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Cloud-Based	Mobile	Services

• Distributed	between	cloud	and	end-device	

• Use	contexts	(e.g.	locaJon	services)	

• Many	use	predicJon	of	future	contexts,	not	just	current	context,	
to	tailor	service
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Modeling	User	Behavior	via	
Personalized	Models
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Encode	user-specific	behavior

Offer	beRer	efficacy	for	users	with	dissimilar	behavior

Less	computaJonally	expensive

“The	user	will	
travel	home	at	

/me	t.”

Privacy?
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Key	ques/on:	

Can	personalized	mobile	services	be	exploited	to	leak	
sensiJve	context	(i.e.	locaJon)	informaJon	about	a	user?	

“ ”



Outline
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Model	Inversion	ARacks

Key	idea:	learn	sensiJve	features	in	input	data	using	output	of	a	
trained	model
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Approach:	Maximize	model’s	confidence	on	correct	output	
to	determine	best	input	value



Ours:	Time-Series	Inversion	ARack

Full	access	or	no	access	to	all	data	features	at	a	Jme	step		

Use	cross	correlaJon	between	sequences	to	infer	features
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xt = {f1, f2, . . . , fn} M : xt−2, xt−1 → lt



Results	—	ARack	Efficacy

Time-based privacy attack is computationally efficient and 
effective with 77.61% accuracy for top-3 estimates.
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Context-aware	personalized	models	can	be	easily	
exploited	with	limited	informaJon	for	users	with	

highly	correlated	mobility	paRerns.

“
”

Key	Insight:	
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Proposed	Privacy-Preserving	
PersonalizaJon	Framework:	Pelican	
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Step	1:	Train	a	general	model	using	training	data	from	many	users
Step	2:	Personalize	the	general	model	using	transfer	learning	methods
Step	3:	On-device	or	cloud	deployment	with	privacy	enhancements
Step	4:	Re-invoke	transfer	learning	process	to	update	the	model	with	new	data

On-cloud										On-device



Privacy	Enhancement

Privacy	tuner	 	that	scales	the	output	before	SoXmax	layer.𝒯

	changes	sensiJvity	to	the	different	outputs	at	inference	
Jme	only.

𝒯
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Results	—	Privacy	Enhancement

Pelican is able to thwart privacy attacks in personalized models 
with up to 75.41% reduction in leakage while achieving state-of-

the-art performance. 
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Conclusion

• Personalized	models	are	capable	of	leaking	private	informaJon	
despite	being	trained	in	a	privacy-preserving	manner.	

• The	nature	of	context-aware	applicaJons	results	in	more	leakage	
of	private	informaJon	than	expected	by	user.	

• The	proposed	distributed	framework	learns	and	deploys	transfer	
learning-based	personalized	ML	models	in	a	privacy	preserving	
manner	on	resource-constrained	mobile	devices.
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