UMassAmherst | Manning College of Information & Computer Sciences

Dělen: Enabling Flexible and Adaptive Modelserving for Multi-tenant Edge Al

Qianlin Liang, Walid A. Hanafy, Noman Bashir, Ahmed Ali-Eldin, David Irwin, Prashant Shenoy

[05/11], 2023

Al-based IoT applications are becoming pervasive

- Many IoT applications requires lowlatency processing.
- Edge computing has emerged as the preferred architecture.
- Edge AI provides many benefits:
 - Latency
 - Bandwidth
 - Privacy

Motivations: adaptive model serving at the edge

Multi-tenant: sharing constrained resources across workloads.

Workload dynamics: potential bursty workloads.

Energy dynamics: energy constraints due to limited energy availability.

Objectives

Design an edge model-serving system that is:

- *Multi-tenant*: share resources across multiple workloads.
- Flexible: satisfy a wide range of application SLOs.
- Adaptive: handle potential workload and energy dynamics.
- Lightweight: run on low-end devices.

Outline

Dělen Design

- Dělen Evaluation
- Conclusion

Introduce to multi-exit DNNs

- Multi-exit DNNs[1] incorporate several exits points.
- Outputting at early exits will skip the execution of the rest of the network.
- Enable making trade-offs between accuracy, latency and energy.

Time: 10 ms

Accuracy: 60%

Time: 25 ms Accuracy: 80%

Conditional Execution Framework

- A mechanism to provide applications with a configurable execution criteria.
- Flexible in supporting a wide range of exit criteria for application objectives.
- Adaptive in allowing applications to change their exit criteria at runtime.

Conditional Execution Framework

- Make adaptation by specifying and combining criteria.
- Flexible to implement a wide range of policies.
 - Application-specific policies.
 - Multi-tenant policies.

Metrics	Operators
Response time	>
Confidence	==
Accuracy	<
Energy	OR
FLOPs	AND

Dělen exit-selection criteria

Pareto Adaptation Policy

- Idea: Opportunistically choose early exits when confident.
- Problem: Choosing the right confidence threshold is crucial.
- Method: Optimize metrics with Pareto Frontier from workload profiles.

Multi-tenant Adaptation

- Enable support for multi-tenancy.
- Adapt to the change of shares and update the criteria accordingly.
- Multi-tenant policies
 - Cooperative
 - Non-cooperative

Outline

Introduction

Dělen Design

P Dělen Evaluation

Conclusion

Dělen Implementation

Hardware

- Nvidia Jetson Nano
- 18650 Li-lon Battery

Software:

- TensorRT 7.1.3
- CUDA 10.2
- PyTorch 1.9

Workloads:

- Image classification
- Speech Recognition

Dělen's Flexibility

Objective: optimize energy efficiency when meeting target accuracy.

Policies:

- Oracle: choose the first that is correct.
- PF: Pareto-Frontier
- pW: per-Workload, choose the first satisfied exit for all request.
- Full: the full model

Key insight: Dělen allows users *flexibly* specify high-level objectives and meeting them using different policies.

Dělen's Adaptability - Battery

Key insight: Dělen is able to adapt to battery dynamics and prolong the battery life by up to 59%.

Dělen's Adaptability - Workload

Key insight: The adaptability of Dělen allows applications to adapt to workload dynamics.

Dělen's Multi-tenancy

Versinaiaht. Dělen eunnerte multi tenenev by enchling flevible.

Key insight: Dělen supports multi-tenancy by enabling flexible exit selection and runtime workload adaptation.

3600

Conclusion

- Dělen is a flexible, adaptive, and multi-tenant model-serving system for supporting Al-based IoT applications on edge platforms.
- Dělen's flexibility is demonstrated through the implementation of various adaptation policies using its API.
- Dělen's adaptability was evaluated under different environmental dynamics and objectives when running single and multiple concurrent applications.

Questions?

Thank you!

UMassAmherst | Manning College of Information & Computer Sciences

COMPUTING FOR THE COMMON GOOD

Qianlin Liang qliang@cs.umass.edu