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Abstract

Enterprises with existing IT infrastructure are beginning
to employ a hybrid cloud model where the enterprise uses
its own private resources for the majority of its comput-
ing, but then “bursts” into the cloud when local resources
are insufficient. However, current approaches to cloud
bursting cannot be effectively automated because they
heavily rely on system administrator knowledge to make
decisions. In this paper we describe Seagull, a system de-
signed to facilitate cloud bursting by determining which
applications can be transitioned into the cloud most eco-
nomically, and automating the movement process at the
proper time. We further optimize the deployment of ap-
plications into the cloud using an intelligent precopying
mechanism that proactively replicates virtualized appli-
cations, lowering the bursting time from hours to min-
utes. Our evaluation illustrates how our prototype can
reduce cloud costs by more than 45% when bursting to
the cloud, and the incremental cost added by precopying
applications is offset by a burst time reduction of nearly
95%.

1 Introduction

Many enterprise applications see dynamic workloads at
multiple time scales. Since predicting peak workloads
is frequently error-prone and often results in underuti-
lized systems, cloud computing platforms have become
popular due to their ability to rapidly provision server
and storage capacity to handle workload fluctuations. At
the same time, many medium and large enterprises have
significant current investments in IT data centers that
house compute and storage systems. This IT infrastruc-
ture is often sufficient for the majority of their comput-
ing needs, while offering greater control and lower op-
erating costs than the cloud. However, workload spikes,
both planned and unexpected, can sometimes drive the
resource needs of enterprise applications above the level
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of resources available locally. Rather than incurring cap-
ital expenditures for additional server capacity to solely
handle such infrequent workload peaks, a hybrid model
has emerged where an enterprise leverages its local IT
infrastructure for the majority of its computing needs,
and supplements with cloud resources whenever local re-
sources are stressed.

Employing cloud bursting can save enterprises a sig-
nificant amount of money. Figure 1 illustrates a scenario
where a business typically requires five “extra large”
servers for its daily needs, but two days a week expe-
riences a spike up to ten servers. Using Amazon’s EC2
Cost Calculator [2], we can see that a hybrid approach is
most efficient and lowers costs by up to 29% a year.

This hybrid technique, which is referred to as “cloud
bursting”, allows the enterprise to expand its capacity
as needed while making efficient use of its existing re-
sources. While commercial and open-source virtualiza-
tion tools are beginning to support basic cloud bursting
functionalities [11, 10, 14], the primary focus has been
on the underlying mechanisms to enable the transition
of virtual machines between locations. These systems
leave significant policy decisions in the hands of system
administrators to determine when to invoke cloud burst-
ing and which applications to “burst”. This may lead
to poor choices in terms of minimizing cloud costs or re-
ducing downtime during the transition, especially when
there are a large number of diverse applications in the
data center and different cloud platform pricing models.

We have developed Seagull to alleviate the above chal-
lenges; Seagull dynamically decides which applications
can be moved to the cloud at lowest cost, and then per-
forms the migrations needed to dynamically expand ca-
pacity as efficiently as possible. By automating these
processes, Seagull is able to respond quickly and effi-
ciently to workload spikes.

The first insight of our work is that rather than naively
moving an overloaded application to the cloud, it may
be cheaper and faster to move different applications and
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Figure 1: Hybrid clouds can utilize cheaper private resources
the majority of the time and burst to the cloud only during pe-
riods of peak demand, providing lower cost than exclusively
private or public cloud based solutions.

then assign the freed-up server resources to the over-
loaded application. Bursting an application to the cloud
involves copying its disk image and any application data.
Since this disk state may be large, a pure on demand
migration to the cloud may require hours to copy this
large amount of data. The second insight of our work is
that periodic background precopying of disk snapshots of
candidate applications can significantly reduce the cloud
bursting latency—since only the incremental delta of the
disk state needs to be transferred to reconstruct the disk
image in the cloud.

Our paper makes several contributions: (i) a placement
algorithm that determines which applications should be
moved to minimize cost; (ii) a precopying algorithm that
decides which applications should be proactively repli-
cated to the cloud to enable much faster VM migra-
tions; and (iii) a prototype of Seagull and an experi-
mental evaluation of it on a Xen-based local data center
and the Amazon EC2 cloud platform. We show Seag-
ull’s placement algorithm can make intelligent decisions
about which applications to move, lowering the cost of
resolving an overloaded large scale data center by over
45%, while precopying significantly lowers burst time
with only a modest increase in cost.

2 System Model and Problem Statement

Seagull seeks to enable more agile cloud bursting that
can respond to moderate workload spikes within hours or
even minutes. We assume that each application is com-
posed of one or more virtual machines that are housed
in private data centers, which offer mechanisms for dy-
namic scaling of server capacity. We assume that appli-
cations support either or both of the following mecha-
nisms to scale capacity: i) horizontal scaling: additional
replicas are started on demand to increase the capacity ii)
vertical scaling: an application’s VM is allocated more
resources such as more CPU cores. For simplicity, we
assume access to a workload forecaster that can predict
when a data center is becoming overloaded. We also as-
sume that public cloud follows a resource pricing model
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Figure 2: Seagull architecture

similar to Amazon EC2.

We have designed Seagull to both automate and op-
timize cloud bursting tasks within this setting. In this
work, we focus on answering the following two ques-
tions: 1) Which applications to cloud burst so that cloud
server and I/O costs are optimized? ii) How to use judi-
cious precopying to achieve the tradeoff between cloud
bursting latency and cost?

3 Placement & Precopying in Seagull

Seagull is composed of multiple interacting components
as shown in Figure 2. The Cloud Management Layer of-
fers a common interface to interact with both the private
and public clouds. The actions performed by this layer
are determined by the Burst Manager, which is responsi-
ble for important decisions about application placement,
bursting, and precopying. This section describes the
placement and precopying algorithms used by Seagull.

Intelligent Placement The intuition behind the place-
ment algorithm is to maximize the utilization of local re-
sources, which are cheaper than public resources, and
migrate the cheapest applications when local resources
are insufficient to handle the overload. To do so in a
cost-effective manner, the algorithm greedily picks those
applications to move that free up the most units of local
resources relative to their cost of running in the cloud.’
To determine which applications should be moved, we
assume the duration of the workload spike, L, and the
desired capacity C for each virtual machine are known.
Note that C is a vector representing the CPU, disk, net-
work and memory capacity needs of each VM. We define
the cost of bursting an application, say A, that is com-
posed of n virtual machines in terms of the cost of trans-
ferring its memory and storage, storing the data, and then

! Additional administrative criteria such as security policies may
also preclude some applications from being valid cloud burst targets;
we assume that system administrators provide this information as a
cloud bursting black list.



running it in the public cloud:

n
Cost =) C.tranj+C_storj+C_run;j*L, M
j=1

where C_tran; and C_stor; are calculated based on the
amount of data that must be transferred and stored in the
cloud to run the j* VM of A (i.e. VM;); C_run; is de-
termined based on the capacity requirements, C, of the
virtual machine (e.g., the number of cores it requires)
and must be multiplied by L to account for the length
of time the VM would need to remain in the cloud be-
fore the workload spike passes. We sum the cost across
all VMs in the application to account for the constraint
that all virtual machines that comprise an application be
grouped together either in the local data center or on the
cloud. Notice that we can easily plug in different cost
functions to account for different pricing models and sce-
narios such as deploying VMs from the same applica-
tions across different data centers.

We can use Equation 1 to calculate the cost of bursting
the overloaded application, however, Seagull must de-
cide whether to simply move the overloaded application
itself, or to find a different set of applications that can be
moved more cheaply in its place. To this end, Seagull
must consider each of the VMs that make up the over-
loaded application and see if there is a way to meet their
resource requirements in the local data center by either
local reconsolidation or selecting one or more different
applications to burst.

The virtual machines of the overloaded application are
considered in decreasing order of their resource require-
ments. For each of these virtual machines, Seagull con-
siders the potential hosts in the local data center sorted
by two criteria: 1) their free capacity in descending or-
der and 2) the total cost, in increasing order, of moving
all applications (including related VMs) on the host to
the cloud. The first criteria biases Seagull towards uti-
lizing the free capacity in the local data center first, po-
tentially reducing the number of applications that need to
be moved to the cloud. The second criteria ensures that
hosts running low cost applications are considered first.

When hosts have been sorted in this way, the algo-
rithm considers the first host and attempts to decide if a
set of VMs on that host can be moved in order to cre-
ate space for the overloaded VM. Each virtual machine,
VM, on the host is ranked based on: num_cores;/Cost,
where Cost is the cost of moving the full application that
VM; is part of, and num_cores; is the number of CPU
cores currently in use by the virtual machine. The VMs
on the host are considered in decreasing order of this cri-
teria, and the first k VMs are selected such that the free
capacity they will generate is sufficient to host the over-
loaded virtual machine. The intuition behind this greedy

heuristic is that it optimizes the amount of local capacity
freed per dollar spent running applications in the cloud.
Each of the overloaded applications is considered for
bursting using this metric. When a solution is found,
the total cost of moving all of the marked applications
is compared to moving just the overloaded application;
the cheaper of the two options is chosen in each case.

Opportunistic Precopying In general, an applica-
tion’s state may be very large. Migrating all of this data
at cloud bursting time can take hours or even days, sig-
nificantly reducing the agility with which a data center
can respond to rising workloads.

Seagull performs precopying by transferring an incre-
mental snapshot of a virtual machine’s disk-state to the
cloud. Seagull’s precopying technique must make two
important decisions: i) which applications to precopy,
and ii) how frequently to precopy each one. Each of these
decisions leads to a cost-benefit tradeoff. The larger the
set of candidate applications chosen for precopying, the
greater the chances Seagull’s cloud bursting algorithm
will pick one of the precopied applications to burst to
the cloud when the peak workload arrives, increasing the
agility of the system to respond to local stress. Similarly,
the more frequently each application is precopied to the
cloud, the smaller the delta will be, leading to a smaller
bursting latency. Thus a careful choice of the candidate
set of applications to precopy and precopying frequency
can both reduce the overheads. We have implemented a
strategy that computes a set of candidate applications to
balance the benefits of precopying against its cost, and
also two baseline strategies for comparison.

Our cost-benefit tradeoff strategy first generates an
overload list, i.e. a list of applications likely to become
overloaded?. Seagull then runs its cloud bursting algo-
rithm, from the previous section, in an offline mode over
the overload list. That is, for each application A on the
overload list, Seagull runs its algorithm to see which ap-
plication(s) get chosen for bursting if A were to become
overloaded. These applications form the precopy list.

The disk state of applications in the precopy list is
replicated to the cloud based on a frequency strategy. In
the simplest case the precopy frequency can be chosen
statically—say once a day or once a week. However,
Seagull can analyze the write rates to the virtual disks to
“tune” the precopy frequency for each application in the
list, managing overall cloud costs while retaining agility.

The two other strategies that we use as baselines for
our comparitive evaluation are: i) Random Precopying:
selects a random set of applications to be precopied
based on the maximum expected overload (e.g., ran-

2Seagull can generate such a list based on the history of prior cloud-
burst instances and system administrators can alter it, based on their
expert knowledge of which overload scenarios are still likely in the
future.
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Figure 3: Without precopying, a cloud burst can take tens of
minutes to copy data.

domly precopy 20% of the data center’s applications).
ii) Naive Precopying: selects the set of applications that
is predicted to become overloaded for precopying.

4 Experimental Setup and Evaluation

We have implemented Seagull’s placement and precopy-
ing algorithms as modules that extend the OpenNebula
cloud management software. We have created a pri-
vate cloud environment on a lab cluster using OpenNeb-
ula over the Xen-hypervisor and used Amazon EC2 as
our public cloud. We use three applications, TPC-W,
Wikibooks and CloudStone for our evaluation. We have
created private-cloud as well as public-cloud appliances
for each of these three applications and their respective
client applications. An appliance instance will create the
virtual machine(s) which house the complete application.
We warm up each application, using its clients, for two
minutes before collecting data.

Cloud Bursting Time The total time to perform a
cloud burst can be decomposed into three major parts:
copying data to the cloud, preparing an application im-
age, and booting up the virtual machine. To measure
each of these components, we migrate a virtual machine
running the CloudStone application with a disk-state size
of 5GB.

As shown in Figure 3, the total time to migrate an ap-
plication with even a very small 5GB disk state, is 1336
secs (~ 22 mins); this clearly illustrates the need for pre-
copying in real applications that may have ten or more
times as much state. We next precopy the application
and reduce the delta (i.e. difference between the original
and precopied snapshot) to 10MB or 100MB; the total
time to burst the application significantly reduces to less
than 200 secs for a delta of 100 MB. Note that as delta
reduces the image preparation time and boot time start to
flatten around 120 secs and become the prime component
of total bursting time.

Placement Algorithm In this experiment, we analyze
the placement efficiency of Seagull compared to a naive
algorithm (which always cloudbursts the overloaded ap-
plication), in a small scenario that demonstrates the in-
tuition behind Seagull’s decision making. We show that
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Figure 4: The naive approach uses only one migration, imme-
diately moving A from /g to the cloud. Seagull initially avoids
any cloud costs by rebalancing locally, and is able to move back
from the cloud sooner than the naive approach.

when a hotspot occurs, Seagull is able to make better use
of local resources as well as pick cheaper applications to
move to the cloud.

We use three 6-core physical servers, each hosting a
pair of different applications: TPC-W (VMs A and D)
Wikibooks (B, E), and CloudStone (C, F). Each appli-
cation is running inside a single VM and can be scaled
up vertically. The initial arrangement of applications and
the number of cores dedicated to each is shown under #;
in Figure 4. To simplify the scenario, we assume that all
applications have identical storage requirements.

We change application A’s workload every hour
(marked by instants #;, where i = 1...3) such that its
CPU requirement increases to four cores, then six cores,
before falling back to four cores at #3. To eliminate the
impact of prediction errors in this experiment we assume
a perfect forecaster.

Results:  When Seagull detects the first upcoming
workload spike at #1, it attempts to resolve the hotspot
by repacking the local machines, shifting application C
to hy and then moving A to h; at effectively no cost. In
the naive solution, application A is cloud burst to EC2
directly without considering local reshuffling.

In the workload’s second phase, Seagull migrates a
cheaper application, D, to EC2 since the local data cen-
ter could not provide enough capacity needed for A. On
the other hand, the naive algorithm had already moved A
to the cloud, so it simply allocates extra resources to it
making it more expensive.

Eventually, the workload spike for application A
passes, Seagull migrates D back to the local data center
while the naive algorithm, lacking the ability to perform
local reshuffling, still needs to keep A in the cloud, wast-
ing more money.

Time and Monetary Cost: The use of local resources
in Seagull allows it to respond to overload faster than
the naive approach. Figure 5 shows the amount of time
spent by each approach to resolve the hotspots at each
measurement interval; note that for both systems we pre-



400 ‘ : :
EEE Seagull

0300 B Naive

b 233225 224

o 200 181

£ 100

= 42 51

00— t2 t3

Figure 5: Seagull uses local, live migrations at #;, and benefits
from reverse pre-copying at #3, substantially reducing the time
spent at each stage compared to naively cloud bursting at #; and
restarting instances at , and #3.
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Figure 6: Precopying causes a marginal increase in cost, but a
dramatic reduction in burst time.

copy all applications once to the cloud before the exper-
iment begins. Seagull is substantially faster because it
uses only a local, live migration at ¢; whereas the naive
approach approach requires a full cloud burst. Subse-
quent actions performed by Naive also incur substantial
downtime since VMs must be rebooted in the cloud to
adjust their instance type to obtain more cores. Seagull’s
migration back from the cloud at 3 is also quite fast be-
cause it does not require the full image registration pro-
cess needed for moving into the cloud. Most importantly,
the fact that Seagull only requires a virtual machine in the
cloud for the hour starting at , means that it pays 30%
less in cloud data transfer and instance running costs.

Precopying Algorithm In order to study the impact of
precopying, we conducted an experiment by simulating
a data center comprised of 200 quad-core hosts and pop-
ulated it with three types of applications with different
disk size and update rate> .

We first instruct Seagull to precopy 60 applications to
the cloud, and then simulate a hotspot scenario where
30% of the data center becomes overloaded. With this
level of precopying, Seagull was able to resolve the
hotspot solely by bursting applications which had al-
ready been precopied, dramatically reducing the cloud
burst time compared to an approach with no precopying.
Figure 6 show a modest 22% increase in cost due to pre-
copying, but a substantial 95% saving in data transfer.
However, this trade-off can be further tuned based on the
precopying algorithm and parameters.

Comparisons: We next evaluate the effectiveness of

3To eliminate the impact of Seagull’s local reshuffling on precopy-
ing efficiency, we assume that the data center runs only horizontal-
scaling applications, preventing the need for local reconsolidating.

Seagull’s intelligent precopying strategy compared to the
random (SG-random) and naive precopying strategies at
a larger scale. We use Seagull’s placement algorithm to
determine the total burst cost when using each of these
precopying techniques. We study the decisions made
when the level of overload in the data center increases
from 10 to 30 percent. Figure 7 presents the average per-
formance of these three strategies when the simulation is
repeated 40 times for each level of overload.

In Figure 7(a), Seagull achieves the lowest precopying
cost across all overload levels. The benefits of Seagull in-
crease with rising overload levels, and it is able to lower
precopying costs by up to 75%. The naive approach
shows the highest cost because there are often applica-
tions which can be precopied more cheaply than those
which are expected to become overloaded.

Figure 7(b) shows the total cost including both pre-
copying and cloud bursting. Seagull reduces the cost by
45% compared to the Naive approach because naively
running the overloaded applications in the public cloud is
more costly. SG-Random and Seagull have similar total
cost because they select the same applications to burst.

Figure 7(c) shows the total amount of data sent dur-
ing cloud bursting, which can be used as a proxy for
total burst time. Our intelligent precopying strategy far
outperforms SG-Random because the latter has a poor
chance of precopying the applications that will be se-
lected by the placement algorithm. The naive algorithm
precopies and bursts the same applications, giving per-
formance similar to Seagull, although at higher cost.

5 Related Work

Cloud Computing covers a wide range of types of sys-
tems; in this work we focus on Infrastructure as a Ser-
vice (IaaS) platforms such as Amazon’s Elastic Compute
Cloud. Armbrust et al. provide a survey of cloud com-
puting [1], and specifically list “scaling quickly” as one
of the key opportunities in cloud computing. Many re-
cent projects automate virtual machine or storage migra-
tion to balance the CPU, memory, or I/O loads within
a single data center [6, 13]. It is increasingly com-
mon for businesses and service providers to own multiple
data centers, so managing resources across data centers
is a growing challenge [12, 4]. We believe that oper-
ational expense will naturally expand the automated re-
source management techniques to include cross data cen-
ter management approaches like cloud bursting as data
centers become connected by increasingly high band-
width links.

Cloud Bursting was first proposed by Amazon’s Jeff
Barr as a way to allow enterprises who already own sig-
nificant amounts of IT infrastructure to still make use
of the cloud during periods of high demand [5]. Re-



w
=]
=
N

I SG Random
B Naive
B Seagull

=
N
=]

B Naive
Bl Seagull

N
v

=
o
S

I SG Random

N
o

80

60

._.
o
Total Cost ($)

40

Precopying Cost ($)
=
w

(5.}

20

o

0 10%

10%

20% 30%
Oveload level (%)

()

20%
Oveload level (%)

I SG Random
50t | BEE Naive
HEEE Seagull

N
o

Bursting Data (GB)
N w
o o

=
o

o

30%

10%

20% 30%
Oveload level (%)
(c)

Figure 7: Intelligent precopying reduces total cost and data transferred by over 45% compared to the naive algorithm.

searchers have been investigating the potential economic
savings by using cloud bursting in specific domains such
as medical image processing [8] and publishing [7].

Live VM migration over WAN attempt to seamlessly
move the memory and storage of a virtual machine be-
tween data center sites, usually by building upon the ex-
isting LAN migration tools included in modern hypervi-
sors [3]. Alternatively, storage migration tools move only
the disk state of applications [9]. Our prototype focuses
on storage migration due to limitations of current cloud
platforms; however, we note that Seagull could easily be
enhanced to support full VM live migration.

6 Conclusions and Future Work

Cloud bursting is a technique to dynamically move ap-
plications running in a private data center to the public
cloud to take advantage of additional resources there. In
this work we propose Seagull, a cloud bursting system
that efficiently precopies and migrates applications to
the cloud when local infrastructure becomes overloaded.
This allows Seagull to perform agile provisioning of re-
sources across a private data center and the cloud, result-
ing in more efficient utilization of local resources while
incurring only minimal expense in the cloud.

In future work, we plan to extend our Seagull pro-
totype to provide complete cloud bursting automation.
There are a number of challenges remaining, such as
determining when to initiate a cloud burst even if accu-
rate prediction models of future workloads are not avail-
able, defining standardized cloud interfaces to enable live
WAN migration to public clouds, and integrating Seag-
ull’s placement algorithm with business policy require-
ments.
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