RepEL: A Utility-preserving Privacy System for IoT-based Energy Meters

Phuthipong Bovornkeeratiroj, Srinivasan Iyengar, Stephen Lee, David Irwin, and Prashant Shenoy

University of Massachusetts Amherst, Microsoft Research India, University of Pittsburgh

April 22, 2020

University of Massachusetts Amherst

IoT in Smart Homes

Many loT products for smart homes

- Smart light bulbs, voice assistants, thermostats, fridges, etc.

Cloud-based IoT architecture

- Send data to cloud servers for analytics

Privacy of IoT Data

- Cloud analytics of IoT data
 - Useful services to user
 - e.g. safety monitoring
- Privacy Leakage
 - Data reveals privacy information
 - e.g. continuously stream all activity in the house

*Graphics from: canary.is

Utility Preserving Privacy

- Traditional methods for IoT Privacy
 - **Data obfuscation** obfuscate data before uploading
 - Suppress private information, cloud analytic impossible
 - II. Local processing no cloud transmission
 - Limited ability for sophisticated analytics
- Trade-off: Utility of data analytics vs. Privacy of user
- - Private information suppressed
 - Non-private information retained

• Utility-preserving Privacy: how to intelligently transform IoT data such that

Utility Preserving Privacy for Energy

• Smart meter - Monitor electricity usage at fine time granularity

Utility Preserving Privacy for Energy

• Smart meter - Monitor electricity usage at fine time granularity

House

Private Question

When do you take vacations? Do you eat out in the evenings? Were you home during your sic Did you watch the game last nig Did you leave your child home Did you get a good night sleep? Do you eat hot or cold breakfas

	Granularity needed	
	Hourly	
?	Seconds	Energy
k leave?	Hourly	Breakdown
ght?	Seconds	(Disaggregation Analytics
alone?	Seconds	
?	Seconds	
st?	Seconds	
		Occupancy
	(ICDCS 2018)	Detection

Utility Preserving Privacy for Energy

• Smart meter - Monitor electricity usage at fine time granularity

Key question:

How can we allow disaggregation analytics and prevent occupancy attacks? 77

Usage Data

Cloud

Occupancy **Detection**

Energy usage

Talk Outline

Motivation RepEL Utility Preserving Privacy

- Experimental Results
- Conclusion

Smart Meter Privacy using a Battery

- Key idea: use a battery storage as energy buffer
 - Use charge/discharge to transform usage seen by smart meter

Our Approach: RepEL (**Rep**lay Energy Load)

- Key idea: permute & randomize while retaining usage of each appliance
 - Use battery to suppress actual usage when it occurs
 - Record this usage
 - Use battery to replay usage at later time
- Record and Replay
 - Retains individual appliance usage
 - Permutes time order of usage as seen by meter

RepEL Architecture

Replay Energy Loads in 3 steps

Step1: Record **Step3: Replay**

Charge battery to mimic load

- record energy consumption of foreground appliance **Step2: Schedule** - schedule the time to replay using a target distribution - replay recorded trace based on schedule and policies

RepEL Replay

to mimic any distribution during schedule step

- **Vacation mode**
 - Long absence periods means **nothing to record**
 - Replay random loads from previous week

RepEL use **MCMC sampling** method called **Metropolis-Hasting Algorithm**

Talk Outline

Motivation RepEL Utility Preserving Privacy Experimental Results

Conclusion

Experimental Setup

Metrics

• Privacy leakage rate = $100 \times \sum_{i=1}^{N}$

Dataset

$$\sum_{i=1}^{N} \frac{is_leak(i)}{N}$$

• Device usage change = $100 \times \frac{\sum_{i=1}^{N} (replay_profile_i - energy_profile_i)}{\sum_{i=1}^{N} energy_profile_i}$

Dataport from Pecan Street Inc. - 19 houses, 1 month, minute-level data

• ECO from ETH Zurich - 4 houses, 22-36 days, second-level data

RepEL Privacy vs Utility

Privacy leakage

Result: RepEL provides <10% privacy leakage with <3% error in usage

Disaggregation analytics accuracy Comparison with LS2

Metric	
MAPE	
MSE	

Result: RepEL has reasonable good privacy property but slightly worse than LS2 But LS2 cannot preserve utility information

Conclusion

- Proposed a utility-preserving privacy system (RepEL) for smart meter
- Implemented and evaluated on two plug-level home energy trace dataset
- Our results show:
 - RepEL can prevent adversaries from inferring behavioural patterns
 - Also RepEL can preserve utility information in the trace

Thank you

Contact us: phuthipong@cs.umass.edu

