An Observation-based Approach Towards Self-managing Web Servers

Prashant Pradhan, Renu Tewari, Sambit Sahu
Networking Software and Services
IBM T. J. Watson Research Center
Hawthorne, NY 10532
{ppradhan, tewarir, ssahu}@us.ibm.com

Abhishek Chandra, Prashant Shenoy
Department of Computer Science
University of Massachusetts
Amherst, MA 01003
{abhisehk, shenoy}@cs.umass.edu

Abstract—The web server architectures that provide performance isolation, service differentiation, and QoS guarantees rely on external administrators to set the right parameter values for the desired performance. Due to the complexity of handling varying workloads and bottleneck resources, configuring such parameters optimally becomes a challenge. In this paper we describe an observation-based approach for self-managing web servers that can adapt to changing workloads while maintaining the QoS requirements of different classes. In this approach, the system state is monitored continuously and parameter values of various system resources—primarily the accept queue and the CPU—are adjusted to maintain the system-wide QoS goals. We implement our techniques using the Apache web server and the Linux operating system. We first demonstrate the need to manage different resources in the system depending on the workload characteristics. We then experimentally demonstrate that our observation-based system can adapt to workload changes by dynamically adjusting the resource shares in order to maintain the QoS goals.

I. INTRODUCTION

A. Motivation

Current web applications have evolved from simple file browsing to complex tools for commercial transactions, online shopping, information gathering and personalized service. To accommodate this diversity, web servers have become complex software systems performing a variety of tasks from simple HTTP protocol processing to dynamic page assembly and SSL processing. With the advent of web hosting services that require performance isolation and the trend towards service differentiation, the server complexity has further increased as it needs to interact with the operating system mechanisms for resource management.

Numerous mechanisms for service differentiation and performance isolation have been proposed in the literature. Such mechanisms for web servers include QoS-aware extensions for admission control[6], SYN policing and request classification[14], accept queue scheduling [2], and CPU scheduling [3]. These mechanisms enable a web server to differentiate between requests from different classes and provide class-specific guarantees on performance (for instance, by providing preferential treatment to users who are purchasing items at an e-commerce site over users who are merely browsing). One limitation of these QoS mechanisms is that they rely on an external administrator to correctly configure various parameter values and set policies on a system-wide basis. Doing so not only requires a knowledge of the expected workload and the bottleneck resource but also a good understanding of the performance behavior for any change in a parameter’s value. Furthermore, past studies have made contradictory claims about which resources become the bottleneck. For instance, one recent study has claimed that the (socket) accept queue is the bottleneck resource in web servers [2], while another has claimed that scheduling of requests on the CPU is the determining factor in web server performance [3]. Thus, it is not evident a priori as to which subset of QoS mechanisms should be employed by a web server and under what operating regions.

The increasing complexity of the web server architecture, the dynamic nature of web workloads, and the interactions between various QoS mechanisms makes the task of configuring and tuning modern web servers exceedingly complex. To address this problem, in this paper, we develop an observation-based adaptive architecture to make web servers self-managing. By self-managing, we mean mechanisms to automate the tasks of configuring and tuning the resource management parameters so as to maintain the QoS requirements of the different service classes.

B. Research Contributions

This paper focuses on the architecture of a self-managing web server that supports multiple QoS classes—a scenario where multiple virtual servers run on a single physical server or where certain classes of customers are given preferential service. Assuming such an architecture, we make three key contributions in this paper. (1) We conduct an experimental study using the Apache web server to identify bottleneck resources for different web workloads; our study illustrates how the bottleneck resource can vary depending on the nature of the workload and the operating region. (2) Based on the workloads in our study, we identify a small subset of resource control mechanisms—the incoming request queue scheduler and the CPU share-based scheduler—that are likely to provide the most benefits in countering the performance degradation. (3) We then present an observation-based technique to automate the tasks of configuring and tuning the parameters of these OS mechanisms. A key feature of this technique is that it can handle multiple OS resources in tandem. Our architecture consists

This research was carried out when Abhishek Chandra was a summer intern at IBM T.J. Watson.
Of techniques to monitor the workload and to adapt the server configuration based on the observed workload. The adaptation system can adjust to: (i) a change in the request load, (ii) the QoS requirements of the classes, (iii) the workload behavior and (iv) the system capacity. Since the system dynamically monitors to adjust the parameters, it makes no underlying assumption of the workload characteristics and the parameter behaviors (and hence, can handle non-linear operating regions).

We implement our techniques into the Apache web server on the Linux operating system and demonstrate its efficacy using an experimental evaluation. Our results show that we can adjust dynamically to a change in workload, a change in response time goal and a change in the type of workload.

The rest of this paper is structured as follows. Section II presents our experimental study to determine the bottlenecks in the Apache request path. Section III discusses the architecture and kernel mechanisms used to support multiple classes of web requests. Section IV presents our framework to configure and tune the web server. Section V presents the results of our experimental evaluation. Section VI discusses related work, and finally, Section VII present our conclusions.

II. BOTTLENECKS IN WEB REQUEST PROCESSING

In this section, we examine the bottlenecks encountered in the processing of web requests. We use Apache as a representative example of a web server and subject it to a variety of different workloads. For each workload, we determine the bottlenecks in the request path at different operating regions. In what follows, we first present a brief overview of the software architecture employed by Apache before presenting our experimental results.

Apache employs a process-based software architecture. Apache spawns a pool of child processes at startup time, all of which listen on a common port (typically, port 80). A newly arriving request is handed over to one of the children for further processing. The process rejoins the pool after it is done servicing the request and waits for subsequent requests. Apache can vary the size of the process pool dynamically depending on the load. A limit is imposed on the maximum number of concurrent Apache processes through a statically defined parameter, MaxClients (to prevent memory exhaustion and thrashing in the system). Once this limit is reached, no additional children are spawned and newly arriving requests must wait for an existing child to become idle before getting serviced. With this background, we now present the results of our experimental study to determine the bottlenecks in the Apache request path.

The testbed for our experiments consists of an unmodified Apache server running on a Pentium III PC with 512MB RAM and Redhat Linux 7.1. The client workload is generated using an off-the-shelf web workload generator—httpperf [11]—that can emulate various kinds of workloads (e.g., persistent HTTP, SSL encryption) and different request rates. All machines were interconnected by a 100 Mb/s Ethernet switch on a lightly loaded network.

We instrumented the Linux kernel to measure various parameters that affect the performance of web requests, namely (i) the length of the socket accept queue and the time spent by an incoming request in the accept queue, (ii) the amount of CPU time spent in servicing a request, and (iii) the time spent by a request waiting in the CPU run queue. Other metrics such as the network transfer time and the end-to-end response time were measured at the client using httpperf. Unless specified otherwise, all kernel and Apache configuration parameters were set to their default values. The only (kernel) parameter that was modified was the maximum length of the accept queue, which was increased from its default value of 128 to 65536 (this was done to avoid TCP SYN packet drops due to accept queue overflow at heavy loads).

For this setup, we examined the performance of Apache for the following workloads: (i) static web requests over non-persistent HTTP connections, (ii) static web requests over persistent HTTP connections, (iii) static requests using SSL encryption, and (iv) dynamic requests using Apache’s CGI scripting. Whereas the first two workloads are I/O-intensive, the last two are predominantly CPU-intensive. Due to the memory sizes on our machines, we observed that the OS buffer cache was able to easily cache popular files in memory, and hence, most requests were serviced directly from the cache and did not result in disk I/O. Because of this, we find that I/O time is independent of the load and depends only on the file size, and hence, do not report it in our results.

We now present our experimental results. Due to space constraints, we present detailed results only for two scenarios (persistent HTTP and SSL processing).

Static Web Requests using Persistent HTTP: In this experiment, we configured httpperf to use persistent HTTP connections and to request multiple (static) files over the same connection. We increased the connection rate and observed its impact on the web server and client performance. As shown in Figure 1(a), at low loads, Apache can easily handle all incoming connections (and requests over those connections); requests do not incur any significant delays in the socket accept queue or the CPU run queue. Note that the persistent nature of each connection causes each Apache process to keep the client connection open for a timeout duration waiting for subsequent requests (which delays its return to the idle process pool). Hence, as the load increases, Apache spawns additional child processes to service newly arriving connections until the MaxClients limit is reached (MaxClients was set to 50 in this experiment). Beyond this point, the accept queue delay increases rapidly and becomes the dominant factor of the total response time (this is because a newly arriving connection must now wait in the accept queue until an Apache process is freed). Figure 1(a) also shows that the CPU service time and the CPU run queue delay are relatively constant, indicating that most Apache processes are waiting for requests over persistent connections, rather than actively servicing requests. This indicates that the accept queue is the bottleneck resource in this scenario, while the CPU is under-utilized.

1 This assumption does not hold for scenarios where, for instance, a web request triggers a query in a backend database server; however, such scenarios are outside the scope of this paper, given our focus on web server performance.
Static Web Requests using SSL Encryption: In this experiment, we configure httperf to request static files using SSL encryption over non-persistent HTTP connections. The SSL protocol involves public-key authentication and key exchange during connection setup, after which it uses symmetric key encryption for transmitting data over the connection. Due to the computational overhead involved in encrypting data, this is a CPU-intensive workload. Similar to the previous experiment, we increase the client request rate and measure its impact on server performance. Figure 1(b) depicts our results. The figure shows that the CPU run queue waiting times increase steadily with the load—the larger the CPU load, the greater is the time a request needs to wait in the run queue before it can be scheduled on the CPU (since the CPU is busy servicing other requests). The figure also shows that the CPU run queue delay dominates the server response time. Observe that the CPU service time of a request is independent of the load, since the time to service a request (e.g., encrypt data) depends only on the request size. The figure also shows that the accept queue delay is initially small and then increases rapidly beyond a certain load. This is because the CPU saturates at those loads, causing newly arriving requests to wait in the accept queue until an Apache process can be scheduled on the CPU to accept the connection. At very heavy loads, the MaxClients limit is reached, further adding to the accept queue delay. Thus, our experiment indicates that the CPU is the primary bottleneck in this scenario. Although the accept queue delays are significant, this is primarily due to the saturation of the CPU, which applies back-pressure on the accept queue.

Together, these experiments indicate that depending on the workload and the operating region, different resources can become bottlenecks in the request path. This indicates that a web server needs to intelligently detect these scenarios and manage these resources accordingly.

Fig. 1. Bottleneck resources for different workloads

III. ADAPTIVE QoS ARCHITECTURE

Our experimental study in the previous section highlighted that different resources could become the bottleneck based on the workload characteristics. Based on these insights we choose a small set of kernel mechanisms to control these resources via dynamic resource scheduling. In this paper we target two resources—the accept queue and the CPU—that most affected server performance for our selection of workloads, to highlight the need for multi-resource adaptation. Observe that our goal is not to design new resource control mechanisms; rather it is to pick existing mechanisms in current commercial or open-source operating systems and build an adaptive framework to parameterize and control these mechanisms.

We assume that the web server supports multiple classes of requests (also referred to as service classes) each with its specified QoS requirement. In this paper we consider class-specific response time as the default QoS metric. Throughput is another concern that can be controlled, but discussion of such metrics is beyond the scope of this paper. To control the performance offered to requests within each class, we employ an adaptive QoS architecture that consists of three main components.

- Kernel resource controllers: The two resources, the
socket’s accept queue and the CPU run queue, are controlled by a proportional-share scheduler to meet the performance goals of different service classes. Specifically, we use a weighted fair queuing scheduler for the accept queue, and the hierarchical start-time fair queuing (HSFQ) scheduler for the CPU. A SYN classifier is used to classify incoming TCP connections into their service classes.

- Monitoring framework: The monitoring framework continuously obtains measurements from the system for each resource, and each class, which are used by the adaptation engine. Examples of these measurements include per-class delays, request service times and resource utilization.

- Adaptation engine: The adaptation engine uses an observation-based approach to adjust the resource allocations for each class based on the monitored performance and the desired QoS goal. The adaptation progresses on two levels—a local, per-resource level and a global one across resources.

Figure 2 illustrates the interactions between these components. The kernel performs early demultiplexing and classification of incoming TCP (SYN) packets and adds the request to a class-based accept queue that employs a weighted fair queuing scheduler to determine the order in which requests are accepted by the Apache processes. The web server process is attached to the corresponding CPU service class of the request and scheduled by the HSFQ CPU scheduler. The adaptation engine adjusts the share values of the classes in both the resources based on the monitored performance.

In what follows, we first describe the kernel mechanisms used in our adaptive QoS architecture and then describe the monitoring framework and the adaptation algorithms.

A. SYN Classifier

The SYN classifier uses the network packet headers (IP address and port number) to perform classification of incoming requests into different service classes based on the classification rules. In [14] there is a description of how to extend the classification within the kernel to include application headers. The classifier includes mechanisms for admission control via SYN policing, however, we do not focus on the admission control aspects in this paper. In our prototype on Linux, the `iptables` command is used to insert and delete rules in the kernel packet filtering tables. These filters are maintained by the `netfilter` framework inside the Linux kernel [1].

B. Accept Queue Scheduler

For a new incoming request, after the three-way TCP handshake is complete, the connection is moved from the SYN queue (called the partial-listen queue in a BSD-based stack) to the listening socket’s accept queue. Instead of a single FIFO accept queue for all requests, our architecture employs a separate accept queue for each service class. Requests in these queues are scheduled using a work-conserving weighted fair queuing accept queue (WFFAQ) scheduler. The scheduler controls the order in which requests are accepted from these queues for service by the web server processes. The scheduler allows a weight to be assigned to each class; the rate of requests accepted from a class is proportional to its weight. Thus, the weight setting of a class allows us to control its delay in the accept queue. As soon as an Apache process becomes idle, a request is dequeued from one of the class-specific accept queues in accordance with their weight assignments. Thus, the Apache process pool is not statically partitioned across classes. WFFAQ is a work-conserving scheduler—an Apache process will not idle if there is a request in any one of the accept queues. If a queue is empty, the unused allocation of that class is proportionately redistributed among other classes.

C. CPU scheduler

Traditionally, the CPU scheduler on Unix-based systems schedules application processes using a time-shared priority based scheduler. The scheduling priority depends on the CPU usage of the process, the I/O activity, and the process priority.

To achieve the desired response time goal of a class and provide performance isolation, we use a hierarchical proportional-share scheduler that dynamically partitions the CPU bandwidth among the classes. Specifically, we use the hierarchical start-time fair queuing (HSFQ) [8] scheduler, to share the CPU bandwidth among various classes. HSFQ is a hierarchical CPU scheduler that fairly allocates processor bandwidth to different service classes and uses a class-specific scheduler for processes within a class. The scheduler uses a tree-like structure with each process (or thread) belonging to exactly one leaf node. The internal nodes implement the start-time fair queuing (SFQ) scheduler that allocates weighted fair shares, i.e., the bandwidth allocated to a node is in proportion to its weight. Unused bandwidth is redistributed to other nodes according to their weights. The properties of SFQ, namely: i) it does not require the CPU service time to be known apriori, and ii) it can provide provable guarantees on fairness, delay and throughput received by each process (or thread), make it a desirable proportional-share scheduler for service differentiation.

In our implementation, we use only a 2-level hierarchy (consisting of the root and various service classes).

D. Monitoring Framework

The monitoring framework continuously obtains measurements on the state of each resource and class that are used by the adaptation engine. These measurements can be broadly categorized into per-class, or local measurements, and resource-wide, or global measurements. Examples of local measurements include per-class delays in a resource, per-class request arrival rates, or the work required by a class’s requests in a resource. Examples of global measurements include resource utilization, or global queue lengths.

The monitoring subsystem is essentially a set of kernel mechanisms to extract measurements from each of the resources managed by the adaptation framework. As an example, we briefly describe the per-class delay measurement implemented
This figure illustrates that (i) the delay-share relationship may
mentioned above is discussed in more detail in [13]. Fig-
behaviors. The differences of this approach from the others
is most suited for handling varying workloads and non-linear
relationship between resource parameters and the QoS goal.
A system call interface is used to allow the adaptation algo-
command to perform monitoring as well as resource control. We
added an ioctl like system call, syscallmultisch(), to the
Linux kernel for this purpose. syscallmultisch() takes as
arguments a command and some command-specific arguments.
The commands allow the local class-specific values and global
resource values to be queried or updated.
Operationally, two timers are used, viz a monitoring timer and an
adaptation timer. The values are measured by the moni-
monitor every monitoring instant, or “tick”, where the time-interval
per tick, \(T_m\), is a configurable value. The time-interval bet-
tween the adaptation instants, \(T_a = kT_m\), i.e., an adaptation
instant happens after multiple monitoring instants, or every k
ticks. The measured values over the k ticks are averaged to give
the current value at the start of a new adaptation instant.
The value at the previous adaptation instant is exponentially aver-
ged using a weighting factor \(\alpha\). For a resource parameter \(a\),
whose exponentially averaged value in the last cycle was \(a_{prev}\)
and the new set of values at the start of the current adaptation
instant were \(a_1, a_2 \ldots a_k\), the new value, \(a_{cur}\) is given by
\[
a_{cur} = \alpha \cdot a_{prev} + (1 - \alpha) \cdot \frac{\sum_k a_i}{k}, \quad (0 \leq \alpha \leq 1)
\]

IV. ADAPTATION ENGINE

The adaptation engine builds upon the monitoring, schedul-
and control infrastructure described in the previous section.
Based on the measurements at the monitoring agent, the adap-
tation algorithm computes and sets new shares and weights in the
schedulers in order to meet the QoS goals of each class.

A. Adaptation Techniques

There are three general approaches that can be used to build
an adaptation framework: (i) a control theoretic approach with a
feedback element, (ii) an open-loop approach based on a queu-
ing model of the system, and (iii) an observation-based adaptive
system that uses run-time measurements to compute the rela-
tionship between resource parameters and the QoS goal.
We chose an observation-based approach for adaptation as it
is most suited for handling varying workloads and non-linear
behaviors. The differences of this approach from the others
mentioned above is discussed in more detail in [13]. Fig-
ure 3 depicts how delay may vary with share assigned to a
class (the share for a class translates to its resource utilization).
This figure illustrates that (i) the delay-share relationship may
change with the request arrival rate \(\lambda_i\) (as depicted by the two \(\lambda\)
curves), and (ii) the delay-share relationship is non-linear even
when the request rate remains the same. The basic idea in our
observation-based approach is to approximate the non-linear re-
lationship between the delay of a class and its share (or weight),
by multiple piece-wise linear parts. The algorithm continuously
keeps track of the current operating point of each class on its
delay-share curve. It is important to note that our technique
does not assume any a priori knowledge of the curve in Fig. 3;
rather it is only aware of various operating regions that the sys-
ystem visits, which are then approximated in a piece-wise linear
fashion. Thus, the observation-based approach depends on run-
time adaptation, not requiring any training phase, and hence is
well-suited for highly variable and dynamic workloads. The
observation-based adaptation proceeds on two levels—a local
per-resource adaptation and a global system-wide adaptation.
The next two sections describe the adaptation algorithm in de-
tail.

B. Resource-specific Local Adaptation

The local adaptation algorithm of each resource needs to en-
sure that each class achieves its QoS (in this case response time)
goal for that resource. For each class \(i\), let \(D_i\) represent its de-
sired response time and \(d_i\) be its observed average delay in that
resource. Furthermore, for each class \(i\), the algorithm maintains
an estimate of the slope, \(m_i\) of its delay-share (or delay-weight)
curve at the current operating point. The adaptation algorithm
tries to adapt the share of each class, \(w_i\), such that the delay
value \(d_i\), lies in the range \([1 - \epsilon]D_i, (1 + \epsilon)D_i\]. The adapta-
tion proceeds in the following four steps.
Determining class state: At every adaptation instant, the lo-
cal adaptation engine computes the current value of \(d_i\) from
the monitored values, as described in Section III-D. At every
adaptation instant, the algorithm checks whether each class is
missing its local response time goal by comparing the values of
\(d_i\) and \(D_i\). A class that is missing its goal i.e., \(d_i \geq (1 + \epsilon)D_i\)
is called an underweight class. Similarly, a class that is more
than meeting its goal, i.e., \(d_i \leq (1 - \epsilon)D_i\) is called an over-
weight class. Other classes that have their delay within the
range of the desired delay are called balanced classes. The
underweight classes are ordered to determine the most under-
weight class. The algorithm tries to borrow shares from the
overweight classes such that the most underweight class becomes balanced. This redistribution step, however, must ensure that the overweight classes are not over compensated to make them underweight as a result.

Redistribution: For redistributing the share across classes, the algorithm needs to quantify the effect of changing the share allocation of a class on its delay. This is computed by using the slope estimate m_j, at the current operating point on the delay-share curve. The total extra share needed by an overweight class j is given by $\Delta w_j = \frac{w_j - D_j}{m_j}$, as shown in Figure 3. The extra share required by the underweight class is not equally distributed among the overweight classes. Instead, the amount of share that an overweight class can donate is based on its sensitivity to a change in share. There are two factors that affect the sensitivity of an overweight class j: (i) its delay slack given by $(D_j - d_j)$, which measures how much better off it is from its desired delay goal, and (ii) the current slope of its delay-share curve m_j, which measures how fast the delay changes with a change in share. Based on these factors, the surplus s_j, for an overweight class j is given by

$$s_j = \frac{(D_j - d_j)}{m_j}$$

The surplus of each overweight class is proportionally donated to reduce the likelihood of an overweight class becoming underweight. The donation, donation_j, of an overweight class is a fraction of the required extra share weighted by its surplus, and is given by

$$\text{donation}_j = \Delta w_i \cdot \left(\frac{s_j}{\sum_k s_k} \right)$$

Before committing these donations, we must check that the new delay value does not make the overweight class miss its delay goal. Based on the slope m_j, we can predict that the new delay value of the overweight class would be given by

$$d_j' = d_j + m_j \cdot \text{donation}_j$$

If the new delay value misses the delay goal, i.e., $d_j' \geq (1 + \epsilon) D_j$, the donation is clamped down to ensure that new delay is within the range of the desired delay. The clamped donation is given by

$$\text{clamped donation}_j = \frac{[(1 - \epsilon) \cdot D_j - d_j]}{m_j}$$

The actual donation of an overweight class is, therefore,

$$\text{actual donation}_j = \min\{\text{donation}_j, \text{clamped donation}_j\}$$

The total donation available to the underweight class i, which is the sum of the actual donations of all the overweight classes, i.e., $\sum_j \text{actual donation}_j$, is never greater than the required extra share Δw_i.

One underlying principle of the redistribution step is that the overweight classes are never penalized more than required. This is necessary because the slope measurements are accurate only in a localized operating region and could result in a large, but incorrect, surplus estimate. When workloads are changing gradually, it is most likely that the extra share requirements of an underweight class will be small, thereby, making the proportional donation of the overweight classes to be smaller.

Gradual adjustment: Before committing the actual donations to the overweight and underweight classes, the algorithm relies on gradual adjustment to maintain stability. This is another hook to ensure that there are no large donations by the overweight classes. A large donation could change the operating region of the classes which would make the computations based on the current slope value, incorrect.

Hence, we perform gradual adjustment by only committing a fraction $\beta \ (0 \leq \beta \leq 1)$, of the computed actual donation, which is given by,

$$\text{commit donation}_j = \beta \cdot \text{actual donation}_j$$

The algorithm commits the new shares (or weights) to all the involved classes by using the resource control hooks described in Section III-D.

Setting: After committing the donations, the adaptation algorithm delays the next adaptation instant, by scaling the adaptation timer, to allow the effect of the changes to settle before making further adaptation decisions. We keep the adaptation cycle short during stable states to increase responsiveness and only increase it when settling is required after a change to increase stability.

The committed donations change the current operating points of the involved classes along their delay-share curves. At the next adaptation instant, the algorithm measures the actual observed change in the per-class delays, and uses these values to obtain updated values of the slope m_j for each class. The updated m_j values are used in the above adaptation equations whenever adaptation is performed next.

C. System-Wide Global Adaptation

The system-wide global adaptation algorithm maps the overall response time goals for each class to local response time goals for each resource used by that class. One approach is to use the same value for both system-wide response time goal and the local goal per resource. Although this is a nice choice for initial values, it can reduce performance when different classes have a different bottleneck resource. The main intuition behind our utilization-based heuristic for determining local goals is to give a class a more relaxed goal in its bottleneck resource, i.e., the resource where the class requirements are high relative to the resource capacity.

To determine the per-class resource utilization of the global adaptation engine, at every adaptation instant, uses the monitored values of the work required $C_{i,j}$, by each class i using resource j, and the total capacity C_j of each resource j. While the capacity may be a fixed constant (e.g., MIPS in the case of CPU, for the accept queue it is the measured process regeneration rate of the web server, i.e., the rate at which connections are accepted from the accept queue.}

The committed donations change the current operating points of the involved classes along their delay-share curves. At the next adaptation instant, the algorithm measures the actual observed change in the per-class delays, and uses these values to obtain updated values of the slope m_j for each class. The updated m_j values are used in the above adaptation equations whenever adaptation is performed next.

C. System-Wide Global Adaptation

The system-wide global adaptation algorithm maps the overall response time goals for each class to local response time goals for each resource used by that class. One approach is to use the same value for both system-wide response time goal and the local goal per resource. Although this is a nice choice for initial values, it can reduce performance when different classes have a different bottleneck resource. The main intuition behind our utilization-based heuristic for determining local goals is to give a class a more relaxed goal in its bottleneck resource, i.e., the resource where the class requirements are high relative to the resource capacity.

To determine the per-class resource utilization of the global adaptation engine, at every adaptation instant, uses the monitored values of the work required $C_{i,j}$, by each class i using resource j, and the total capacity C_j of each resource j. While the capacity may be a fixed constant (e.g., MIPS in the case of CPU, for the accept queue it is the measured process regeneration rate of the web server, i.e., the rate at which connections are accepted from the accept queue.}

The committed donations change the current operating points of the involved classes along their delay-share curves. At the next adaptation instant, the algorithm measures the actual observed change in the per-class delays, and uses these values to obtain updated values of the slope m_j for each class. The updated m_j values are used in the above adaptation equations whenever adaptation is performed next.

C. System-Wide Global Adaptation

The system-wide global adaptation algorithm maps the overall response time goals for each class to local response time goals for each resource used by that class. One approach is to use the same value for both system-wide response time goal and the local goal per resource. Although this is a nice choice for initial values, it can reduce performance when different classes have a different bottleneck resource. The main intuition behind our utilization-based heuristic for determining local goals is to give a class a more relaxed goal in its bottleneck resource, i.e., the resource where the class requirements are high relative to the resource capacity.

To determine the per-class resource utilization of the global adaptation engine, at every adaptation instant, uses the monitored values of the work required $C_{i,j}$, by each class i using resource j, and the total capacity C_j of each resource j. While the capacity may be a fixed constant (e.g., MIPS in the case of CPU, for the accept queue it is the measured process regeneration rate of the web server, i.e., the rate at which connections are accepted from the accept queue.
Let D_i be the global response time goal of class i, and $D_{i,j}$ be the the local response time goal of class i in resource j. The sum of the local response time goals should equal the system-wide goal. The local value depends on the utilization $u_{i,j}$, for the class i in resource j, which is given by, $u_{i,j} = \frac{\lambda_{i,j}}{C_{j}}$. Using the utilization value, the global response time goal is proportionally allocated between the resources, to give the local response time goals for each class, i.e.,

$$D_{i,j} = D_i \cdot \left(\frac{u_{i,j}}{\sum_k u_{i,k}} \right)$$

A utilization-based deadline splitting approach has also been used in [7], however, their optimization goal is to balance resource utilization. Our intent, instead, is to examine the workload of each class in isolation and relax the goal in the bottleneck resource for that class.

V. Experimental Evaluation

In this section we evaluate the effectiveness of our system’s per-resource and global adaptation algorithms in providing response time guarantees under varying workload conditions. We first demonstrate adaptation of the two system resources—accept queue and CPU—in isolation. We study adaptation behavior for workloads with both deterministic and Poisson request arrival distributions. As deterministic workloads do not generate significant queuing delays in systems that are not overloaded, we consider only CPU adaptation with this type of workload.

We demonstrate the adaptation behavior of the observation-based approach for: i) changes in workload arrival rates that shift the operating region, ii) changes in response time goals of the classes that can change within a resource based on global system state, and iii) change in workload characteristics that shift the resource bottlenecks.

After evaluating adaptation for each resource along the above dimensions, we evaluate system-wide global adaptation that implements the adaptation machinery for both resources, and adjusts resource allocations in the appropriate resource depending upon the current system workload, current resource utilizations, and the global response time goals.

A. Experimental Testbed

The experimental testbed consists of a server machine running a kernel with the adaptation mechanisms and algorithms, and two client machines that generate workload. The server is a 660 MHz P-III machine with 256 MB RAM and runs Linux 2.4.7. Each client machine is a 450 MHz P-II with 128 MB RAM, also running Linux 2.4.7. The machines are connected by a 100 Mbps Ethernet. The server runs Apache 1.3.19 with SSL support enabled. The MaxClients parameter of Apache was set to 150 processes.

The server kernel was modified to implement monitoring, scheduling and control mechanisms for the accept queue and the CPU, as discussed in Section III. These mechanisms form the building blocks for the adaptation algorithm described in Section IV.

The workload generator used at the clients was httperf [11]. To stress different resources in the system we use two kinds of workloads, i.e., CGI workload and SSL workload. In CGI workload, a CGI script is used that blocks for a variable time duration before returning a response. This models blocking for a back-end database request that reduces the Apache process regeneration rate, thereby, stressing the accept queue without loading the CPU. The SSL workload models a CPU-intensive workload, which does not stress other resources in the system for moderate request rates.

In the experiments that follow, the monitoring framework records the measurements every system “tick” whose value is set to be 5 seconds. For deterministic workloads, adaptation is triggered every 10 ticks in the stable state. In case of Poisson workloads, where the delays show significantly more deviation about their mean, adaptation is triggered every 40 ticks to avoid over-reaction to transient delays. To allow the system to settle after a share is changed, the adaptation interval is increased by a factor of 2.

B. CPU Adaptation

For evaluating the adaptation behavior of the CPU, we choose SSL requests as the CPU-intensive workload. The clients request an SSL-encrypted file from the server at a given rate. At the server, response time goals are specified for two classes. In each experiment, we start with an equal share allocation to each class.

Figure 4 illustrates the results of CPU share adaptation with a varying workload request rate and a deterministic arrival distribution. The CPU target delay for both classes was 0.1 seconds. Clients of both classes generate a combined aggregate workload of 12 SSL requests/sec. The fraction of the requests of each class coming from every client was varied from 1:1 to 1:2 to 1:1 to 2:1, with the transitions occurring at 100 ticks, 500 ticks, and 900 ticks respectively. Figure 4(a) shows that adaptation was successfully triggered in each case such that the response time of each class was close to its goal. Figure 4(b) plots the relative shares assigned to each class. As the figure shows, share of class 1 was increased at the first transition to handle its increased load. This share could be borrowed from class 0 because it had a reduced load. The desired behavior in CPU share allocation was observed at every workload transition.

Figure 5 illustrates the results of CPU share adaptation with varying response time goals and a deterministic arrival distribution. Both clients send requests at the rate of 6 SSL requests/sec. Initially the goals of both classes were set to be equal. After 100 ticks, the response time goal of class 0 and 1 was changed to 0.05 seconds and 0.15 seconds respectively. After 500 ticks, the response time goal for these classes was reversed. Note that this reversal causes a large relative change in the response time goals. We use this to stress the adaptation algorithm and verify that large changes do not send the system into oscillations. Figure 5(a) plots the average per-class delays and demonstrates the adaptation to the changes, whereas 5(b)
shows the CPU share adjustments performed by the adaptation algorithm.

Next we study the effectiveness of the adaptation algorithm using a workload with Poisson request arrivals. Both clients generate requests whose arrival is Poisson distributed with mean 6 requests/sec. During the first 200 ticks, the queue length is allowed to settle, and adaptation does not trigger during this period. Then, at 200 ticks, class 0 is given a goal of 0.25 seconds, whereas class 1 is given a goal of 1 second. At 600 ticks, these goals are reversed, which is again a large relative change. Figure 6 shows the adaptation results. Figure 6(a) plots the average delays that are seen by the adaptation algorithm while making adaptation decisions. The weight adjustments made by the algorithm are shown in figure 6(b).

C. Accept Queue Adaptation

For evaluating accept queue adaptation behavior, we use the CGI workload as described earlier. Note that since the only kind of delay in the accept queue is the queuing delay, only workloads with Poisson-distributed arrivals are relevant. Figure 7 shows the accept-queue share adaptation for varying response time goals. Both classes of clients generate requests whose arrival is Poisson distributed with a mean of 24.6 requests/sec. During the first 400 ticks, the queue length is allowed to settle. During this period, the response time goal is kept at a high value for both classes, so that adaptation does not trigger. Then, at 400 ticks, class 0 is given a goal of 0.05 seconds, whereas class 1 is given a goal of 0.15 seconds. At 900 ticks, a large relative change is made by reversing these goals. Figure 7(a) plots the average per-class delays and figure 7(b) shows the accept queue share adjustments. As can be seen from the graphs, the adaptation algorithm changes the shares for the classes to meet their delay goals. We do not show the initial 400 ticks of the experiment, as there is no adaptation taking place there.

D. System-Wide Adaptation

In this experiment we demonstrate the combined adaptation of both resources when a change in the type of workload shifts the bottleneck resource.

For the experiment shown in Figure 8, the clients alternate between CGI and SSL workloads. To keep the delay values in each resource comparable, we use a combination of an SSL workload with deterministic arrivals and a CGI workload with Poisson arrivals. Figures 8(a) and (b) plot the average CPU delay and the average accept queue delay respectively, for each class.

The experiment proceeds in three phases. From 0 to 400 ticks, the clients generate SSL requests at the rate of 6 requests/sec. No adaptation is triggered for the first 100 ticks to allow the system state to stabilize. At 100 ticks, the global response time goal of class 0 is set to 0.05 seconds and that of class 1 is set to 0.15 seconds. For the rest of the experiment these global target delays are kept fixed. As seen in these figures, the accept queue delay is negligible (around 0.002 secs) for the first 400 ticks since the workload is CPU-intensive. Hence, the entire delay budget is available to the CPU. As the graph shows, the CPU shares adapt to provide each class with their target delay values.

Between 400 to 800 ticks, the clients switch from an SSL workload to a CGI workload with a request rate of 24.6 requests/sec each. This reduces the CPU delay to a negligible value (around 0.0002 seconds) but ramps up the accept queue delay. Most of the delay budget for each class is now available for the accept queue. The accept queue adaptation algorithm responds by adjusting shares to achieve the target delays.

Finally, from 800 to 1200 ticks, the clients switch back to an SSL workload, thus making the CPU the bottleneck resource again. Moreover, the request rates of the clients are also changed to 4 requests/sec and 8 requests/sec respectively. Once again, as shown in the graphs, the accept queue delay becomes negligible while the CPU scheduler parameters are adjusted to help the classes achieve their goal.

VI. Related Work

Several research efforts have focused on the design of adaptive web servers. A control theoretic approach for adaptation has been proposed in [2], [10], [15]. This approach involves a training phase using a given workload to perform system identification, based on which a controller is designed that assumes
a linear relationship between the QoS metric and the scheduler parameters. Unlike this effort, we employ an alternate observation-based approach for adaptation. Since delay is not linearly related to the share parameters of proportional-share schedulers, and the system model changes with variations in the workload, we perform adaptation by measuring the system state on a continual basis and adapting based on the current operating region. Thus, system identification is an ongoing process in our system, and while we assume linearity around a particular operating point, the operating region as a whole can be non-linear.

A number of recent and ongoing research efforts ([4], [6], [9]) have looked at various aspects of providing QoS support for web servers. These efforts have proposed techniques for admission control, coarse-grained resource allocation and mechanisms for service differentiation. The focus of our work is not to design new scheduling or resource management mechanisms per se, rather it is to design an adaptive framework to effectively parameterize existing mechanisms, and our intention is to provide fine-grained allocation of multiple resources.

To achieve performance guarantees on a web server, vari-
ous predictable resource management mechanisms developed for the host operating system ([5], [8], [12], [14]) can be used. Our work is complementary to the development of such mechanisms. In fact, we assume the existence of such mechanisms and show how to automate the task of parameterizing these mechanisms to achieve self-manageability in the system.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an observation-based approach for self-managing web servers that can adapt to changing workloads while maintaining the QoS requirements of different classes. First, we illustrated the need to manage different resources for different kinds of workloads. Later, we described an adaptation framework of different classes. Later, we described an adaptation framework which monitors the system state continuously and adjusts the various resource parameters to maintain the response time requirements of different classes. The key contributions of our work are (i) development of an adaptation technique for controlling multiple resources dynamically, and (ii) accounting for the non-linear relationship between the system parameters and the QoS goals.

As part of an ongoing effort, we are extending the scope of the adaptation architecture to include other system resources such as disk arrays, network interfaces, etc. This includes integrating the adaptation system with the admission controller. In future we plan to investigate more varieties of web workloads and server architectures, in particular, workloads that involve accessing a back-end server and multi-tier server architectures that include a web server, an application server and a back-end database. We would also like to explore the possibilities of using our adaptation technique in other self-managing scenarios such as large storage systems, database systems, etc.

Overall, we believe that an observation-based approach is a useful technique to adapt to unpredictable loads and other system factors, and our techniques show how this approach can be applied in a web server environment.

VIII. ACKNOWLEDGEMENTS

We would like to thank Douglas Freimuth for helping us with our experimental setup. Prashant Shenoy was supported in part by NSF grants CCR-9984030, CCR-0098060, EIA-0080119 and an IBM Faculty Partnership award. We would also like to thank the anonymous reviewers for their insightful comments.

REFERENCES