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Abstract
Traditional power reduction techniques such as DVFS or RAPL are
challenging to use with web services because they significantly
affect the services’ latency and throughput. Previous work sug-
gested the use of controllers based on control theory or machine
learning to reduce performance degradation under constrained
power. However, generating these controllers is challenging as ev-
ery web service applications running in a data center requires a
power-performance model and a fine-tuned controller. In this paper,
we present DDPC, a system for autonomic data-driven controller
generation for power-latency management. DDPC automates the
process of designing and deploying controllers for dynamic power
allocation to manage the power-performance trade-offs for latency-
sensitive web applications such as a social network. For each ap-
plication, DDPC uses system identification techniques to learn an
adaptive power-performance model that captures the application’s
power-latency trade-offs which is then used to generate and deploy
a Proportional-Integral (PI) power controller with gain-scheduling
to dynamically manage the power allocation to the server run-
ning application using RAPL. We evaluate DDPC with two realistic
latency-sensitive web applications under varying load scenarios.
Our results show that DDPC is capable of autonomically generating
and deploying controllers within a few minutes reducing the ac-
tive power allocation of a web-server by more than 50% compared
to state-of-the-art techniques while maintaining the latency well
below the target of the application.
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1 Introduction
Today, our world relies on web services running on massive cloud
data centers. In the US alone, it is estimated that cloud data centers
consume around 70 Billion kWh per year [50], the equivalent of 7
million households. It is expected that this number will grow sig-
nificantly in the coming decade to support the computing demands.
Even small inefficiencies in the power consumption of these data
centers can translate to large costly resource, environmental, and
financial waste. Hence, there has been significant work directed
towards enhancing the energy efficiency of cloud data centers, with
techniques ranging from resource management [29, 45], to better
chip architectures [37] and power capping.

Power capping is a technique used by many data centers to limit
their total power consumption from going above a pre-defined
power threshold. Capping is typically achieved using CPU power
management features such as Dynamic Voltage and Frequency Scal-
ing (DVFS) [20] and Running Average Power Limit (RAPL) [54].
There are two traditionally used power reduction techniques: DVFS
or RAPL. DVFS is a technique to control power consumption of
processors by scaling up and down the voltage (and frequency) of
the processor. RAPL is a technology on Intel processors that allows
monitoring and controlling the average power that a processor con-
sumes [39]. Capping is enforced when there is either an overload on
the (expensive) data center power equipment, or to reduce the elec-
tricity consumption to avoid violations of the power agreements
the data center operator has with the power provider [16, 57]. Much
prior work has focused on power-capping for throughput-oriented
or batch workloads [33, 41, 54], with far fewer efforts focusing on
latency-sensitive workloads. One major issue with latency sensitive
workloads is the non-linear performance degradation in latency
with reduced power allocation [27] which can lead to severe perfor-
mance degradation. Hence, many researchers have suggested the
use of power-performance controllers for latency-sensitive work-
loads using, e.g., control theory [20, 28, 36] ormachine-learning [59].
However, one of the main shortcomings of these approaches is that
they require a different fine-tuned control model and large amounts
of training data for each web application, each workload mix [51],
and each possible server configuration [21]. In addition, the power-
performance model may need to be updated or re-trained every
time the application is updated, e.g., when any components of the
application are upgraded or modified. A further complication is that
training and optimizing a controller requires substantial manual
effort in collecting training data and tuning the controller. Ideally,
the process of controller generation should be automated, allowing

https://doi.org/10.1145/3543507.3583437
https://doi.org/10.1145/3543507.3583437
https://doi.org/10.1145/3543507.3583437


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Savasci et al.

for full autonomy for the management of the power-performance
controller generation and management.

In this paper, we look for an answer to the question of can we
automate the process of power-performance controller generation
for web-services such that the generated controllers reduce power-
allocation while meeting SLOs and provide equal/better performance
compared to state-of-the-art techniques? As an answer, we present
DDPC, a Data-Driven Power-performancemanagement system that
autonomically manages all steps of power-performance manage-
ment of data centers, from controller generation to power allocation
for latency-sensitive workloads. Our system enables data center
operators to decrease the total data center power allocation while
maintaining the required Service-Level-Objectives (SLOs) for these
workloads. To do so, DDPC autonomically benchmarks each ap-
plication and models its power-performance tradeoffs using an
ARX model–a popular model from control theory used in system
identification [31]. The model is then used to automatically build
Proportional-Integral (PI) controllers with gain scheduling [31] to
control power allocation under a wide set of load conditions for the
application using RAPL. Our controllers maintain the average re-
sponse time well below the required SLO under power caps. When
the system operates under no power-cap, the controllers minimize
the tail response time, while reducing the overall power allocation
in comparison to state-of-the-art solutions. DDPC deploys the con-
trollers automatically in the cluster, and in case of deviations from
the SLO, the controllers are automatically retrained and redeployed
online. Our main contributions can be summarized as follows.

• We design and implement DDPC, an autonomic power man-
agement system that manages the power-performance trade-
offs of web applications.

• DDPC generates ARX models for the power-latency trade-
offs. The models are used to generate PI controllers with
gain scheduling for power allocation. The controllers reduce
the overall active power allocation with up to 50% while
maintaining the SLO.

• We implement a prototype of DDPC in a Linux cluster, testing
the framework with different workloads and applications.
For reproducibility, we open source our framework.

2 Background
2.1 Cloud Data Centers
Today, many internet services run in large-scale data centers. Op-
erating these data center is expensive with a large part of the op-
erational cost coming from their massive power-consumption. In
Europe, a recent study estimates that data centers power consump-
tion will double in five European countries, with an estimate that
it will consume up to 25% of the total power consumption in Ire-
land by 2030 [8]. In the US, it is estimated that using better power
and energy management techniques could yield saving of over 25
billion kWh [50]. This massive power consumption (and wastage)
increases the carbon footprint of these systems.

Since most web-clusters run at low utilization [26], there is an
ever increasing interest to reduce their power consumption to re-
duce the energy waste of data centers. Techniques based on control
theory, statistical learning, and deep-learning [34, 40, 42, 57, 59]
for managing the power-allocation have been suggested. Since

CPU power is the largest contributor to power consumption in a
server [1], most work on power management focus on reducing
the consumption of CPU power using techniques such as Dynamic
voltage and frequency scaling (DVFS), and Running Average Power
Limit (RAPL). DVFS enables system administrators to set the volt-
age used by a CPU, reducing the power consumption of the CPU,
and hence the server. RAPL on the other hand enables a system
administrator to set the average power consumption of a CPU to a
certain wattage. While these two techniques reduce the power us-
age of servers considerably, they affect the performance of latency-
sensitive web workloads—potentially reducing performance by up
to 60% when the application is running independently, and by up
to 80% when co-located [17, 30].

2.2 Web service workloads
Web services such as social networking, web search, email ser-
vice, and online shopping are latency-sensitive with any latency
increases leading to user dissatisfaction. Hence, many research ef-
forts focus on reducing the response times (both average and tail)
of web applications [11, 25, 48, 53]. However, many of these latency
optimization solutions involve replication [11, 46], which increases
the overall power consumption of running the same workload.
Web QoS measures. There are multiple measures of QoS for web
services. Latencies of Web pages have three main components;
the server response time, the network latencies, and the client
load/rendering times. Server response times are calculated from
when a request is received at the front-end of the web service to the
time it leaves the front-end. Any delays in server response times
affect the user-perceived QoS. There are many user-centric client
QoS measures such as Time to First Byte (TTFB) and First Input
Delay (FID) [56].
These user-centric QoS measures usually exhibit high variability
across different web services, with some services taking a few mil-
liseconds, while others taking up to 4 seconds [43]. Some of this
variability is due to the large dynamics that web-service servers
experience, e.g., the number of requests, or the request mix. How-
ever, a much more contributing factor is the difference in how these
services are designed and built, yielding very different (achievable)
server response times for different web services. This variability
between the different applications results in increasing complexity
for management systems, with respect to knowing the achievable
latency for each application, and how to guarantee this latency for
each web service given the variability.
Tail versus Average Latency SLOs. In order to fulfill the QoS
requirements of users, service providers and data center operators
need to maintain a pre-defined SLO. The SLO can be in terms of, e.g.,
system availability, the average response time, or the tail response
time. Using tail-latency to define server-level SLOs has gained wide
interest from the academic community [12, 27, 32, 36] but this
usually comes at the cost of using extra resources to improve tail
performance. In the context of powermanagement, it usually entails
being conservative and allocating more power than what would be
needed if only the average latency is to be guaranteed [36]. Hence,
when power is limited, it can be more beneficial to focus on average
latency when the main optimization required is to reduce the power
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consumption of the system. In other cases, power over-provisioning
the power can help reduce tail latency.

2.3 Feedback Controller Design
Generally, to build a robust feedback controller, there are three
steps. The first step in building a controller is to build a mathemat-
ical model of the controlled system behaviour. One technique to
build and adapt these models is to use System identification [35].
System identification utilizes statistical methods to model the input-
output relation of the system. These models can then be used to
design a feedback controller using one of many techniques such as:
Proportional-Integral-Differential (PID) control and its variations—
P, PI and PD control; stochastic control; and optimal control. The
controllers use the mathematical models to enforce the system to
operate around some preset control target. Since many systems
exhibit non-linear and dynamic behaviors, deviations from the de-
veloped models in most practical applications are inevitable. To deal
with deviations, control engineers typically use adaptive control
theory technique to adapt the controller to the system dynamics.
One popular technique for adapting PID controllers is gain sched-
uling [2]. Gain scheduling is used when a single controller does
not provide the desired performance for all system dynamics. In
essence, the engineer designs several controllers capable of man-
aging the performance under all possible operating ranges points
of the system, and switch between these controllers as the system
dynamics change.

2.4 The case for DDPC
There are three main challenges when designing feedback con-
trollers for web server power management. First, web-services get
updated frequently changing their power-performance trade-off
curves. Second, within a data center, they can run on different
machines with different power consumption footprints. Finally,
web-services have non-linear relationship between the power con-
sumption and their performance that changes with the workload
dynamics and the workload-mix. To use feedback controllers for
managing the power-performance trade-offs of web-servers, a con-
troller needs to be generated for every single possible VM/container
configuration since the power-performance trade offs change with
the size of the VM/container. The modelling needs to be repeated
for every possible application. In addition, any change in the web
service, e.g, by updating some of its components, would require
the entire process to be repeated. DDPC aims to solve this prob-
lem by automating the entire process, from profiling all the way
to controller generation, and deployment, by utilizing three tech-
niques from control theory, namely, system identification using
ARX models, PI control, and gain-scheduling.

Besides using traditional feedback control, there are two other
main approaches that have been suggested in the literature to con-
trol power-performance of web services. The first approach is to
use an open-loop controller based on heuristics that does not re-
quire mathematical models and hence use more simple control
techniques such as bang-bang controller similar to the one used by
Pegasus [36]. The second approach uses machine learning based
models of the performance, such as the one used in Rubik [28].

Heuristic based open-loop control approaches can provide stable
and easy-to-understand controllers for power-performance, alas

at the cost of reduced performance.For example, Pegasus uses a
multi-step bang-bang controller, a controller that switches between
a number of pre-defined heuristics, e.g., if response time is greater
than 𝑥 ms, set the power to the maximum. Since there is no accurate
model as the ones used by gain-scheduling, heuristics can waste
power as they are empirically chosen. In addition, these heuristics
can not be easily inferred from the monitoring data and can not
adapt to different applications easily.

While machine learning can be used to build a controller that
is model free, a major shortcoming of using machine learning for
managing power-performance is the lack of explainability which
makes debugging the output from these algorithms hard [6, 7]. Con-
trol theory on the other hand relies on explainable mathematical
models that can be debugged and understood by all stakeholders
managing a cloud infrastructure. Prior work, e.g., Rubik [28], sug-
gested the use of statistical learning approaches as a possible way to
remedy the explainability issue. Rubik is a fine-grain DVFS scheme
for latency-critical workloads that uses light-weight online profil-
ing to update a statistical model of the completion cycle of each
request, building target tail tables based on performance counters
to estimate per-request compute and memory-bound cycles. The
authors note that this approach works well at lower utilization
levels of around 30%. However, at higher utilizations above 50%,
the efficacy of Rubik decreases considerably.

3 DDPC Architecture
In this paper, We introduce DDPC, a framework for the automatic
generation, and deployment of power-performance controllers for
web services. We argue that for a power management approach
to be useful, it needs to be data-driven with the ability to adapt
and scale to the workload dynamics seen in a data center. DDPC
tackles this problem by using a data-driven approach to automati-
cally generate power controllers. Our approach can be compared
to recent advances in continual learning but for—the by-design
explainable—feedback controller generation.

DDPC generates controllers formanaging the power-performance
tradeoffs of applications running either on a single server or on a
cluster of servers. We assume that a cluster runs multiple instances
of a web service. The web service is behind a load-balancer. The
system operates with the target of reducing the power allocation
while maintaining an SLO defined in terms of the average response
time. Our system supports runs in one of three modes; a guided
optimization goal mode, i.e., operating the system below a certain
power budget; an unguided operation where the goal is to reduce
the power allocation generally but with no target power budget;
and finally a tail-latency reductionmode were the target is to reduce
the power-consumption while maintaining a smaller tail. In all of
these modes, DDPC adapts to the any controller updates required
due to, e.g., a software update, a change of the workload mix, or a
new application being deployed.

DDPC has four main components as shown in Figure 1 ; the
Controller Generator; the Cluster Power Manager; the Application
Performance Monitor; and the Local Power Managers. The core of
DDPC is the Controller Generator component which is responsible
for the data-driven generation of gain-scheduled PI-controllers for
the different applications. This is the first step in our framework and
the most important one. To design the controllers, the generator
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Figure 1: The DDPC architecture

runs a benchmarking phase where the web service behaviour is
modeled using a set of ARX models that are then used to design
a PI-based controller with gain scheduling. Once a controller is
produced, it is deployed into the cluster power manager. We discuss
the controller generator in the next Section in details.

The cluster power manager is responsible for the run-time man-
agement of the cluster. Once a controller is generated, the controller
generator updates the manager, deploying the new controller at
runtime. The Cluster Power Manager then controls the per server
power allocation based on the measured response time of the appli-
cation. The cluster power manager uses the monitored data from
the Application Performance Monitor, mainly the number of re-
quests per second, and the average response time to decide on the
power allocation using the gain-scheduled PI controller for an ap-
plication. If the cluster power manager observes that the controller
is incapable of maintaining the SLO, the manager sends a signal to
the DDPC controller generator to regenerate a new controller.

If a power-budget is set, the cluster manager divides the power
on the servers such that the total cluster allocation does not exceed
the budget. In this paper, we use fair-share division between the
servers, with all servers allocated the same power similar to Pega-
sus [36]. The per server allocated power is forwarded to the DDPC
local manager that runs on each server in the cluster. The local
manager sets the power limit using the RAPL interface to control
the power allocation for the hosted web-service. DDPC supports
using c-groups for controlling the per-application power allocation
for colocated applications.

Relaxed-DDPC for tail reduction. Control theory provides
guarantees on the average system behavior. Hence, DDPC sets
the target of the controller based on the average response-time.
When operating in tail-reduction mode, relaxed-DDPC calculates
the power required to set the average response time to the target,
and then allocates 20% more power than suggested by the con-
troller for maintaining the average response time target. We have
empirically found that with 20% extra power, we curtail the tail.

4 Data-Driven Controller Design
Figure 2 shows the DDPC pipeline. An application owner only pro-
vides the images of the web-service components and the request
types that the application supports. DDPC then uses the image and
information to develop and deploy accurate power controllers for

Data Collector

Model Parameter Generator

PI Controller Generator

Application Image


App Perf-Aware Controller

Deploy Controller and Monitor Performance

Different # reqs1

2

3 Controller parameters

4

Trigger
retraining

Model parameters

Figure 2: DDPC Pipeline

the application and deploys the application. DDPC starts by run-
ning a short benchmarking phase using a custom made workload
generator that benchmarks the web-service’s image with different
request rates and request types under different power allocations.
The logged data is then used to build a power-performance model
of the application. The model is used to build a PI-controller with
gain-scheduling for the power allocation. Both the application and
the controller are then deployed in production. While in produc-
tion, DDPC logs monitoring data for the application performance.
If a large deviation in performance is detected, the web-service is
re-profiled to update the controllers for the web service. We now
discuss each of these steps in more details

4.1 Building data-driven ARX models
In the benchmarking phase, DDPC collects the necessary data
required to build the web-service’s system model of the power-
performance tradeoffs. Our system uses ARX models to model the
power-performance tradeoffs in the system [23]. ARX models are
black-box system identification techniques that are commonly used
to build PI controllers. ARX models find a linear representation of
a dynamic system in discrete time using a linear representation
of the system. These models form the basis for many methods in
control methods. Focusing on our application, we would like to
build a power-performance latency model which predicts latency
for a given set power using RAPL at a given request rate which is a
non-linear relation.

Let us denote the power level set to a web application cluster at
time 𝑡 to be 𝑢 (𝑡), and the output of the model, the average response
time to be 𝑦 (𝑡). At a given workload level𝑊 (𝑡) = 𝑤 , an ARX
model of this system is:

𝑦 (𝑡 + 1) = 𝛼𝑦 (𝑡) + 𝛽𝑢 (𝑡) (1)

where 𝛼 and 𝛽 are the model parameters that characterize the
relationship between the input and output of the model at a given
workload level. The model assumes that the response time of a
service for a given load-range is dependant on both the power
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allocation and the previous response time. To calculate the values of
𝛼 and 𝛽 , we use the least-squares method over the logged data [55].

Since the standard ARX model is a linear model assuming a
limited range for the workload (average number of requests per
second), it is not accurate if the workload changes significantly.
Hence, the model is not sufficient to capture the performance under
varying workload levels. To solve this problem, we build multiple
models for the system at different linearization points which in our
case are workload levels.

4.2 Data-Driven gain-scheduled PI control
The profiling stage yields a number of ARX models for the web ser-
vice at different request rate levels. The next stage in the pipeline is
to design a PI controller for each model of the different request levels
generated by the ARX modeling step., i.e., creating a number of PI
controllers for different operation points. In essence, a PI controller
has two components; the Proportional component responsible for
correcting any errors between the required value and the current
state of the system; and the Integral component responsible for
accounting for also the historical trends in the error. To give an
example, consider a web-server cluster where we try to control the
power allocation to all the servers using a PI controller. The system
has an SLO on the average response-time of 500 milliseconds, but
due to a sudden spike sees a response time of 800 milliseconds. The
proportional term of the controller will only consider the current
error in the response time of 300 ms. The integral term of the con-
troller will consider the integral of the error in response time over
time, i.e., the historical value of the error. Control engineers use the
system model to choose the coefficients of both components of the
PI controller, i.e., how much should the current error between the
measured response time and the SLO affect the controller corrective
action of increasing the power allocation versus how much should
the historical error affect the corrective action.

The control loop for a single PI controller is shown in Figure 3.
In our design, the set point to the controller is the target average
response time from the web-service 𝑟 (𝑘). Let us denote the mea-
sured response time at 𝑘𝑡ℎ time to be 𝑦 (𝑘). The error is then the
difference between the set point and the measured response time
𝑒 (𝑘) = 𝑟 (𝑘) − 𝑦 (𝑘). A negative error means that the measured
response time is higher than the target response time, and hence
would need to be corrected by allocating more power to the web ser-
vice. A positive error however indicates that the current response
time is lower than the target average response time, and hence it
might be safe to reduce the power allocation to the web service.
The PI controller corrective action 𝑢 (𝑘) is then:

𝑢 (𝑘) = 𝐾𝑝𝑒 (𝑘) + 𝐾𝑖
𝑘−1∑︁
𝑖=0

𝑒 (𝑖). (2)

To calculate the controller parameters, we use Matlab’s pidtune
library. pidtune takes as input a single ARX model, and uses a
proprietary frequency-domain algorithm to outputs the gains, 𝐾𝑝
and 𝐾𝑖 for a robust controller for a given request level. The algo-
rithm is very efficient taking at maximum seconds to output the
controller parameters. For each ARX model generated, a single
PI-controller is generated for each request level. The generated
gains for each request level is used to generate the power controller
gain-scheduling based PI-controller that is robust across the entire
possible operating capacity of a single server.
Implementation. DDPC is implemented in around 1300 lines-
of-code in Python3 with the PI Controller tuning using Matlab’s
pidtune library. DDPC is modular enabling the use of, e.g., different
controllers than what we use in the paper. We open-source the code
for DDPC for the interested reader. 1

5 Experimental Evaluation
Hardware. Our experiments run on a four-node cluster consisting
of Dell PowerEdge R440 servers, running Ubuntu 18.04.3 LTS. The
servers have Intel Xeon Silver 4110 CPU with two sockets, 8-cores,
2.10GHz, and 11M cache. Each server has 64GB of Memory and two
SSDs. The idle power consumption for each socket is 25 watts. In
our comparisons, we use the active power and also provide the total
power allocation per socket except in the cluster level experiments
where we report the entire cluster’s allocation.
Workloads. We use three different workloads in our experiments.
The first workload (shown in Figure 4a) is a generated synthetic
workload where the number of requests is randomly selected be-
tween 10 requests and 180 requests per second. We used this work-
load to validate our generated controllers. For testing the operation
of our controller under different scenarios, we use the Azure Func-
tion Trace [52]. The trace is scaled down to suit our cluster size.
Since the Azure traces are data center scale, each trace has a length
of 30 minutes, with per-second request rate granularity. Figures 4b
and 4c show a three minutes zoom-in of the two traces we use. For
our experiments, we developed a closed-loop workload generator
that replays the requests of the above workloads.
Applications.We use two realistic latency-sensitive applications
in our experiments. The first application is a Mediawiki VM hosting
a replica of the entire German Wikipedia. MediaWiki is a custom-
made, free, and open-source wiki software platform written in PHP
and JavaScript using a traditional LAMP stack software, running
on Linux, Apache web-server, deploying a MySQL database, and
Memcached for caching database objects in memory. Our second
application is the microservice-based social networking application
from DeathStarBench [14]. The application has over 30 microser-
vices. In all experiments with the two applications, we replicate
all application components on all servers. In our experiments, we
run the applications behind an HA-Proxy load-balancer that we
also use to measure the response times. We set the load-balancer to
send requests to the server with the least number of connections.
State-of-the-Art comparisons. In all of our experiments, we com-
pare our results with Pegasus, with respect to the response times,
and active and total power savings. In addition to Pegasus, in some
of our experiments, we compare the controller generated by DDPC

1Please see: https://github.com/umassos/ddpc-power-performance-controller

https://github.com/umassos/ddpc-power-performance-controller


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Savasci et al.

0 200 400 600
Time

50

100

150

Nu
m

be
r o

f R
eq

ue
st

(a) Randomly generated synthetic workload

0 50 100 150 200
Time

20

40

60

80

Nu
m

be
r o

f R
eq

ue
st

(b) Azure traces for single server experiments.

0 50 100 150 200
Time

0

100

200

300

Nu
m

be
r o

f R
eq

ue
st

(c) Azure trace for DeathStarBench

Figure 4: Workload Traces for our experiments
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Figure 5: Comparing DDPC, Pegasus, and using maximum
power with a synthetic workload and Wikipedia.

to a controller that is hand-crafted using Matlab’s PID Tuner Ap-
plication and Simulink, one of the most commonly used tools by
control engineers to tune PID controllers.2

5.1 DDPC validation
Our first set of experiments aims to validate and show how DDPC
generates and automatically deploys controllers capable of main-
taining the average response time below the target while reducing
the overall power allocation. In this experiment, we use the German
Wikipedia replica and the synthetic workload shown in Figure 4a.
We use a single server for this experiment. We pass to DDPC the
applications image. DDPC profiles the application, generates, and
deploys a controller. We then use our developed workload genera-
tor to play the synthetic workload, We set the target response time
to 0.9s, 0.8s, and 0.7s, and measure the request response times, and
the allocated power. We repeat the experiment with Pegasus.

Figure 5a shows a box-plot of the response times observed with
DDPC, Pegasus, and when the system is always given full power
(58 watts per socket) when the response time target is 0.9s (we omit
the response time graphs for lower targets from this experiment
for space constraints but show lower target response time graphs
in other experiments). We make the following observations: more
than 75% of all requests using DDPC and Pegasus have a response
time lower than the target response time. Pegasus has a slight
improvement in the tail response time. Figure 5b shows the average
power allocation of the three approaches for different response
time targets, we see that in the worst case at the target response
time of 0.7, DDPC yields a power allocation reduction of more than
32% (with 48% saving with a target response time of 0.9s) in the

2https://www.mathworks.com/help/control/ref/pidtuner-app.html

total power in comparison to Pegasus. If we only consider active
power, then DDPC provides a 56% when the target response time
is 0.7s (67% with a target response time of 0.9s) decrease in the
active power allocation. In addition to the power savings, Figure 5b
shows that with a higher response time target, the power savings
can increase considerably.

Pegasus fails to provide much power savings because of the
nature of the workload and Pegasus’s very conservative approach
to power allocation, allocating maximum power for five minutes to
the application if the average latency over a period of 30 seconds
exceeds the target latency.
DDPC controller generation overhead. Our final validation
point is to validate the practicality of DDPC in terms of overhead.
We measure the time DDPC requires to generate and deploy the
controllers. At the profiling stage, DDPC runs a workload with step
increases of 20 requests running for 20 seconds, starting from 20
requests per second, and log the achieved performance for different
power-level, increasing the power allocation to the application by
2 watts–starting from minimum server power—and monitoring
the response time. In our experiments, the total profiling time was
between 5 and 12 minutes depending on the application. Since
the profiling is done mostly when new applications are added or
updated, or when there are significant changes in the workload
mix, we believe that this overhead is adequate.

5.2 Azure workload evaluation: Wikipedia
In this experiment, we use the Azure trace shown in Figure 4b with
the German Wikipedia replica running on a single server, and re-
peat the above set of experiments. We set the target response time
to 1s. Figure 6a shows the response time box-plots for our experi-
ment using DDPC, a hand-crafted controller using Matlab Simulink,
and Pegasus to control the power allocation. We see that Pegasus
provides a slight improvement over DDPC (and the hand-crafted
controller) in tail-latency. Figure 6b shows the power allocation for
the different approaches. DDPC provides a 61% reduction in active
power in comparison to Pegasus (and a reduction of 45% in total
allocated power). We also show the results for a lower response
time target of 900ms where DDPC again provides savings of 43%
in active power (25% total power). Compared to the hand-crafted
controller DDPC allocates between 1% to 4% extra power.

To better see how Pegasus behaves with this workload, we plot
the CDF graph of the power-level allocations with both DDPC,
Pegasus, and a hand-crafted controller in Figure 6c. We note that
while DDPC uses the full range of RAPL active power available
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Figure 6: Comparing DDPC, a hand-crafted controller, and Pegasus using the Azure workload and Wikipedia.

(with 1-watt granularities), Pegasus is almost always allocating
the maximum power with very little changes in the allocation.
This shows the downside of using a heuristic since the allocation
needs to be conservative. We note that our data-driven generated
controllers almost overlaps with a hand-crafted controller that is
tuned by an engineer showing the merit of our automation.

Relaxed DDPC for Tail Reduction: Our next set of experi-
ments aim to evaluate DDPCwhen operating in tail-reductionmode.
In this experiment, we run a two hour Azure trace, setting the tar-
get response time to 1s. Figure 6d shows the box-and-whiskers
plot of the response time for both DDPC and Pegasus. Pegasus has
a much longer tail compared to relaxed-DDPC. In addition, over
the two hour period, Pegasus dropped 10% of the requests while
relaxed-DDPC dropped a negligible number of requests. relaxed-
DDPC allocated 25% less power compared to Pegasus. Since our
results with relaxed-DDPC were similar for other experiments, we
omit them, and only include this result.

5.3 Azure workload evaluation: DeathStarBench
To show how DDPC adapts to the addition of new application, we
introduce to our cluster a new application, the social networking
application from DeathStarBench. DDPC generates and deploys
controllers for the new application. We measure the performance
of these controllers with both Azure workloads.

Figure 7a and Figure 7b show box-plots of the response times
with the workload in Figure 4b and Figure 4c respectively, while
Figure 7c shows the average power allocation for both cases. We see
a similar pattern with this application where the power allocation
savings range between 25% and 50% for the total power (50 to 70%
in active power) compared to Pegasus. However, in this experiment,
we also observe that the tail response time of DDPC is lower than
that of Pegasus by 100 to 200 ms. This result shows that for some
applications, even at a fraction of the power, DDPC is able to reduce
the average and tail response times compared to Pegasus.

5.4 Non-Constrained clusters
We now turn our focus to experiments running the workloads on a
cluster of four servers (with a total power capacity of 464 Watts).
In this set of experiments we assume that there is no application
co-location on the servers. We start with the case when DDPC is
running with no power budget constraints, but with the aim of
reducing the total power allocation. In this experiment, we again
use the Wikipedia application but use it with the Azure workload
in Figure 4c but has 800 requests as maximum number of request

rather than 300. On a single server, this workload would not be
sustainable due to its high peaks and the high processing demands
of Wikipedia. For Pegasus, since we wanted to compare with a
less conservative version of Pegasus that we hoped would result in
reduced power waste, we modified Pegasus. When faced with an
average response time above the target response time of 30 seconds,
Pegasus runs at full power for 5 minutes. Since this proved to be
very conservative for our workloads, we modified Pegasus to run
for 30 seconds instead of five minutes when there is a sustained
violation of the target for 30 seconds. We believed that this change
would enable Pegasus to handle the workload better.

Figure 8a shows the latency CDF when using Pegasus versus
when using DDPC to control the power-allocation for the cluster.
The Figure suggests that while Pegasus lowers the latency for re-
quests for most of the requests, it has a longer tail compared to
DDPC. To better see the tail, we plot the violin plot of the distribu-
tion. The violin plot confirms that the tail response time of Pegasus
is slightly longer than DDPC for this experiment. However, this can
be due to the presence of outliers in the response times of Pegasus.
Finally, when considering the cluster average power allocation, we
measured that DDPC allocates on average 136.46 watts with over
40% reduction of the total cluster power compared to Pegasus which
allocates on average 226.82 Watts.

5.5 Performance under a cap
In the final set of experiments, we repeat the above experiments
with Wikipedia but in the presence of a maximum power budget.
We run several experiments with several budgets and response
time targets. We show only results from two such experiments with
power budgets of 280 and 320 watts for the entire cluster, which
correspond to a budget of roughly 60% and 70% of the total power
cluster power, and a target response time of 1s. Figure 9a shows
the average power allocated for the two budgets. While Pegasus
allocates close to the maximum available power in the budget,
specially for the higher budget, DDPC keeps the power allocation
to less than the budget by roughly 10% for the lower budget and
by around 20% for the higher budget. At the lower budget of 280
watts, DDPC maintains an average response time well below the
target response time of 1s. In fact, its 90th percentile response time
is below 1s. Pegasus provides a lower latency distribution. When
considering the higher power budget of 320 Watts, Pegasus, while
having a lower average response time, has a longer tail compared
to DDPC. DDPC is able to maintain the average latency well below
the target latency. This experiment shows that the tail latency of
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Figure 7: Comparing DDPC to Pegasus used to control the social network.
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Figure 8: DDPC versus Pegasus with no power capping.
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Figure 9: DDPC versus Pegasus when using a cluster with
power capping.

DDPC operating in the normal mode, is comparable and in some
cases better than a system designed mainly for tail latency control
because of the superiority of control theory using accurate models
over heuristics in adapting to the different workloads and setups.

6 Related Work
Using control theory for systems problems has gained wide interest
within the systems community recently [13, 44, 47]. A particular ex-
ample is on the problem of controlling the power-performance trade
offs for web clusters has been studied since the early 2000s [4, 9, 49].
This early work was during the early days of the web, when neither
virtualization nor modern power management techniques were
prevalent. The advent of hyperscale data centers [5] has sparked
new interest in the problem [28, 34, 36, 59]. Our work extends on
the previous work, solving the problem of how to automate the
process of controller design for power-performance tradeoffs.

In addition, a lot of previous work focused on task-based work-
loads or on throughput-oriented workloads [18, 22, 24]. Other
work focus on how to handle workloads under a power-cap [3,
19, 58]. One interesting approach for HPC jobs is the one used in
PShifter [15] where a power budget given to a certain application is
distributed by shifting power from sockets that incur extended wait
times due to waiting at a blocking call and redirects the dissipated
power to where it can best improve the overall performance of the
job. Mishra et al. [38] introduce CALOREE, a resource manager
that meets application latency requirements with minimal energy
by fine-tuning controllers using transfer learning for task-based
workloads. ReTail [10] represents request-level latency prediction
and applying it to power management.

7 Conclusion
In this work we introduce DDPC, a framework for managing power-
performance tradeoffs in hyperscale clusters. DDPC fully automates
the process of designing and deploying a power-performance con-
troller for a web service running on a cluster of servers. Our con-
troller generation only requires the image of the application as
an input and everything else is fully automated. DDPC generates
different number of PI-controller based on gain scheduling by profil-
ing the web-service autonomically to control the power allocation
to the service. The controllers uses the average response time of
the web-service as the target. Our results show that the generated
controllers consistently show significant reductions in power al-
location ranging between 30 to 50% in total power and 40 to 75%
in active power compared to other state-of-the-art approaches al-
though this significant power improvement sometimes comes with
modest increases in the tail response time. We open source DDPC.3
One limitation of DDPC is that it does not include any autoscaling
capabilities. For future work we will integrate both horizontal and
vertical autoscaling with DDPC.
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