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Abstract. Advances in computing and communication technologies have resulted
in a wide variety of networked mobile devices that access data over the Internet.
In this paper, we argue that servers by themselves may not be able to handle this
diversity in client characteristics and so intermediaries, such as proxies, should be
employed to handle the mismatch between the server-supplied data and the client
capabilities. Since existing proxies are primarily designed to handle traditional wired
hosts, such proxy architectures will need to be enhanced to handle mobile devices.
We propose such an enhanced proxy architecture that is capable of handling the
heterogeneity in client needs—specifically the variations in client bandwidth and
display capabilities. Our architecture combines transcoding (which is used to match
the fidelity of the requested object to client capabilities) and caching (which is
used to reduce the latency for accessing popular objects). Proxies that Transcode
and Cache, PTCs, intelligently adapt to prevailing system conditions using learning
techniques to decide whether to transcode locally or fetch an appropriate version
from the server. Our experimental results indicate that the use of PTCs produces
significant improvements in the client response times. We show that such results
hold true for a variety of data content types like images and video data. Further,
we find that even simple learning techniques can lead to significant performance
improvements.
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1. Introduction

The explosive growth of the World Wide Web has been accompanied
by a proliferation of mobile devices with networking capabilities. Client
devices differ significantly in their hardware characteristics (display
resolutions, processing capacities), software capabilities and network
connectivity. For instance, a typical networked PDA has 16MB memory,
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a 320x200 color display and 802.11b wireless interface, while a typical
web-enabled phone has a black and white text-only display with a
cellular data connection [6]. Further, the bandwidth of a typical cellular
data connection is 9.6-19.2 Kbps (144 Kbps for GRPS), while that of
a 802.11b connection is 11 Mbps.

Due to this variety in the capabilities of client devices, different
versions of the same object may be suitable for different client devices.
In case of images, for instance, a low resolution color version may be
suitable for a small-screen color PDA, while a 2 gray bits/pixel version
may be suitable for a black and white PDA. Similarly, in case of mobile
phones with text-only displays, textual summaries of web pages may
be more desirable than their full length counterpart. There are three
possible techniques for handling such diverse client needs.

— Maintain all possible versions of the object at the server, one for
each type of device.

— Store only the high fidelity version of the object and employ online
transcoding to dynamically produce low fidelity versions [10].

— Employ an intermediate proxy that uses a combination of transcod-
ing and caching to meet client needs.

Server-based techniques for managing the diversity in client needs have
certain limitations. Maintaining multiple pre-computed versions of each
object can be cumbersome, especially in scenarios where there is a
large heterogeneity in the types of client devices. For example, many
financial institutions maintain multiple versions of their web sites, one
for traditional web clients, another for networked Palm PDAs, and yet
another for mobile phones—each new device type adds to the overhead
of maintaining and updating different versions. While the use of online
transcoding for producing lower fidelity versions addresses this limita-
tion, transcoding is known to be compute-intensive, and consequently,
does not scale during periods of heavy loads and frequent updates.
A more desirable approach is to offload the responsibility of handling
different client types to a proxy. Such a proxy can fetch a high fi-
delity version of a requested object and use transcoding to produce a
lower fidelity version. Further, it can cache the high-fidelity version,
the transcoded version, or both, to quickly respond to future requests.
Such a combination of transcoding and caching allows flexibility in how
future requests are serviced—the proxy may respond to a request by (i)
sending a cached version (in the event the requested version is cached
locally), (ii) transcoding a cached version to the desired fidelity (if a
higher fidelity version is cached), (iii) sending a lower fidelity cached
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version than the one requested (during periods of heavy loads), or (iv)
by downloading the requested version from the server.

Although the use of transcoding in web proxies has been investigated
[6, 7], techniques for combining transcoding and caching techniques
to reduce the overall resource usage at the proxy have not received
much attention. Further, techniques to adapt the transcoding process to
network conditions, proxy load and changing client requirements have
not been explored. Our present work attempts to address these issues by
making the proxy both intelligent and adaptive and by improving the
effectiveness of transcoding by integrating it with caching mechanisms.
We make three contributions in this paper.

— Intelligent transcoding prozies: Our proxy architecture is capable of
learning and making appropriate policy decisions based on prevail-
ing network and load conditions. We have implemented learning
policies for adaptive proxies, which choose between server down-
loads and local transcodings based on the recent history of the
particular client-server pair. Unlike prior approaches that choose
between the two extremes of transcoding and no transcoding [7],
our proxies can support a continuum of choices and use current
system conditions to make an appropriate choice on a per request
basis.

— Adaptive Model: Our adaptive model ensures that policy decisions
are governed by the current prevailing conditions; further, the
model chooses the least expensive option available to serve ap-
propriate data to the client. We use simple techniques like linear
regression and maintaining logs to estimate system conditions such
as available bandwidth, proxy load, etc.

— Transcoding-conscious Cache Replacement: We combine caching
and transcoding techniques by developing a cache replacement pol-
icy that takes into consideration transcoding utility of any cached
object. This aspect of work is similar to that of [5]; the two ap-
proaches are contrasted in Section 5.

In what follows, we first describe, in Section 3, our system archi-
tecture for Proxies that Transcode and Cache (abbreviated as PTCs).
We present our techniques for combining transcoding and caching in
an intelligent fashion in Section 4 and examine the cache replacement
problem in Section 5. We experiment with image and video transcoding
and caching with PTCs in Section 6. Section 7 concludes the paper with
a discussion of future work.
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2. System Architecture

The basic architecture of our Transcoding and Caching Proxy is shown
in Fig-1. The main components of this architecture are:

1. Client: The client device can be a desktop, a laptop, a PDA or a
mobile phone. Clients are assumed to piggyback their capabilities
(in terms of the data fidelity they can handle) with each request;
this specification can be included in the HT'TP headers of the re-
quest [3]. Alternatively, the client capabilities can be specified in a
client profile that is made available to the proxy. In addition to the
client-specified characteristics, the proxy may additionally use the
current system conditions to determine the fidelity appropriate for
the client.

2. Proxy: Our proxy consists of a transcoding engine, a cache, and a
resource manager. The resource manager is responsible for making
decisions when multiple options are available to serve the data.
These decisions are made based on our proposed policies, which
have been detailed in the next section. The proxy takes a request
from a client device, recognizes the capabilities of the client and
accordingly fulfills the request. To do so, it might have to get
the data from the source server and transcode it into the required
version on-the-fly or serve the content from its local cache, possibly
after transcoding it.

3. Server: The web server, source of the data, is enhanced in order
to understand the requirements of the client and proxy and act
accordingly. In the event multiple versions of the object are avail-
able (for example a text-only web page and a graphics-rich page),
the source sends the proxy a version that has at least the required
fidelity.

Our system works as follows.

— The client device sends a HT'TP request to the proxy in the nor-
mal fashion except that it has some headers added to the request
which contain the information about the content, the client is
comfortable with. For example, it can have a header “Quality”
indicating the quality of the object best suited to the client. For
an image, this may represent the JPEG quality level, whereas for
text this may represent the level of summarization that the client
device desires, with higher quality meaning lesser summarization
and more content.
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Figure 1. System Architecture: Transcoding and Caching Proxy

— The proxy receives the request and identifies the client require-
ments. The proxy can use one of several strategies to service this
request.

e It may have the exact required version of the data in its local
cache, in which case, it can just send that version to the client.

e It may have some higher fidelity version of the data, which
can be transcoded locally to the required fidelity.

e If the server has the required version, then it may simply get
that and send it to the client.

e In case the server does not have the required version, then it
may get a higher quality version and transcode is locally and
send it back to the client.

The exact strategy used by the proxy to effect this choice is detailed
in the next section.

— The server receives a request from a proxy. That request may or
may not contain a special “Quality” header. The presence of such
a header indicates that a particular version of the data is being
requested. If the server has that version, it will send it to the
proxy. In case it does not have that version and the proxy desires,
it will send the next higher version. Note that it may so happen
that a proxy might have a higher version in the cache, in which
case, it might request the server to just send the exact version, if
present.
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3. Transcode or Download?

Assuming that the proxy maintains a local cache, each client request
results in one of four possibilities:

1. Full Hit: The cache contains the exact version requested by the
client.

2. Partial Hit: This may occur, when the cache has a higher fidelity
version. The higher version can be transcoded locally to the desired
version For example, proxy has a quality 75 JPEG image when the
request was for the quality 50 JPEG of the same image.

3. Secondary Hit: This happens when the proxy has a version with a
lower fidelity than the one requested, proxy has the option of either
downloading the appropriate version from the server, or serve the
lower version, if that is acceptable to the client.

4. Miss: A miss occurs when there is no version of the data available
in the cache.

Clearly, full hits and misses are easy to handle—the requested object
is served using locally cached data in the event of a full hit or down-
loaded from the server in the event of a miss (if the server returns a
higher fidelity version, a transcoding step is necessary before responding
to the client). In the rest of this section, we outline our strategies to
handle partial and secondary hits.

3.1. PARTIAL HIiT

As mentioned earlier, a partial hit is said to occur when the cache
contains a higher fidelity version than requested by the client. Such a
version can be easily transcoded to the desired version. This situation
presents the following possibilities to the proxy:

— Transcode the higher version to the required version and send it
to the client. (Option T)

— Check if the server has the required version and if it has, send that
to the client after downloading from the server. (Option D)

If the server does not have the required version, we choose Option T.
In case the server also has the required version, our proxy chooses one
of the options trying to minimize the response time of the client. The
decision is made after considering the following factors':

! Another factor which would contribute is the load on the server. However,
taking measuring that at the proxy would cause infeasible overheads. Therefore, our
techniques do not take into account the load on the server

ptc.tex; 18/05/2003; 13:50; p.6



7

— Complexity of transcoding: This may in turn depend on the
version of the object to be converted from (before) and the version
to be converted into (after), the object type and size of that object

[7].

— Proxy Load: For a dedicated proxy, the number of clients being
served is a good estimate of the load.

— Network Delays between the source and proxy.
To decide between Option T and Option D, we propose the following:

1. Maintain the following statistics for each application of the transcod-
ing process:

— Size of the data before and after transcoding (s, and s, re-
spectively).

— The number of clients connected to the proxy (n). This rep-
resents the current load on the dedicated proxy.

— The time taken to transcode from Version-A to Version-B
(tAB)-

2. Also maintain the following information about any data that is
downloaded by the proxy.

— Size of data (sq).

— Source of data (i.e., the server, where it is downloaded from)
(S)

— Time taken to download that data (¢4). This will be the round
trip delay between the proxy and the server.

For a typical transcoding method and object type, as a first approx-
imation, we assume that, ¢t 4p, the time for transcoding is a function of
its object size (sp) and the number of clients connected to the proxy

taB = TaB(sp, 1)

where T4p is some function. Now, if we can approximate the func-
tion T4p, we can approximately calculate the time that transcoding
a version A to version B would take under particular load conditions
on the proxy. This is where the statistics come into play. We store all
the above mentioned information and when we have enough data, we
evaluate t4p beforehand by approximating 74p. An important point
to notice is that the prediction models may be different for different
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kinds of objects (for example, JPEG-JPEG transcoding generally varies
linearly with sp, while it is not so for JPEG-GIF transcoding [7]).

Such an estimation gives us the time taken by the proxy to transcode
the higher version object to the required version. Hence we have calcu-
lated the time that would be taken by Option T.

On similar lines, we try to predict, t4, the time to download a par-
ticular object from its source (Option D). There has been considerable
amount of work done in this area [8, 11]. As an approximation, we
assume the download-delay to be a function of the size of the object
to be downloaded and the proxy load (represented by the number of
clients being served by the proxy).

ta = Ds(sa,n)

Then we attempt to approximate Dg. A point to be noted here
is that we do not have to interact with the server to get the size of
the data to be downloaded (sq). Since we have a higher version of
that data, sq can be estimated by using the transcoding data, s; (size
before transcoding) and s, (size after transcoding) values in particular,
for that transcoding and other data format information [7].

This estimate would give us the time that would be taken by the
proxy to download the requested version of the object under present
conditions (Option D). However, a simple comparison between ¢4 and
ty might not be appropriate. It is usually preferable to serve clients
with local data primarily because network behavior might be erratic
and hence difficult to capture using a simple prediction model. So we
impose a condition that if ¢t4p is greater than M times ¢4 then it is
better to download from the server, where M is a tunable parameter.
Thus, the heuristic is of the form:

Iftyp < M x t,
then transcode locally
else download the required version from the source.

There might be times when we don’t have enough data to estimate
T and D. In such cases we set the default to be the local transcoding
of the higher version present in the cache.

Clearly, we need ways to approximate functions 7T4p and Dg. For
this, we propose a number of estimation techniques, ranging from sim-
ple and basic techniques to complex algorithms, which give better
approximations but result in processing overheads which cannot be
ignored. A few sample techniques are:

1. IP based: A simple scheme which maintains a record of IP ad-
dresses for servers, and chooses between local transcoding and down-
loading from the server depending on the source address. It learns
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to make a decision, depending upon a single factor of server address.
On a very basic level, this can divide the servers into local servers
and remote servers, and can learn to choose local transcoding for
remote servers and downloading from the servers if they are local.
But clearly this would be prone to changes in network behavior for
a single client-server pair.

2. Min-Min Comparison: Another possibility is for a scheme which
assumes a best case scenario for both Option T and Option D,
that is, it assumes that the next request for a similar sized file
would take the minimum of the times taken by both the options in
the last N transcodings or server downloads. This scheme is fairly
simple and does not use the statistics of the load on the proxy,
bandwidth available, etc. However, since we are using only the very
recent times as the basis of approximations, the decision is based
on the prevailing conditions and takes into account the available
bandwidth, load on proxy and server, etc.

3. Multiple Linear Regression: A little more complex policy is
that of using Multiple linear regression. It is a common learning
technique for linear models. We assume T4p and Dg to be linear
functions and learn this function using regression. For this, we use
the statistics for load on the CPU (represented by the number
of client connections), the time taken for transcodings and server
downloads, and the size of the file to predict the time to transcode
locally, and the time to download the required version from the
server and make an appropriate decision.

The techniques which we have used are fairly simple ones, and em-
ploy the past performance to predict times to transcode and download.
Another option is to use a more complicated policy for Option T as
mentioned in [7]. The more accurate policy has to be based on a va-
riety of other factors, like the content of the image (that is whether
the image is a natural image or an artificially rendered image), image
dimensions, compression algorithm and transcoding parameters (depth
of quantization and/or scaling) [7]. Such a policy would more accurately
predict t4p, but would be computationally demanding as well.

3.2. SECONDARY HIT
Secondary hit is said to occur when the cache at the proxy has a lower

fidelity version than requested. In this case there are the following
possibilities:
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— If the user can compromise on QoS or it is known that this version
has all the data that might be of interest to the user, we can
respond with the lower fidelity version.

— If the server has the required version, the proxy gets that version
from the server and sends it to the user.

— If the server does not have the required version, the proxy gets a
higher fidelity version and transcodes it to the required version.

In case of a secondary hit the decision has to be made keeping
in mind the tradeoff between time to get a higher version from the
server, and compromise on quality by the client. This should be done
on the basis of predefined course of action for the server-client pair,
with inputs like available bandwidth, and predicted time to download
from the server. Such a scenario can be dealt with by integrating a
personalization engine with the proxy, so that we have the exact details
of user interests and his or her agreement to compromise on QoS.

In order to develop personalized utilities for the client devices, the
proxy needs to have an identification mechanism, with which it can
identify a client. Along with this, the proxy needs to store certain
“permanent” characteristics of the client (for example, hardware char-
acteristics), which will be called its profile. Also, there can be other
characteristics of the requests which can vary from one session to an-
other. These characteristics will be for a particular session only and
can be included in the HT'TP headers of the requests.

The broad idea of having two separate classes of such characteristics
is that any data sent to the user should be suited to the client device
characteristics and the user can select the content type from the possi-
ble options. The idea will be made clearer using the following example.
Let the client device be such that it can show data only if its quality
is more than 20 (quality level 0-100) and less than 80. The permanent
characteristics of the device stored at the proxy would make sure that
no data outside this window is ever sent to the client and the session
data characteristics (which the user can choose at its client device) will
make sure that the user receives the quality version it would like to
receive in this particular session (say user wants quality version 50.
This information will be part of the session characteristics).

Another advantage of this mechanism is that it is extensible and
many more personalized utilities can be added to the system. For ex-
ample, we can have a system of personalized shortcuts, where a client
may just type in a few characters and that will take him to his desired
site or download him the latest stock quotes. Such shortcuts can be
stored in the profile of the client.

ptc.tex; 18/05/2003; 13:50; p.10



11

The handling of this issue is through the use of good, convenient
interfaces with which a user can specify what he would like to happen
in such a scenario, the development of which is beyond the scope of
this paper.

4. Cache Replacement Policies

Any cached object can be accessed for two reasons:

— The proxy gets a request, specifically for that object. We call this,
a Direct Reference.

— The proxy gets a request for a lower version of an object and it
has to transcode this object to the desired version. We call this,
Transcoding Reference.

Each object stored at a proxy will hence have two kinds of utilities:

— Reference Utility: This is the utility of the object because of
the time it saves when a client requests this object (that is, a Full
Hit occurs), since this object is directly sent to the client from the
local cache. This is similar to the normal scenario of a cache hit.

— Transcoding Utility: This is the utility of the object, because of
the time it saves when a client requests a lower version of this
object (that is, a Partial Hit occurs). The object can now be
transcoded to the desired version and sent to the client.

Notice that it might be profitable to keep an object in the cache which
is not referenced directly even once (very low reference utility) but is
extremely useful since lots of requests are being served by transcoding it
to other requested versions (very high transcoding utility)!

To accommodate such a scenario, we assign a profit metric to each
cached object. This profit metric is an augmented version of the metric
used in WATCHMAN [9]. Each cached object, O;, has a profit value,
F;, given by:

P =M Ei:jbij
j: All possible versions into which O; can be transcoded.
Ai: Average rate of direct reference of the object.
vij: Average rate of reference of the object, when it is referenced for
transcoding to version j.
¢;: Cost saved by the presence of this object, when it is referenced
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directly.

b;j: Cost saved by the presence of this object, when it is referenced for
transcoding to a version j.

s;: Size of the object.

In the above expression, A;.c; corresponds to the reference utility of
the object. It determines the cost savings due to caching O; for direct
reference requests. In case two objects have the same cost savings, it is
beneficial to evict the one with the larger size as it frees more space in
the cache. Hence the inverse relationship with s;.

The second subexpression corresponds to the total transcoding util-
ity of the object. The expression, v;; b;; corresponds to the transcoding
utility of the cached object for its transcoding to version j. Since an
object can be transcoded to a number of versions, we need to sum
this over all possible j’s. Again the s; factor appears because of the
preference to evict larger objects.

4.1. CALCULATION OF PARAMETERS

In this section, we discuss techniques to determine X;, 7;;, ¢; and b;;.
First let us see how we determine A; and -;;. A; is estimated based on
a moving average of the last K inter-arrival times of requests to O;.
Notice that these references are direct references. It is defined to be:

. _ K
AZ  t—tg

where t is the current time and ¢ is the time of the last K** refer-
ence. The inclusion of current time ¢ in the expression ensures that the
objects which were referenced long back have lesser profit values. This
guarantees aging of cached objects. In case less than K references are
available, ) is estimated using the available references. Similarly, ;; is
estimated based on the moving average of last K inter-arrival times of
accesses to O; for transcoding to Version j.

. _ K
Yij = 1otk

We need to determine c¢; and b;;. Let us assume that there are n
versions of an object in the cache, { V; ... V;, } with V; being the lowest
version and V,, being the highest version.

Notice the fact that Vi can be generated in two ways:

— Download from its source (Time taken for this option is given by
ts1)

— Transcode from V}, j = min(2,...,n) where V; is in cache. (Time
for this option is given by ty,,1;)
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We take the minimum over j for the second option, since it is com-
putationally cheaper to transcode an object from an immediate next
higher version, which will have smaller size than other available ver-
sions. The proxy will generate V; by the method which takes minimum
time. Therefore,

c1 = min(ts;, tv;—v,) » § = min(2,...,n) such that Vj is in cache.

V1 will have zero transcoding utility since it cannot be transcoded
into any other version. Therefore,

bij =0V}
Let us consider a version V; where 7 € {2,...,n—1}. On similar lines,
ci = min(ts;, tv;v;), § = min(i + 1,...,n) such that V; is in cache.

Let us consider its transcoding utility. It can be used to transcode
into 7 — 1 versions. Therefore, whenever it is accessed for transcoding to
Version j, the amount of time saved thereby is given by the minimum
of the time to download Version j from its source or to transcode it
from a version higher than i. Hence,

bij = min(ts; — tv,5v;, tymy; — tvisy;),
k = min(i + 1,...,n) such that Vj is in cache.

For the highest version, V,,, it is easy to see,

cp = s,
bnj = ts; — tv,»v;

4.2. MAINTENANCE OF PARAMETERS

With each cache object, we maintain statistics for its last K direct
and K transcoding references for each type of transcoding from this
version to another version. Whenever the object is accessed, we update
these statistics, depending on whether it was a direct or a transcoding
reference. In order to avoid overheads of updating A and ~y for changing
values of ¢, profit values are evaluated on-the-fly whenever the object
has to be considered for eviction from the cache.

The other parameters requiring regular updates are c; and b;;. ¢;
and b;; depend on the presence of other versions of the objects in the
cache as well. Hence, we will have to update these values whenever a
new version of the same object is either brought in or evicted out of
the cache. These periodic updates help since these values also depend
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on the present load conditions on the proxy and it will make sure that
they stay true to the current conditions.

4.3. ALGORITHM

Since the objects with lesser references have less reliable estimates
of A; and <;;, the cache replacement algorithm gives them a higher
priority for eviction. As [9] suggests, we consider all objects with just
one reference (Direct and Transcoding) and evict the ones with least
profit scores. Then we consider the objects with two references and so
on. The parameters used are (i) S: Size of object to be cached, (ii)
C': Set of objects to be replaced, and (iii) Maz: Maximum number of
references to any object.

Algorithm 1 Replace(S)

for all s = 1 to Maz do
R; = list of retrieved set of objects with ezxactly i references
arranged in increasing profit order

end for

R = list of all retrieved set of objects arranged in order R1 < Ry <

e & RMax

C = minimal prefiz of R such that coSi > S

return C prefie of EO]GC !

4.4. PERFORMANCE

We implemented the above mentioned Cache Replacement Strategy
and compared it with LRU. The data objects accessed consisted of
300 JPEG images of 3 different versions. The total size of the images
is 100 Mb. The access trace was created using Zipf’s law [4] with «
= 0.5. There were a total of 1000 requests by 5 concurrent clients.
Fig-2 contains the plot of hit ratio with different cache sizes. The hit

P #Full Hits +#Partial Hits N T
ratio is defined to be FTotal Fequests . As the plot indicates,

our algorithm (PTC) works very well as compared to standard LRU.
This is because of the replacement policy being based simply on the
reference and transcoding utilities of the object instead of being based
on the last access to the object.

We would like to point out that a technique similar to the above,
for transcoding-conscious cache replacement, was recently proposed in
[5]. The work uses the notion of a weighted transcoding graph and
adopts a general profit function based on the aggregate effect of each
object. For each cached object, a corresponding weighted transcoding
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graph is maintained. For example, consider a graph in Fig-3. The nodes
indicate various versions for a cached object and the edges represent the
transcoding relationships between the various versions. For example,
an edge between node 1 and node 2 indicates that version 1 can be
transcoded into version 2 with transcoding cost represented by the
weight of the edge (10). A generalized profit function is formulated in
a manner similar to the one devised in our work.

Figure 3. Weighted Transcoding Graph

Despite the similarities, there are three main differences between the

two:

— They assume constant transcoding complexity for a specific before
and after transcoding pair. In general, system conditions such as
the current proxy load can significantly impact this value; our work
takes such variations into account.
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— They assume a constant server download rate from the server. In
general, network conditions on the server-proxy path may vary
depending on the network traffic, an aspect that is considered in
our work.

— Finally, we use learning approaches to endow intelligence to our
proxies and learn from past history—an important difference that
can potentially yield performance improvements.

5. Experimental Evaluation of PTCs

We evaluated our policies for two types of data, JPEG images and
MPEG-1 video streams. In Section-5.1, we describe the client-proxy-
server setup used in the experiments. Section-5.3 contains our evalua-
tions involving image data. Section-5.3 contains our experiments with
video data.

5.1. SETUP

Our system consists of a proxy, an enhanced web server and a number
of client devices. The web server is a modified version of Apache-1.3.19.

The experiments used a collection of a three thousand JPG images,
which were collected from local users at IIT Bombay. For the video
data, we used 30 unique MPEG-1 files. The server has 3 versions of
each file of quality factors 100, 50 and 20. The prozy is a modified Java-
based transcoding proxy called Rabbit [1]. The transcoding mechanism
used for the image data is the “convert” utility in Linux and [2] for
the video data. The client devices are simulated by Perl scripts which
connect to the proxy and simulate HTTP requests containing special
“Quality” headers. All the three components are on regular desktop
machines with Pentium III, 800 MHz processors and 128 MB of RAM.
Two different sources, local and remote, are used in order to do a
controlled performance evaluation of our proposed policies. The local
source is a machine connected to the proxy via IIT Bombay LAN. The
remote source is located at the University of Massachusetts, Amherst.
We implemented 4 different policies and compared their total response
times.

5.2. EXPERIMENTS INVOLVING IMAGES

Recall that a partial hit occurs when the cache contains a higher version
of the data requested and the source has the exact requested version

ptc.tex; 18/05/2003; 13:50; p.16



17

of that data. In such a scenario, the proxy has to choose between
downloading the data from its source server, or transcoding the higher
version locally.

To show the performance improvement when we introduce intelli-
gence in proxies, we compare two intelligent polices for PTCs, PTC:Min-
Min and PTC:Regression, and compare their performance with a third
policy, Download-all, which always chooses server download, and a
fourth, Transcode-all, which always chooses local transcoding.

Regression policy approximates the time to transcode and time to
download from the server on the basis of number of connections, and the
size of files. It is implemented with a learning time of 16 connections,
i.e., it starts to take decisions for partial hits after 16 partial hits have
taken place. During the first 16 connections, it always chooses local
transcoding.

Min-Min policy is implemented with N = 5, i.e., it approximates
the time for local transcoding or for server download from the last 5
connections of that data size range, for that particular client-server pair.
The data items are divided in groups of 10 KB in our implementation.
Because the files are grouped in size ranges, to make an approximation,
at least 5 partial hits must have happened in that particular size range.

5.2.1. Traces

Requests for 3000 files were made by 5 concurrent clients. The trace was
created using Zipf’s law [4] with o = 0.5. Each request for a 100 quality
factor image is followed by requests for a lower version of the same
image. There were around 1200 partial hits for this request stream.
The set of experiments were run with both local and remote sources.

5.2.2. Performance
Fig-4 shows the plot of total response time for the stream of requests
for eight different runs for a local source, with M = 4. Such a situation
simulates the scenario when the source-proxy communication is fast.
Not surprisingly, since the server is local, in almost all the runs the
download-all option has the minimum response time. It is very closely
followed by the PTC policies. Transcode-all has the maximum response
time. That the PTC policies are performing well is encouraging given
their processing overheads and the effect of the initial learning period.

The performance of the PTC policies lies in its ability to recognize
the fast server-proxy link and hence doing minimum amount of local
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transcoding. This is clearly evident from Fig-5, which plots the number
of times, PTC policies chose to transcode a higher version locally. For
Regression policy, there are close to 16 local transcodings in all runs,
which is the number of transcodings in the learning phase. The Min-
Min policy has a larger number of transcodings due to longer learning
phase, and hence the total response time is also more.

A similar set of experiments were run with a remote source. Fig-6
plots the total response times for the four approaches for this case (with
M = 4).
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Figure 6. Total Response Times (Remote Source; M=4)

As the plot indicates, the PTC policies turns out to be the near
best in almost all cases. This again is because of its ability to choose
the better of the two available options upon the occurrence of a partial
hit. Fig-7 plots the number of times local transcoding was preferred
over server download. Clearly, with a remote server, local transcoding
is chosen in more than half the cases, since it is better to transcode the
object locally than getting it from a remote source.
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Figure 7. No of transcodings (Remote Source; M=4) Note: In download-all case the
no. of local transcodings is 0
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We evaluated the performance of the PTC policies with different
values of M. Fig-8 gives the number of transcodings done for remote
source with different values of M.
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Figure 8. No of transcodings for different M’s (Remote Source)

Hence, by controlling the value of M, we can manipulate the choice
of local transcoding and server downloads, thus making a trade-off
between load on proxy and network traffic.

5.2.3. Analysis of Performance

To better understand the performance of the policy, we narrowed down
the performance for full hits, partial hits and misses. We plotted the
performance of two policies (Regression and Min-Min) for the cases
of a local and a remote server. Fig-9 plots the response times for the
local server. The only non-intuitive part is a greater response time for a
partial hit than a miss for a similar sized data object. This is explained
by the fact that in case of a local server, the policy mostly chooses
to download the object from the server for a partial hit. Hence the
time would at least be equal to the time of a miss. The difference is
attributed to the processing overheads for the policy, which include the
learning phase.

Fig-10 contains a similar plot for a remote server. Clearly the partial
hit policy is reducing the total response time. Since in most of the real-
life scenarios, the web server is remote, the use of such a policy is
justified and beneficial.

As seen in the last two plots, there is very little to choose from
the two policies even though one of the policies (Regression) is more
accurate than the other (Min-Min). This indicates that the processing
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overheads are significant and are influencing the total response times.

This is further clear from Fig-11.

The regression policy is taking around 20% of the total response
time, whereas a simpler Min-Min policy is taking just 5%. Hence, we
claim that a more accurate and complex policy would not necessarily
better the performance and even a simple policy can be good enough.
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5.2.4. Performance for Different Request Ratios

To compare the performance of our adaptive policies we calculate the
total response time for different request sets, with the percentage of
local requests varying from 0 to 100%.
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Figure 12. Response Times for Different Proportion of Local Requests

As we see in Fig-12, the PTC policies, both Min-Min and Regression
perform far better than the policies which always choose local transcod-
ing over server download or vice versa, for almost all request ratios.
Only when 95% or more of the requests are local, is there not much
to choose between the policies. Since this situation is highly unlikely,
simple, yet intelligent, policies are highly desirable.
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Table .

| Quality | Resolution | Frame Rate | Bit Rate |

| 100 | 1 | 1 | 384000 |
| 50 | 2 | 2 | 128000 |
| 20 | 3 | 2 | 64000 |

5.3. EXPERIMENTS WITH VIDEO STREAMS

We generated 300 requests for MPEG-1 files using 5 concurrent clients.
The request pattern was a Zipf’s law with alpha=0.5. As with images,
each request for 100 quality video object is followed by requests for
lower quality videos. The MPEG-1 files were movie clippings, with
all high quality files having frame rate of 30 per second. For lower
quality files, 1/frame-rate of frames are actual frames, other frames
being dummy frames. The resolution, frame rate and bit rate of the
different versions have been tabulated in Table-5.3. Experiments were
conducted with a remote server as well as a local server with M=2 in
both the cases. As mentioned earlier, we have used the video transcode
utility built for linux [2]. For a local server, downloading all files is
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Figure 13. Total Response Times (Local Source)

expected to give better performance than local transcoding, because
of the high bandwidth between the server and the proxy for down-
loads and the high overheads of video transcoding. As expected, the
Download-all policy performs considerably better then Transcode-all
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policy. Our adaptive policies give slightly lower performance in com-
parison to Download-all policy, because of the computation overheads.
During the initial learning period, in the absence of sufficient data
for predicting transcoding and download times, download is chosen
as the default. The Transcode-all policy for videos gives a relatively
high total response time, because video transcoding for MPEG-1 is a
time consuming and intensive process. With the remote server, the
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Figure 14. Total Response Times (Remote Source)

Transcode-all policy gives better performance in comparison to the
Download-all policy. However, the difference is less when compared to
that for image files. This is because of the relatively large size of MPEG-
1 files, and hence low overheads per download for the initial connection
set up time between proxy and server. With nearly the same overheads
for Download-all and Transcode-all policies, our adaptive policies have
the option of choosing between the two options, and in almost all cases
give a better performance in comparison to either of the base policies.

In summary, the performance results for video objects are very sim-
ilar to the results obtained for images, that is, the adaptive policies do
better than the non-adaptive policies, despite differences in the size of
files and the complexity of transcoding.

6. Conclusions and Future Work

In this work, we have developed intelligent proxies to efficiently handle
diverse client devices accessing the WWW. The proxies have been inte-
grated with a caching engine and the resulting caching issues have been
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identified and strategies proposed to handle these issues. As our results
indicate, our adaptive policies make the most appropriate choice. Also,
the proxy adapts itself to the current network traffic and proxy load
conditions. We have shown that basic and simple policies can lead
to considerable performance improvements. We have also developed
a cache replacement algorithm which has been shown to work much
better than vanilla LRU.

This work can be extended to include sophisticated proxy-level secondary-
hit policies, for example, the proxy can act on its own depending upon
the prevailing conditions, and choose an appropriate version for the
client. We need to develop and implement a personalization engine,
which keeps profiles for clients, and helps make better decisions for
secondary and partial hits. There is also a need for more extensive
testing of various prediction mechanisms, especially with objects that
require different types of transcoding.
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