seen a dramatic increase in

the popularity and use of peer-to-peer (P2P) file sharing

networks. Current P2P systems are specifically designed

to share static content such as music and video files.

The utility of P2P systems goes beyond sharing of static

files—future P2P applications (e.g., collaborative P2P

applications) can be expected to share dynamic files. In

such applications, shared files are not necessarily static;

files may be modified and updated during their lifetime.

To handle such dynamic content, P2P networks must

evolve from a predominantly read-only system to one

where files can be both read and written. Since files

may be widely replicated in a P2P system, handling

dynamic files requires consistency techniques to ensure
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that all replicas of a file are temporally consistent with

one another.

Consistency techniques have been widely studied in

the context of web proxy caches and a variety of tech-

niques have been proposed for maintaining consistency

of time-varying web content in web proxies [1], [2].

However, these techniques are not directly applicable

to P2P systems. P2P systems are known to be highly

dynamic—peers can dynamically join and leave the net-

work at any time and the mean session duration of a peer

is only a few hours [3]. Since peers containing replicated

content may not be part of the network when a file is

modified, maintaining consistency is more challenging in

these environments (unlike in web environments, where

web proxy caches are mostly available and failures are

rare). Due to this crucial difference, novel consistency

techniques specifically designed to handle unavailable

peers are required and is the focus of this paper.

B. Research Contributions

In this paper, motivated by the need to support modi-

fications to replicated files, we propose three consistency

maintenance techniques for P2P networks. Our first two

techniques are based on push and pull, respectively,

and have complementary tradeoffs. A flooding-based

push approach can provide near-perfect fidelity but has

high communication overheads and is suitable only for

static networks. In contrast, a pull-based approach has

lower communication overheads and is better suited for

dynamic networks but provides weaker guarantees than

push. Based on these observations, we propose a hybrid

approach that combines the best features of push and pull

and attempts to provide good fidelity in highly dynamic

networks at a reasonable cost. We propose enhancements

to the Gnutella protocol to incorporate all three tech-

niques. We then implement our hybrid technique into

Gtk-Gnutella—a public source implementation of the

Gnutella file sharing protocol.



We evaluate our techniques using a combination of

simulations and prototype implementation. Our results

show that while push is more suitable for stable P2P

networks, our hybrid approach can provide good fidelity

even in highly dynamic environments. Our measure-

ments from the prototype implementation indicate that

this fidelity can be provided at a reasonable run-time

cost.

The remainder of this paper is structured as follows.

Sections II provides a brief overview of the Gnutella

P2P file sharing network. We present our consistency

maintenance techniques in Section III. Enhancements

to the Gnutella protocol and details of our prototype

implementation are presented in Section IV. Section V

presents our experimental results, and finally, Section VI

presents our conclusions.

II. OVERVIEW OF THE GNUTELLA FILE SHARING

NETWORK

Peer-to-peer file sharing networks provide an infras-

tructure for communities to share storage and popular

files. P2P systems can be based on a centralized or

distributed model.

In the centralized model, a small number of central-

ized servers maintain an index of files stored at the

various peers. A peer registers itself and its shared con-

tents with the indexing server upon joining the network.

Queries for a file are sent to the indexing server, which

returns a list of all matches and the addresses of the

corresponding peers. A user can then select the desired

file, which is directly downloaded from the correspond-

ing peer (usually via a direct HTTP connection). Note

that the indexing server only stores an index of all shared

files in the system; the files themselves are never stored

at the central server. The centralized model suffers from

two limitations. First, the indexing server can become

a bottleneck and a central point of failure. Second, the

indexing server can return stale information if a file is

deleted at a peer (since the indexing information is only

refreshed periodically).

Decentralized peer-to-peer systems attempt to over-

come these drawbacks. Gnutella is a widely used decen-

tralized system, so we primarily focus on the Gnutella

model. In this model, each peer is simultaneously a

server and a client. Peers are organized into an overlay

network, where each peer is connected to some number

of neighboring peers over logical links. The overlay

network is used for searching shared content. A peer

initiates a query by sending the query message to all its

neighbors. Each neighbor in turn sends the query to all

its neighbors and so on. Thus, queries propagate through

the network via flooding; the reach of a query message

is limited by a time-to-live (TTL) value, which is decre-

mented at each hop. If the requested file is found at a

peer, it transmits the file information (name, size, peer

ID, etc) back to the initiator on the reverse path. Upon

receiving all matches, the user can select the desired

file and download it from the corresponding peer (via

a direct HTTP connection). Thus, each peer maintains

its own index in Gnutella and queries are processed by

flooding the overlay network. A peer can join or leave

the network at any time. A peer can join the overlay by

running a discovery protocol to actively discover peers

and form logical links with a subset of these peers.

Similarly, if one or more neighbors leave the network, a

peer can form a new logical links with other active peers

using the discovery protocol. In essence, Gnutella-based

P2P systems build, at the application level, a virtual

overlay network with its own routing mechanisms. The

set of supported messages in the Gnutella protocol [4]

are described in Table I.

Descriptor Description

Ping Used to actively discover hosts on the net-

work. A peer receiving a Ping descriptor is

expected to respond with one or more Pong

descriptors.

Pong The response to a Ping. Includes the address

of a connected Gnutella peer and information

regarding the amount of data it is making

available to the network.

Query The primary mechanism for searching in

Gnutella. A peer receiving a Query descriptor

will respond with a QueryHit if a match is

found against its local data set.

QueryHit The response to a Query. This descriptor pro-

vides the recipient with enough information to

acquire the data matching the corresponding

Query

Push A mechanism that allows a fire-walled peer

to contribute file-based data to the network.

TABLE I

CURRENTLY SUPPORTED MESSAGE DESCRIPTORS IN THE

GNUTELLA PROTOCOL

III. CONSISTENCY TECHNIQUES FOR P2P

GNUTELLA FILE SHARING NETWORKS

In this section, we present techniques for maintaining

consistency of replicated files in a P2P network. We

assume that each file in the system has a unique owner;

the owner of a file is simply the peer where the file

originated (i.e., the peer where the file was created or

first shared). Modifications to a file can only be made

by its owner. While this assumption may seem overly
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restrictive, it is not—any user (peer) may modify a

file, but upon doing so, it is required to transmit these

modifications to the owner to “commit” the changes.

This ensures that the owner always has the most up-

to-date version of the file at all times. Observe that

additional mechanisms such as distributed locking are

required to prevent multiple peers from simultaneously

updating a file; these techniques can be implemented

separately and are beyond the scope of this paper. Each

file is also associated with a version number; the version

number is incremented by the owner upon each update.

Since a file may be arbitrarily replicated at different

peers, upon a modification, the replicas will need to be

made consistent with the version at the owner peer. We

present three different techniques for doing so in the

remainder of this section.

A. Push: Owner-initiated Consistency

In the owner-initiated approach, the owner broadcasts

an invalidation message upon each update to a file (alter-

nately, the new version of the file may be broadcast). The

broadcast message propagates through the P2P overlay

like query or ping messages—the owner forwards the

message to its neighbors, who then propagate the mes-

sage to their neighbors and so on until the TTL limit

is reached. Upon receiving an invalidation message, a

peer checks its shared cache and invalidates the file if

the version number of the cached copy is smaller than

the version number specified in the invalidation message

(if updates are sent instead of invalidations, the cached

copy is replaced by the new version).

The main advantage of such a push-style approach is

its simplicity and stateless nature. Since invalidations are

propagated via flooding, the owner need not maintain a

list of peers holding a replica of the file. Further, the

approach guarantees a strong notion of consistency so

long as all peers holding a replica are reachable from

the owner (i.e., are no more than TTL hops away).

The limitation though is that the broadcast nature of

the technique increases the control message overhead

substantially, especially for objects cached only at a few

peers. While a push based approach is suitable for a static

P2P network, the following limitations arise in dynamic

networks:

1) Not all the peers in the network may receive

the broadcast messages. There are two scenarios

when this can happen: one is if the network is

partitioned; the other is if a peer is beyond the

reach of the specified TTL limit.

2) Peers in the Gnutella network can join and leave

the network dynamically. After a peer leaves the

network, it won’t be able to receive any further

invalidation messages. Upon a subsequent rejoin,

the peer will share a stale copy of the file.

Based on the above observations, we conclude push

alone is not sufficient for maintaining consistency in a

large-scale Gnutella network. Next, we present a pull-

based approach for maintaining consistency.

B. Pull: Peer-initiated Consistency

Unlike a push approach where the owner is responsi-

ble for consistency maintenance, a pull approach puts

the burden of consistency maintenance on individual

peers. Implementing a pull-based consistency technique

in Gnutella is no different from implementing it in a

client-server system such as the Web. In this approach,

a peer polls the owner to determine if a replica is stale.

A peer can employ different policies to determine when

and how frequently to poll the owner to check for con-

sistency: we outline three such policies in this section.

Regardless of the policy, the following information must

be stored with each replica for consistency maintenance:

1) Version number: the version number indicates the

version of the file currently cached at the peer. The

last modification time of the file can also be used

to determine this information instead of explicit

version numbers.

2) Owner IP address: This allows a peer to locate the

owner of a file.

3) Consistency status: The consistency status of a file

can take one of three values: (i) valid, indicating

the file is consistent with the version at the owner,

(ii) stale, indicating that the file is older than

the version at the owner, and (iii) possibly stale,

indicating that the file could possibly be stale but

the peer is unable to determine the actual status

since the owner peer is unavailable (i.e., has left

the P2P network).

Observe that a pull-based approach is more resilient to

dynamic joins and leaves. Upon rejoining the network,

a peer can poll the owners of all cached files to check

if these files were updated in the interim, and thereby

ensure consistency of shared files.

1) Poll Every Time: In this policy, the peer polls the

owner every time a query or a download request for the

file is received. This is a lazy polling policy since a

poll is triggered only when necessary. The advantage

of the technique is its simplicity and strong consistency

guarantee—since the peer checks the consistency status

prior to responding to query messages, no stale infor-

mation is returned. The drawback though is that the

policy adds a round trip delay to each query or download
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message (unless the peer is itself the owner), which

in turn degrades query response times. We note since

file downloads are via a HTTP, a poll can simply be

implemented by an if-modified-since HTTP message to

the owner, which allows the peer to check if the replica

was modified since the last poll.

2) Periodic Polls: An alternate approach is to poll the

owner periodically to check if the file has been updated.

The periodicity of the polls is statically determined by

the owner and depends on how frequently the file is

expected to be modified. The approach provides weaker

guarantees than the poll-every time—if the file is updated

between two polls, the peer will serve stale data until

its next poll. Hence, the success of such a pull-based

approach hinges on the accurate estimation of the polling

frequency. Unless carefully determined, the technique

may result in an excessive poll overhead (if the polling

frequency is over-estimated and file does not change

frequently) or may result in stale data (if the polling

frequency is under-estimated and the file is modified

frequently).

3) Adaptive Polls: Rather than determining the poll

frequency statically, a third approach is to dynamically

vary the polling frequency based on the update rate for

the file. A peer can observe that rate of updates to a file

and poll more frequently when the file is being modified

frequently and less frequently when it is not. The update

rate can be easily determined since the response to each

poll contains the last modification time and the latest

version number of the file. A history of modification

times can maintained and used to determine the update

rate to the file. Instead of using a history of modification

times, a simpler approach is to vary the poll frequency

based only on the result of the most recent poll: the

frequency of polls is reduced if the file was not modified

since the last poll and made more aggressive if the file

was modified. The notion of adaptive polling has been

explored in the context of web cache consistency [6], [7]

and we use a similar idea here.

A time-to-refresh (TTR) value is associated with each

file. The TTR denotes the next time instant the peer

must poll the owner, and thus, determines the polling

frequency. The TTR value is varied dynamically based

on the results of each poll message. The TTR value

is increased by an additive amount if the file doesn’t

change between successive polls. Increasing the TTR

value results in a reduction in the polling frequency.

In the event the file is updated since the last poll,

the TTR value is reduced by a multiplicative factor.

In essence, an additive increase multiplicative decrease

(AIMD) algorithm is used to probe for the update rate.

A key advantage of the technique is that it can adapt

to changing update rates by recomputing the TTR value

after each poll.

To precisely define this technique, if a file has not

changed between two polls, we set

TTR = TTR

old

+ C (1)

where C , C > 0, is an additive constant. If the file was

modified, then

TTR = TTR

old

=D (2)

where D, D > 1 is the multiplicative decrease constant.

After the above computation, the TTR is bound by a

maximum and minimum value to prevent the TTR from

becoming very large or very small, both of which can

be problematic. Thus,

TTR = max(TTR
min

;min(TTR
max

; TTR)) (3)

This TTR value is used to determine the time of the

next poll. Such an adaptive TTR techniques have the

following advantages:

1) It provides tunable parameters C and D which

allow a peer to control its behavior. The constants

determine how quickly the TTR is increased or

decreased after each poll.

2) Only the most recent TTR and the last modification

time (i.e., version number) needs to be stored

with each file. No other history information is

necessary, resulting in a very small per-file state

space overhead.

3) The technique can handle dynamic joins and

leaves. Upon rejoining the network, the peer sim-

ply resets the TTRs of all cached files to TTR
min

.

This enables the peer to poll each owner quickly

to determine the consistency information.

C. Hybrid Push and Adaptive Pull Technique

A push-based technique can provide good consistency

guarantees for peers that are online and reachable from

the owner. Pull, on the other hand, is better suited for

dynamic networks but provides weaker guarantees. Push

can be combined with the adaptive pull approach in a

hybrid technique that combines the best features of the

two approaches.

The push part of the hybrid approach works exactly

as the invalidation-based push technique—owners broad-

cast invalidations upon each update. In addition, the

hybrid technique requires peers to occasionally poll the

owner to check if the file was updated. Ideally, only those

peers who are unable to receive invalidation messages

should poll the owners of files. An invalidation may not

reach a peer either because it is beyond the reach of the

4



specified TTL or because the peer has temporarily left

the network. In either case, a poll at a subsequent time

allows the peer to refresh a file with the updated version.

In general, it is difficult to achieve the ideal scenario

where only peers who miss an invalidation message poll

the owner, but we can modify the adaptive pull technique

to make the polling less aggressive. Less aggressive

polling reduces wasted polls from peers who are within

reach of the owner. We make the following modifications

to the adaptive pull technique:

In addition to adapting the TTR to the update rate,

we take into account the number of active neighbors

of a peer when computing the TTR. In general, a peer

should poll more frequently when the network sees

frequent joins and leaves, since frequent changes to the

overlay topology increases the probability of missing an

invalidate message. Similarly, the peer should poll less

frequently when the network is stable. We use the num-

ber of active neighbors of a peer as an indicator of the

network dynamics. Suppose that a peer has N
onn

active

connections to its neighbors and let N
avgonn

denote

the average connectivity of a peer in the network (most

P2P systems use N
avgonn

as a pre-defined parameter to

ensure good connectivity—upon joining, a peer attempts

to create logical links to these many other peers). In

such a scenario, the TTR is chosen more aggressively

when the number of neighbors drops below average and

is made larger when a peer is well-connected and has

more neighbors than the average peer.

Thus, after computing the TTR in Equation 2, the TTR

is further tuned as

TTR = TTR+ (1 +

N

onn

�N

avgonn

N

avgonn

)� � (4)

where � is a constant. The TTR is decreased if the

peer has a small number of neighbors and increased

otherwise. Like before, this TTR value is constrained

by the maximum and minimum allowable TTR values

TTR

max

and TTR
min

.

The TTR value can also be updated upon receiving

a push-based invalidation message. Since an invalidate

message is an indicator of an update, the peer can mark

the stored copy as stale and decrease the TTR based on

Equation 2. This TTR is used for future polls if the file

is subsequently refreshed by the user.

By combining push and poll, the approach is able to

provide good consistency guarantees to reachable peers,

while accommodating the needs of distant peers via

pull. Further, our modified TTR computation technique

can adapt the TTR value to network dynamics and poll

more frequently in the presence of frequent joins and

leaves. Last, since the modified adaptive pull adds a

modest amount of communication overhead, the overall

overheads are not significantly greater than a pure push

approach.

D. Discussion

Our consistency mechanisms suffer from one draw-

back. Recall that our mechanisms associate an owner

with each file and store the IP address of the owner with

the file. However, peers connecting over dial-up connec-

tions use dynamic IP addresses assigned by DHCP. The

IP address of such peers can potentially change every

time they rejoin a network, making it harder to identify

owners by their IP addresses. This is problematic, since

the IP address of the owner is necessary to poll for

changes in the adaptive pull and the hybrid approaches.

A possible solution to this problem is to restrict owner

responsibilities to those peers with static IP addresses

(e.g., peers connected over cable modems or T1 lines that

have static IP addresses or long-lived DHCP leases). In

such a scenario, upon creating a new file, the user must

search for a peer with a static IP connection and hand

over owner responsibilities to that peer (thus, the creator

is no longer responsible for consistency maintenance). It

is easy to determine which peers have static IP addresses

and which ones don’t—the user needs to specify the type

of the connection (dial-up, broadband, T1 etc) in the

configuration options while installing a P2P client. This

information can be used to infer the type of IP address

used by the peer.

IV. PROTOTYPE IMPLEMENTATION

We have implemented our hybrid push-pull algorithm

into Gtk-Gnutella ver 0.17, an open-source implementa-

tion of the Gnutella protocol. To do so, we extend the

Gnutella protocol to incorporate push-based invalidations

and use HTTP/1.1 to implement adaptive pull. We add

a new message type for push-based invalidations. Our

implementation assigns a type code of 0x90 for invali-

dation messages; an even type code indicates a broadcast

message in Gnutella. Each invalidation message contains

a 16 byte file identifier (an MD-5 [14] hash of the

file name), the file name, its last modification time,

the owner’s IP address, port number, and the TTL for

the invalidate message. Upon receiving an invalidate,

a peer invalidates the file if present in its local cache,

decrements the TTL, and forwards the message to its

neighbors.

Gtk-Gnutella uses HTTP to download files from a

peer. Since support for HTTP is already built into the

system, we can use this functionality to implement

adaptive pull. Specifically, a peer uses if-modified-since
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(IMS) HTTP messages to poll for updates to files. Each

peer computes TTR values as discussed in the previous

section. The TTR value is recomputed after each poll

and in response to changes in a peer’s neighbors. The

message format of an IMS message and a response is

described in Figures 1 and 2, respectively. In addition

to these modifications, the response to a HTTP file

download also needs to be enhanced—the owner’s IP

address and the port number need to be included with

each file download. This extension is described in Figure

3.

HEAD /head/File Index/File Name/ HTTP/1.0

If-Modified-Since: GMT Time

Connection: Keep-Alive

User-Agent: consistency-gnutella/Version.SubVersion

File-Identifier: File ID

Fig. 1. HTTP Format of Poll Request

Response when the file has been modified:

HTTP/1.0 200 OK

Server: consistency-gnutella/Version.SubVersion

Content-type: application/binary

Content-length: File Length

Last-Modified: Last Modified Time

File-Identifier: File ID

Response when the file has not been modified:

HTTP/1.0 304 Not Modified Since Last Modified Time

Server: consistency-gnutella/Version.SubVersion

File-Identifier: File ID

Fig. 2. HTTP Response of Poll Request

HTTP/1.0 200 OK

Server: consistency-gnutella/Version.SubVersion

Content-type: application/binary

Content-length: File Length

Last-Modified: Last Modified Time

Origin-Server-IP: IP Address of origin-peer

Origin-Server-Port: Port of origin-peer

File-Identifier: File ID

Fig. 3. HTTP Response of Download Request

Out prototype sets the TTR value of a file to TTR
min

when it changes from Stale or Possible Stale to Valid or

if the file is newly downloaded. In order to be backward

compatible with current Gnutella protocol, we always set

the status of the files downloaded from peers that do not

support cache consistency to valid and set the TTR value

to -1. We do not poll cached files with negative TTRs.

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the efficacy of our

techniques using simulations and preliminary experi-

ments with our prototype implementation. We use sim-

ulations to explore the parameter space along various

dimensions and use our prototype to measure imple-

mentation overheads (an aspect that simulations don’t

reveal). In what follows, we first present our experimen-

tal methodology and then our experimental results.

A. Experimental Methodology

1) Simulation Environment: We have designed an

event-based simulator to evaluate our cache consistency

techniques. Our simulator simulates an overlay network

of Gnutella peers. The topology of the overlay and var-

ious network and P2P system parameters are initialized

using using observed statistics. We borrow heavily from

recent measurements studies [8], [9], [10] to initialize

parameters such as link bandwidths, network diameter,

node connectivity, session times, file popularities, etc.

We will show in a subsequent section that the consistency

guarantees are insensitive to several of these parameters.

Each peer in our simulator is responsible for answering

queries, propagating query messages to neighbors and

for servicing file download requests. Each peer can also

initiate query requests; inter-arrival times of queries are

exponentially distributed and a certain fraction of the

query responses is assumed to result in file downloads.

Our simulator also incorporates an update process that

generates to files stored at owners. An update causes the

last modification time and the version number of the file

to be updated at the owner. The default values of various

parameters used in our simulations is listed in Table II.

Parameter Description Default Value

L

sim

Length of simulation 10 hours

F

enable

This flag turns on/off the

failure mode

[FALSE, TRUE]

R

f

Percentage of maximum of-

fline nodes

50%

I

f

Average time between suc-

cessive disconnections

5 seconds

D

f

Average offline duration 2 hours

I

topohk

Average time between suc-

cessive topology checks

5 minutes

TABLE II

PARAMETERS FOR THE DYNAMIC NETWORK ENVIRONMENT
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The workload for generating queries, file downloads

and updates to files is generated synthetically. While

measurements of query rates and file downloads are

available from recent studies, realistic distributions of file

update rates are not available since current P2P systems

only share static files. Consequently, we use update

distributions of web pages [1], [2] to be a reasonable

indicator of updates in P2P environments. Specifically,

we assume four types of files: highly mutable, very

mutable, mutable, and immutable. Each category has a

different mean update rates. The percentage of the files in

each category and the mean update rate in each category

is (0.5%, 15 sec), (2.5%, 7.5 min), (7%, 30 min), and

(90%, 1 day). Note that the mean lifetime of a immutable

file is longer than our simulation duration of 10 hours.

2) Metrics for Performance Analysis: We use two

different metrics to evaluate our techniques.

� Fidelity. Fidelity is the degree to which a technique

can provide consistency guarantees. We use a metric

called False Valid Ratio (FVR) to determine the

fraction of query responses or downloaded files

that return stale request (i.e., are falsely reported

as valid by their peers). The query false valid ratio

(QFVR) is the fraction of query responses that list

stale files. A query that returns some stale files is

not necessarily bad, since the user can pick one of

the matches for an actual download (e.g., a match

with the largest version number or the most recent

modification time). The download false valid ratio

(DFVR) is the fraction of the downloaded files

that are stale. The false valid ratio for queries and

downloads should be as close to zero as possible.

� Control message overhead: The control message

overhead is the number of control messages that

are exchanged to maintain consistency of replicas.

In the push approach, this is simply the number

of invalidations that are broadcast. In the pull ap-

proach, the control message overhead is defined

to be the number of poll messages (IMS HTTP

messages). We note that, while flooding of in-

validations is not necessarily efficient, flooding is

currently the mechanism of choice to propagate

queries and ping messages in Gnutella. Thus, the

overhead of pushing invalidates is not significantly

larger than other P2P functions. It is also possible

to reduce this overhead by piggybacking invalidates

on query or ping messages; we do not consider such

optimizations in this paper.

3) Network Environment Used in the Simulations:

Our simulations are conducted for two different network

environments as described below:

� The first set of experiments are performed in a sta-

ble P2P network environment. All the peers remain

online throughout the simulation, and there are no

failures of any type. Although this assumption is

unrealistic for real P2P networks, it gives us an

indication of how our techniques will perform in

the ideal case.

� The second set of experiments are performed in

a dynamically changing P2P network. We assume

peers leave and rejoin the network randomly, based

on the three parameters R

f

, I
f

, and D

f

, as de-

fined earlier. This situation is close to the Gnutella

network in use today. However, the size of the

network used in our simulation is much smaller than

a real network, since the memory and computation

overhead required to run large-scale simulations are

prohibitive. Unless specified otherwise, we assume

a network consisting of 500 peers and 5000 objects.

While a 500 peer network is small for many P2P

studies, it is adequate for studying consistency tech-

niques.

B. Simulation Results from a Stable P2P Network

All the experiments described in this section were con-

ducted with F
enable

set to FALSE. All other parameters

are set to their defaults values.

To evaluate the efficacy of different cache consistency

mechanisms presented in Section 3 for a stable network

environment, we conduct several experiments by varying

the interval between successive updates I

updates

, the

time between successive query requests, I
query

, the TTL

values, the network size and the average number of

network connections of each peer. We discuss each

experiment in turn.

1) Impact of the Update Rate: First, we analyze the

false valid ratio of different cache consistency mecha-

nisms by varying the update rate I

updates

. We fix the

query inter-arrival time I

query

to 1 second, and vary

I

update

from 1 sec to 10 sec. We plot the query false

valid ratio as well as the download false valid ratio for

push, adaptive pull and the hybrid push-pull approaches

in Figure 4. We note that Push can achieve near-perfect

FVRs in a stable network environment. Thus, push alone

is sufficient when the network is stable and updates

are less frequent than queries. In contrast, adaptive

pull yields weaker consistency guarantees. For frequent

updates, about 2.5% of the query responses are stale and

1.5% of the downloaded files are stale. The FVR falls

as the updates become less frequent. The control mes-

sage overhead for these experiments is shown in Figure

5. The figures show that the push-based invalidations
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Fig. 4. Impact of Update Rate on False Valid Ratio
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Fig. 5. Impact of Update Rate on Control Message Overhead

impose two orders of magnitude larger overhead when

compared to pull. Due to the relatively small overheads

of pull when compared to push, the total overhead of

the hybrid technique is comparable to push. Additional

experiments quantifying these overheads may be found

in [11]. Based on these results, we recommend pull only

if the consistency requirements are less stringent or if

the control message overhead is a major consideration,

and only for scenarios where updates are less frequent

than queries.
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Fig. 6. Impact of TTL values on fidelity

2) Impact of TTL values: Since TTL values de-

termine the reach of each invalidation broadcast, the

query/download FVR will decrease for larger TTL val-

ues. To quantify the effect on fidelity, we varied the TTL

from 2 to 12 hops and measure the QFVR and DFVR for

the push approach. Figure 6 plots the resulting fidelity.

As shown, both QFVR and DFVR fall to zero beyond a

TTL of 8, indicating that a TTL of 8 hops is sufficient

to reach most peers in a 500 node P2P network.

3) Impact of the Network Size: We also conduct

experiments to investigate the effects of network size on

fidelity of Push and Push with Adaptive Pull. We vary

the network size from 200 to 2000 nodes. The TTL for

invalidations is set to 6 hops. Figure 7 plots the QFVR

and DFVR for the two techniques. Since the TTL value

is fixed, invalidates reach fewer peers as the network

size increases. Consequently, the QFVR and DFVR for

push increases with increasing network size. In contrast,

the hybrid approach provides significantly better fidelity,

since the adaptive pull enables distant peers to maintain

consistency when push is ineffective. The result shows

that the effectiveness of push is crucially dependent on

proper choice of the TTL value for invalidate messages.

The hybrid push-pull approach is less sensitive to the

choice of this value, since it can fall back on the pull

approach for consistency.

4) Impact of Average Number of Active Connections:

In a Gnutella-style network, the average number of

neighbors of a peer (N
avgonn

) is an important factor on

how well the peers are connected. To evaluate this metric,

we vary the average connectivity from 1 to 5 logical links

per peer and measure its impact on the fidelity of push
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and the hybrid push-pull approach. Figure 8 depicts our

results.

From Figure 8, we observe that both the query and

download FVR decrease to zero as N
avgonn

increases

beyond 4. Fewer neighbors indicates a larger diameter

for the network; hence, push becomes less effective when

a peer has fewer neighbors, since invalidates do not

reach some peers. The fidelity improves as the network

connectivity is increased. Like before, this parameter

has less impact on the hybrid push-pull approach. The

approach provides 5 to 10 times better fidelity than

push when N

avgonn

is small. Again, this is because

distant peers can resort to polling when invalidates are

ineffective. We note that the default minimum value of

N

avgonn

in Gtk-gnutella is 4 peers, and our result shows

that this is sufficient for providing good consistency

guarantees in moderate-size P2P networks.
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fidelity

5) Insensitivity to the Query Rate: Our final experi-

ment studies the impact of the query rate on the fidelity.

A higher query rate will result in more downloads and

replication of content. Greater replication can have an

impact on fidelity, especially if the replicated content is

stored at distant peers. We fix the update rate I

update

to one update per second and vary the query rate from

one query per second to one query every 10 seconds.

The resulting FVRs for the hybrid approach is shown in

Figure 9. The figure suggests that the query rate does

not have an impact on the fidelity. Thus, the fidelity

depends on the topology of the network, and for a fixed

topology, is not sensitive to the query rate or the amount

of replication.

In the remaining experiments, we will fix the I
update

to 2 seconds and I
query

to 1 second.
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Fig. 9. Impact of query rate on fidelity

C. Simulation Results for a Dynamic P2P Network

Our experiments for a dynamic network are run with

F

enable

set to TRUE. All other parameters are set to their

default values.

In a dynamic network, peers will frequently leave

and rejoin the network. We simulate this behavior by

incorporating a “failure” process that determines the

lifetime of a peer session; a peer leaves the network

when its session lifetime is exceeded. We simulate this

behavior with three parameters: the maximum offline

ratio, R
f

, which is the maximum percentage of peers

that are disconnected from the network at any given

time; the session lifetime or the time between successive

disconnections, I
f

; and the average duration that a peer

remains offline, D
f

.

When a peer leaves the Gnutella network, it tears

down all connections to its neighbors. This causes each

of its neighbor to lose on of their active connections.

In the scenario where many peers leave the network,

the network may become partitioned. To overcome this

drawback, actual Gnutella implementations [12], [5],

[13] let a peer form new links with other active peers if

a neighbor leaves the network. To simulate this behavior,

we implement a topology checking process that periodi-

cally checks the connectivity of each peer and constructs

new logical links if a peer has fewer neighbors than a

threshold.

1) Impact of Interval Between Successive Topology

Checks: In this section, we study the effects of topology

checking process by varying the I

topohk

values from

5 seconds to 170 seconds. This parameter effectively

determines the delay between a broken connection and
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Fig. 10. Impact of time between successive topology checks on False Valid Ratio

the instant when a new connection is formed by a peer.

Observe that this parameter only impacts push, since

an earlier experiment showed that the connectivity of

the overlay does not impact pull. Hence, we focus on

the push and the hybrid push-pull approach. Figure 10

shows the query FVR and the download FVR for the

two approaches. As shown, the longer the delay for

replacing broken links with new neighbors, the worse the

performance of push. In contrast, the hybrid approach is

unaffected by the topology changes, since the approach

can resort to pulls when invalidates do not reach a peer.

2) Impact of the Dynamics of the Gnutella Network:

To understand the effects of the dynamics of the Gnutella

network, we first vary the fraction of offline peers R
f

from 5% to 50% and measure the impact on the QFVR

and DFVR. As shown in Figure 11(a) and (b), push can

provide better consistency guarantees than a pure pull

approach, even in a dynamic network. The FVRs degrade

as the fraction of offline nodes increases. However, the

hybrid approach outperforms both push and pull, since it

employs a combination of the two and can employ pull

in scenarios where push is ineffective. The approach can

provide good fidelity and is relatively unaffected even

when the fraction of offline nodes is as high as 50%.

Next, we vary the time between successive discon-

nections I

f

. Intuitively, as I

f

increases, fewer nodes

leave the network. The results are similar to the previous

scenario (see Figure12). Push outperforms a pure-pull

approach; both techniques yield better consistency guar-

antees in more stable networks. Like before the hybrid

approach performs well and is relatively unaffected by

the dynamics of the network.

Overall, our results demonstrate that a hybrid push-

pull approach works well in highly dynamic P2P net-

works and can provide good fidelity at a cost that is

comparable to a pure push approach.

D. Results from Prototype Implementation

In this section, we study the implementation overheads

of various operations need for consistency maintenance

in the hybrid push-pull approach. The testbed of our

experiments consists of 18 peers, all of which run on

a cluster of six Linux PCs. Five PCs in our experiment

are 1.5GHZ Pentinum IV with 256MB RAM, the other

PC is a 933MHZ Pentinum III with 512MB RAM,

all of them are interconnected by 100Mb/s switched

ethernet. Each PC runs 3 peers. Each peer shares 50

files to all the other peers. We assume 90% of files

have a lifetime of 1 day, while the other 10% files

have a mean lifetime of 5 minutes. Initially, each peer

caches 10% of the files from other peers. Since our

focus is to study consistency maintenance overheads, we

do not inject any query or download messages. Thus,

the system only sees invalidations and poll messages

from peers for consistency maintenance. We measure

the overhead of various cache consistency operations at

each peer over a 24 hour duration. Table III lists our

results. As shown in the table, the overhead of incoming

poll processing, incoming invalidation processing and

outgoing invalidation processing is very small (in the

order of hundreds of microseconds). Similarly outgoing

poll can be processed efficiently (clearly this overhead

depends on the round trip time of the route to the owner.

These results indicate that our techniques can be

implemented efficiently in a Gnutella P2P file sharing

network.

Event Time(�s)

Incoming Poll Processing 181.827

Outgoing Poll Processing 1356.170(including the net-

work transmission delay)

Incoming Invalidation Processing 150.242

Outgoing Invalidation Processing 265.341

TABLE III

PROTOTYPE IMPLEMENTATION OVERHEADS
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Fig. 11. Impact of maximum offline nodes on False Valid Ratio
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Fig. 12. Impact of time time between successive node disconnections on False Valid Ratio

VI. CONCLUDING REMARKS

While current of peer-to-peer systems share pre-

dominantly static files, we argued that future peer-to-

peer networks will support sharing of files that are

modified frequently by their users. We presented tech-

niques to maintain temporal consistency of replicated

files in a peer-to-peer network. We considered Gnutella

and presented techniques for maintaining consistency

in Gnutella even when peers containing replicated files

dynamically join and leave the network. We presented

extensions to the Gnutella protocol to incorporate our

consistency techniques and implemented them into a

Gtk-Gnutella prototype. An experimental evaluation of

our techniques showed that: (i) a push-based approach

achieves near-perfect fidelity in a stable P2P network, (ii)

a hybrid approach based on push and pull achieves high

fidelity in highly dynamic P2P networks and (iii) the

run-time overheads of our techniques are small, making

them a practical choice for P2P networks.
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