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Sleep Disorder, a Public Health Concern

/-9 hours of sleep every night is most ideal - National Sleep Foundation

67% of adults have sleep disturbances at least once every night - phiips Global Sleep Survey, 2019

Sleep disorder include insomniaq, breathing disorder

Risk factors associated with performance and cognitive deficits

Polysomnography
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Sensing Sleep Passively Without a Wearable
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Proposed Solution
Neither directly nor actively from user device
Network traffic to observe device behavior
Device behavior to infer user behavior

User behavior to predict sleep duration
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3 Missing Data
- Coarse-grained
- Naturally limits fine-grained capabilities (e.g., sleep stages, quality)
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System Overview

Raw WiFi
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Feature Extractor

sampled every minute

Random Forest

Training
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User Study

Research Questions:

1. How accurate is SleepMore compared to state-of-the-art wearable, the Oura Ring?

2. How is sensing multiple devices better than single-device prediction?

Parficipants Clinical assessment 1 month Data collection

Mental health and sleep apnea
« Beck’s Anxiety Inventory

« Beck’s Depression Inventory
« Berlin Questionnaire

« (Students only)

Device MAC
addresses

Ouraring (gen 2) as
baseline and
manually-reported
sleep logs

lé On-campus Family in private
student residents residence
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SleepMore’s Performance

B Accuracy BERecall BPrecision
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ML Classification Sleep duration in minutes
Bedtime error: 15-28 mins Insignificantly difference

Wake time error: 7-29 mins from Oura Ring (p>.1)



Results: Similar to Oura
(no statistics difference p>.1)

Oura (mins) SleepMore (mins)

Median 404 430
Mean 400 426
Mode 428 428
Ql 358 389
Q3 448 471
Min 240 210
Max 680 641
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No. of Network Events

Data/Prediction for One User
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Split-like Sleep Behavior

Oura Ring (gen 2) WAS NOT equipped with a nap detection
feature at the time of the study
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One vs. More Devices

B Accuracy B Recall B Precision
93.9
1.1 90.5
89.3 84 86.3 851 89.6
I | I III

Smartphone only Smartphone + 1 device Multiple Devices

Monitoring more devices

More device the better does not add to the cost
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Key Takeaway

Complements wearable sensing methods to enable longitudinal monitoring

Predictions with <= 5% uncertainty threshold make up 80% of the results
« 93% Accuracy, 0% Recall, 89% Precision
* Predicted Bedtime between 15-28 minutes error

* Predicted Wake time between 7-29 minutes error

Trialed on student residents of campus housing

« Also tested student model on private home residents

Ongoing effort in extending system to predict sleep quality

» Privacy-preserving audio signal processing techniques

camellia.zakaric@utoronto.ca
contact for study inquiries
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