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ABSTRACT

Machine learning-based predictions are popular in many appli-
cations including healthcare, recommender systems and finance.
More recently, the development of low-end edge hardware (e.g.,
Apple’s Neural Engine and Intel’s Movidius VPU) has provided a
path for the proliferation of machine learning on the edge with on-
device modeling. Modeling on the device reduces latency and helps
maintain the user’s privacy. However, on-device modeling can leak
private server-side information. In this work, we investigate on-
device machine learning models that are used to provide a service
and propose novel privacy attacks that can leak sensitive propri-
etary information of the service provider. We demonstrate that
different adversaries can easily exploit such models to maximize
their profit and accomplish content theft. Motivated by the need
to preserve both client and server privacy, we present preliminary
ideas on thwarting such attacks.
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1 INTRODUCTION

The growth and ubiquity of Machine Learning (ML) models has
changed how we conduct our lives. It affects everything from how
we capture and store our images and videos, to what movies we
decide to watch or what products we end up buying. This ubiquity
coupled with the explosion in the number and types of consumer
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smart devices (i.e., laptops, mobile phones, smart watches, televi-
sions) implies that ML inference can no longer be conducted in a
centralized fashion. This has led to ML models being evaluated in a
decentralized manner so that personalization and recommendation
decisions can be made closer to where the content is served. For
instance, a personalization model that chooses between several
marketing offers for a particular customer may take as input the
context of the user, and score several offers to choose the best. This
inference can be performed on the person’s mobile phone.

Performing the inference of the ML model locally, on the end-
user’s device provides several advantages [2]. First, performing on-
device inference helps reduce the latency with which the content
is served, latency being a critical factor in user experience. Second,
evaluating ML models on user devices helps avoid moving user
data to the cloud, providing a layer of privacy protection to the
user. Third, on-device models may be processed without having the
need to be connected to the cloud, thus can be processed even if the
device is offline. Finally, not having to evaluate billions of decisions
on the cloud can help reduce costs associated with compute and
storage. Unfortunately, when an ML model is on the user’s device,
it lies outside of the security perimeter provided by the cloud and
is open to possible exploitation by an adversary. We explore this
aspect of on-device models in this work.

Example. Consider a trained ML model that is deployed on the
device for inference. Assume this model is used by a bank’s website
to provide personalized financial incentives or offers to users. Note
that the number and types of offers as well as who receives which
offer are proprietary information for the bank. Thus, the bank
expects that the offer recommended to the user is the only one
they have access to. An adversary or curious user, in control of
the device, can query the model to get an offer. With continuous
and sufficient amount of querying, the adversary can learn the
probability distribution of the potential offers. This is concerning
because such information is proprietary and can be published or
sold to coupon sites, competing brands, or price aggregators which
can affect the client’s business. Secondly, since such systems often
have a feedback loop, the adversary can poison or bias the model
by systematically searching through the feature space.

To this end, our contributions are as follows:

C1 We develop a taxonomy of on-device models focusing on
models used in distributed services (e.g., web or mobile ap-
plications).

C2 We propose multiple privacy attacks on on-device models
and evaluate their efficacy on a real-world dataset. Our re-
sults demonstrate that simple attacks can leak sensitive in-
tellectual property of the service provider.

C3 We develop preliminary ideas on how to protect server-side
privacy in on-device models.
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Table 1: Descriptions of white-box (WB) and black-box (BB)
on-device models with the components of the ML model
accessible by a user. "Rep" denotes representations.

Model | Feature Space  Output Space Internals
Type | All Model Input | Model Output | Weights Rep
WB v v v v -
BB | v - - - -

2 PRIVACY ATTACKS ON ON-DEVICE
MODELS

2.1 Problem Setup

We focus on the multi-class classification task using one-vs-all
models which are popular in many industry applications [7]. We
describe the threat model and its entities as follows.

Service Provider. We consider a service provider S which is
responsible for providing an arbitrary service to its users. The ser-
vice provider requires the usage of machine learning-based predic-
tions to provide the best service. We assume S trains a one-vs-all
k-class classification model M : X — Y, where X represents a
user’s contextual information and Y represents a service provided
to the user (e.g., marketing offer). The final output is given by
y = argmax;  fr(x) = M(x) where f} represents a binary classi-
fication model of response for class k. This model is deployed on
its users’ devices. We assume Y and the representations learned by
M are proprietary information.

User. We consider user U who employs the service provided
by S. We assume U keeps a deployed version of M on their local
device and employs the service in an honest manner by accepting
the service, M(Xy) =y, as provided by S .

Adversary. We consider adversary A who intends to exploit
the service provided by S. Similar to U, we assume A keeps a
deployed version of M on their local device. Further, we assume A
is treated like a regular user U and provided a service y based on
their contextual data X4. We consider A to be a curious adversary
that attempts to learn M(X}) — Y (i.e., proprietary information).

Note, our focus is on privacy rather than security. Thus, we do
not consider external security threats such as model or data theft.
Instead, we focus on the privacy of the information available to,
and business interests of the service provider S.

2.2 Taxonomy of On-Device Models

The model space can be divided into three segments: feature space,
prediction space and internals. Each segment can contain numerous
features describing the input, output and internal representations.
Additionally, we observe the common case where S collects multi-
ple features from the customer and employs only a subset of them
for training M.

We focus on two classes of on-device models, white-box and
black-box. In the traditional user privacy setting, a white-box model
is transparent where all its parameters are accessible and a black-
box model is opaque with its model architecture and parameters
hidden. Since on-device models reside on a user’s device and have
the ability to execute offline, certain aspects such as model input
and output are automatically accessible.
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In this work, we define white-box models as ones whose feature
space and prediction space are visible to the user, yet the represen-
tations learned by the model are unknown. This implies that the
K models are visible in a one-vs-all k-class model. This is repre-
sentative of the setting where a model is running on a webpage
by being embedded into the webpage’s code. In such a setting, the
model is accessible via methods such as browser’s inspect element.
On the other hand, black-box models refer to models where only
the total set of features and the model output (i.e., offer) are visible
to the user. This is representative of a model embedded into an
application’s binary interface, common in mobile applications. We
describe these models in Table 1.

2.3 Privacy Attacks

In this work, we focus on server-side privacy attacks on on-device
models which aim to recover the representations learned by model
M. Attacks on on-device models can be divided into two categories,
white-box and black-box. We present three attacks: model inversion,
white-box random querying and black-box large-scale querying.

2.3.1 Model Inversion Attack. As described in Section 2.2, in the
white-box setting, adversary A has access to the K binary classifi-
cation models in M. Model inversion attacks are plausible in such a
setting for neural network based models. These attacks have his-
torically been employed to learn sensitive attributes in the training
data using a trained ML model [4]. In this work, we can use such an
attack to exploit each binary classification model and reconstruct
the input for each class using backpropagation.

Particularly, we exploit confidence information of these models.
Since f;. (x) is a binary classification model, A can recover the set of
inputs by assigning a 100% probability to the class confidence. Thus,
for each model f, the attack reconstructs input x; by iteratively
transforming a randomly generated input towards the value that
maximizes class k. With sufficient amount of iterations, A can
recover all potential x; — y; mappings.

2.3.2  Random Querying Attack. Another white-box attack is ran-
domly querying the known model input to gather all potential
classes. Here A has access to the features used by the model and
number of classes. The goal is to iteratively query the features used
by the model to recover the k classes. The adversary can directly
use M rather than the individual models to conduct the attack.

2.3.3 Large-Scale Querying Attack. The black-box attack is more
complex as A does not have access to the number of classes and
set of features employed by the model. Here A only has access to
all the features collected by the service provider. In such a case,
similar to the white-box random querying attack, the adversary
can randomly query all features at scale.

3 EVALUATION OF SERVER-SIDE PRIVACY
LEAKAGE

3.1 Experimental Setup

Data. We use a real-world web experimentation dataset from a
major telecommunications retailer for evaluation. This dataset con-
sists of session level data where users are randomly exposed to
one of multiple treatments via A/B tests. The treatment identifier
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Table 2: Difference between traditional serialized models
and ONNX models for random forests (RF) and deep neural
networks (DNN).

Size (KB) Runtime (s) Accuracy (%)

RF Cloud 11300 0.2642 99.24
ONNX 5895 0.4176 99.24

Cloud 564 0.2578 98.84

DNN ONNX 560 0.0989 98.84

along with profile and contextual features are captured at the time
of treatment. Any subsequent conversions in the form of sign-ups
for offers are then recorded, joined with the features vectors, and
treated as positive samples. A lack of conversion is treated as a
negative sample. The dataset consists of 30,000 samples each with
~ 900 features (~ 17000 after processing and one hot encoding).

Models. We train two types of one-vs-all multi-class classifi-
cation models, random forests and deep neural networks (DNN),
particularly a two-layer multilayer perceptron. Here, a model is
trained for each class and the final output is the argmax over the
classes for the conversion prediction model.

To mimic the on-device setting, we use the Open Neural Network
Exchange (ONNX) format [1]. ONNX is an open source format to
represent machine learning models and enhance interoperability.
Table 2 describes the difference between traditional serialized mod-
els versus ONNX models. Transforming trained random forests to
the ONNX format reduces the storage size by more than 50% but
increases runtime. For DNNs, we see that the size of the models
stay around the same but there is a huge improvement in runtime
complexity. In both cases, the prediction accuracy is unaffected.

Measures. The goal of the attacks is to recover M’s input to
output mappings. We evaluate the attack efficacy via the average
percentage of prediction space (classes) recovered while learning
input to output representations.

3.2 Results

We first identify the runtimes of the attacks described in Section 2.3.
Table 3 contains runtimes of recovering the full set of input to output
mappings in the DNN. All results are aggregated for 100 users. The
model inversion attack performs the fastest; given the simplicity of
the binary classification models in M, it is easy to recover input in
less than five iterations. Random querying on the model input also
performs fairly fast but slower than the model inversion method.
However, we note that running large scale querying is much slower.
With only 1000 unused (extra) features, large-scale querying was
approximately 1045 and 36 times slower than the model inversion
and random querying attacks, respectively.

We further evaluate the querying methods in the white-box and
black-box setting. Figure 1a demonstrates the effect of differing
query sample sizes on the average percentage of prediction space
recovered. The adversary is successfully able to recover the DNN’s
output, that is the potential recommendation content, with a limited
number of queries in both the white-box and black-box scenario.
Attacking the random forest, however, is around 80% successful
with 5000 queries. We hypothesize this is due to random forests
being more robust to outliers than DNNs [3], since they are based
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Table 3: Runtimes of privacy attacks to recover full set of
input to output mappings.

Model Type Attack Runtime (s)
. Model Inversion 0.0531
White-box Random Querying 1.5323
Black-box | Large Scale Querying 55.4894

on decision trees as base learners. The response surface learnt by
a random forest is less smooth than that of a DNN and random
queries are not bounded to the same distribution as the training
data. Thus the DNN ends up revealing more private information
whereas the random forest is more robust to such inputs.

Although the number of queries do not affect performance of
white-box versus black-box models, the runtime is substantially
greater for black-box attacks. We evaluate the impact of the number
of unused features on the attack runtime. Based on the trends in
Figure 1c, we hypothesize the impact grows exponentially. We argue
in Section 4 that this aspect can be used to thwart such attacks.

Figure 1b shows the effect of varying the number of features we
query on the prediction space recovered with 1000 queries. The
results are averaged over ten samples. Interestingly, the adversary
is quite successful in attacking both the random forest and DNN
even with a limited subset of model input being queried.

Key Takeaways: Model inversion and limited querying attacks
can recover the service provider’s private information efficiently
in white-box models. Although results demonstrate that black-box
models are theoretically effective, they are not efficient due to
higher runtimes. The simplicity of the attacks heighten the risk of
server-side privacy leakage.

4 PRESERVING SERVER-SIDE PRIVACY

On-device models are more vulnerable to server-side privacy at-
tacks as they have the ability of running offline. This reduces the
service provider’s authority of its usage and makes it difficult to
track or identify adversarial actions. We present four preliminary
ideas on protecting against server-side privacy attacks.

4.1 Countermeasures for White-Box Attacks

Inference on Encrypted Models. One solution for white-box
models is using homomorphic encryption [6]. Doing inference on
encrypted data can solve the problem of the adversary having access
to too much information. In this case, S would hold the secret keys
to decrypt the output and every time a unique output is produced,
the user will have to connect with S to decrypt it. Thus, S will have
more authority over what is revealed. Encryption will also protect
against traditional gradient-based (i.e., model inversion) attacks.
However, encryption induces additional computational overhead.

Distributing Service. Alternatively, we propose distributing
the output to thwart against white-box attacks. The model output is
often tied to some tangible service. If the inference can be conducted
on the device but the mapping of model output to tangible service
be kept on some central node, then each time the adversary executes
a unique query, they will need to connect to a central node. Since
this method does not require a continuous connection to the central
node, the latency to conduct this is lower than doing full inference
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Figure 1: Results of evaluating the white-box (WB) and black-box (BB) querying attacks on random forests (RF) and deep neural
networks (DNN): (a) impact of varying query sizes on the attack efficacy; (b) impact of varying the number of features being
queried in the white-box attack; and (c) impact of the number of unused features on runtime in the black-box attack.

on a centralized server. In this manner, the number of queries can
be limited and adversarial queries can be more readily detected.

4.2 Countermeasures for Black-Box Attacks

Increasing Dimensionality. Prior work has suggested high data
dimensionality as a preventative measure for black-box attacks [9].
Since the subset of features employed by the model are unknown to
the adversary in this work, a simple yet effective method is collect-
ing more data, regardless of whether it is used in model training.
This will increase the runtime to leak proprietary information as
seen in Figure 1c, making it more difficult to conduct the attack.

Query-based Model Degradation. Additionally, we propose a
query-based model degradation method which degrades the weights
of the model as more queries are conducted. Eventually the model
will output random noise, protecting the hidden function and out-
put from the adversary.

5 RELATED WORK

Most common attacks in the privacy preserving machine learning
domain are concerned with user privacy. Membership inference
attacks intend to identify the existence of a user in the training
set [10] whereas model inversion attacks aim to extract sensitive
features by reverse engineering a trained model [4]. Alternatively,
property inference attacks focus on extracting hidden global pat-
terns in the training data [5].

Closer to our work, model extraction attacks aim to learn in-
formation about the model itself. Model extraction attacks use a
trained ML model to extract model parameters and learn an equiv-
alent shadow model to poison with adversarial examples [8, 9]
or monetize off of the model [11]. However, most applications of
model extraction have been focused on user privacy.

Our work deals with server-side privacy of on-device models.
There has been limited work on exploring privacy of ML models
beyond user privacy. Although some concepts overlap with ex-
isting model extraction literature, such as recovering the model’s
representations, we argue that privacy from the service provider’s
point of view offers a unique set of challenges. To the best of our
knowledge, this is one of the few works that evaluates the extent

to which a service provider’s intellectual property can be exploited
and misused in on-device models. With the growing trend towards
deploying ML models on the device, this is an important problem.

6 CONCLUSION

In this work, we established the importance of server-side privacy
in on-device service models. We developed a taxonomy of white-
box and black-box on-device models and proposed a number of
privacy attacks. Our results demonstrated that such attacks can
reveal a service provider’s proprietary information with little effort
in white-box settings whereas they are more inefficient, yet still
feasible, in the black-box setting. To protect against such attacks,
we discussed preliminary solutions.
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