
P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier
Internet Applications

BHUVAN URGAONKAR

The Penn State University

GIOVANNI PACIFICI

IBM T. J. Watson Research Center

PRASHANT SHENOY

University of Massachusetts

and

MIKE SPREITZER and ASSER TANTAWI

IBM T. J. Watson Research Center

Since many Internet applications employ a multitier architecture, in this article, we focus on the

problem of analytically modeling the behavior of such applications. We present a model based on

a network of queues where the queues represent different tiers of the application. Our model is

sufficiently general to capture (i) the behavior of tiers with significantly different performance

characteristics and (ii) application idiosyncrasies such as session-based workloads, tier replication,

load imbalances across replicas, and caching at intermediate tiers. We validate our model using

real multitier applications running on a Linux server cluster. Our experiments indicate that our

model faithfully captures the performance of these applications for a number of workloads and

configurations. Furthermore, our model successfully handles a comprehensive range of resource

utilization—from 0 to near saturation for the CPU—for two separate tiers. For a variety of sce-

narios, including those with caching at one of the application tiers, the average response times

predicted by our model were within the 95% confidence intervals of the observed average response

times. Our experiments also demonstrate the utility of the model for dynamic capacity provisioning,

performance prediction, bottleneck identification, and session policing. In one scenario, where the

request arrival rate increased from less than 1500 to nearly 4200 requests/minute, a dynamic pro-

visioning technique employing our model was able to maintain response time targets by increasing

the capacity of two of the tiers by factors of 2 and 3.5, respectively.

A preliminary version of this paper appeared in Proceedings of the ACM International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS’05), Banff, Canada.

Authors’ addresses: B. Urgaonkar, Department of CSE, The Penn State University, University

Park, PA 16802; email: bhuvan@cse.psu.edu; G. Pacifici, M. Spreitzer, A. Tantawi, Service Manage-

ment Middleware Department, IBM T. J. Watson Research Center, Hawthorne, NY 10532; email:

{giovanni,mspreitz,tantawi}@us.ibm.com; P. Shenoy, Department of Computer Science, University

of Massachusetts, Amherst, MA 01003; email: shenoy@cs.umass.edu.

Permission to make digital or hard copies part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specific per-

mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1559-1131/2007/05-ART2 $5.00 DOI 10.1145/1232722.1232724 http://doi.acm.org/

10.1145/1232722.1232724

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

2 • B. Urgaonkar et al.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance

General Terms: Design, Experimentation, Measurement

Additional Key Words and Phrases: Internet service, analytical model, queuing theory, mean-value

analysis, hosting platform, tier, dynamic provisioning, performance prediction, session, policing

ACM Reference Format:
Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and Tantawi, A. 2007. Analytic modeling of

multitier internet applications. ACM Trans. Web. 1, 1, Article 2 (May 2007), 35 pages. DOI =
10.1145/1232722.1232724 http://doi.acm.org/10.1145/1232722.1232724

1. INTRODUCTION

1.1 Motivation

Internet applications such as online news, retail, and financial sites have be-
come commonplace in recent years. Modern Internet applications are complex
software systems that employ a multitier architecture and are replicated or
distributed on a cluster of servers. Each tier provides a certain functionality to
its preceding tier and makes use of the functionality provided by its successor
to carry out its part of the overall request processing. For instance, a typi-
cal e-commerce application consists of three tiers—a frontend Web tier that
is responsible for HTTP processing, a middle-tier Java enterprise server that
implements core application functionality, and a backend database that stores
product catalogs and user orders. In this example, incoming requests undergo
HTTP processing, processing by the Java application server, and trigger queries
or transactions at the database. There are other technologies available for con-
structing the middle tier (such as PHP1 and CGI2). A Java enterprise server,
however, has increasingly become the common choice.

This article focuses on analytically modeling the behavior of multitier In-
ternet applications. Such a model is important for the following reasons: (i)
capacity provisioning, which enables a server farm to determine how much ca-
pacity to allocate to an application in order for it to service its peak workload;
(ii) performance prediction, which enables the response time of the application
to be determined for a given workload and a given hardware and software con-
figuration, (iii) application configuration, which enables various configuration
parameters of the application to be determined for a certain performance goal,
(iv) bottleneck identification and tuning, which enables system bottlenecks to
be identified for purposes of tuning, and (v) session policing, which enables the
application to turn away excess sessions during transient overloads.

1.2 Shortcomings of Existing Modeling Approaches

Modeling of single-tier applications such as vanilla Web servers (e.g., Apache)
is well studied [Doyle et al. 2003; Menasce 2003; Slothouber 1996]. In con-
trast, modeling of multitier applications is less well studied, even though this

1PHP: Hypertext Preprocessor. http://www.php.net/.
2CGI: Common Gateway Interface. http://www.w3.org/CGI/.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 3

flexible architecture is widely used for constructing Internet applications and
services.

Extending single-tier models to multitier scenarios is nontrivial for the fol-
lowing reasons. First, various application tiers such as Web, Java, and database
servers have vastly different performance characteristics and collectively mod-
eling their behavior is a difficult task. Further, in a multitier application, (i)
some tiers may be replicated while others are not, (ii) the replicas may not
be perfectly load balanced, and (iii) caching may be employed at intermediate
tiers, all of which complicate the performance modeling.

A number of researchers have taken the approach of modeling only the
most constrained or the most bottlenecked tier of the application. For instance,
Villela et al. [2004] considers the problem of provisioning servers only for the
Java application tier; it uses an M/G/1/PS model for each server in this tier. Sim-
ilarly, the Java application tier of an e-commerce application with N servers is
modeled as a G/G/N queuing system in Ranjan et al. [2002]. Other efforts have
modeled the entire multitier application using a single queue, an example, that
uses a M/GI/1/PS model for an e-commerce application is Kamra et al. [2004].
While these approaches are useful for specific scenarios, they have many lim-
itations. For instance, modeling only a single bottlenecked tier of a multitier
application will fail to capture caching effects at other tiers. Such a model can
not be used for capacity provisioning of other tiers. Finally, system bottlenecks
can shift from one tier to another with changes in workload characteristics.
Under these scenarios, there is no single tier that is the most constrained.

Some researchers have employed models based on networks of queues to ex-
plicitly capture the various tiers in a modern Internet application [Kounev and
Buchmann 2003; Benani and Menasce 2005; Menasce et al. 2004]. We consider
these pieces of research as complementary to our work. Several contributions
made by our model, however, set our work apart. Specifically, we develop our
model to capture several features of Internet services such as concurrency lim-
its and caching at certain tiers. To the best of our knowledge, these features
were not addressed by any previous modeling work. As we shall see, capturing
these characteristics of modern applications is important due to their impact
on the performance of these applications and their clients. Additionally, while
these other models have only been validated using simulations with online and
batch workloads, we validate our model using realistic Internet services on a
prototype Linux cluster.

Finally, modern Internet workloads are session-based where each session
comprises a sequence of requests with think-times in between. For instance,
a session at an online retailer may comprise the sequence of user requests to
browse the product catalog and to make a purchase. Sessions are stateful from
the perspective of the application, an aspect that must be incorporated into the
model. The design of an analytical model that can capture the impact of these
factors is the focus of this article.

1.3 Research Contributions

This article presents a model of a multitier Internet application based on a net-
work of queues where the queues represent different tiers of the application.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

4 • B. Urgaonkar et al.

Our model can handle applications with an arbitrary number of tiers and those
with significantly different performance characteristics. A key contribution of
our work is that the complex task of modeling a multitier application is re-
duced to the modeling of request processing at individual tiers and the flow of
requests across tiers. Our model is inherently designed to handle session-based
workloads and can account for application idiosyncrasies such as replication at
tiers, load imbalances across replicas, caching effects, and concurrency limits
at each tier.

We validate the model using two open-source multitier applications running
on a Linux-based server cluster. We demonstrate the ability of our model to
accurately capture the effects of a number of commonly used techniques such
as query caching at the database tier and class-based service differentiation.
For a variety of scenarios, including an online auction application that employs
query caching at its database tier, the average response times predicted by our
model were within the 95% confidence intervals of the observed average re-
sponse times. We conduct a detailed experimental study using our prototype to
demonstrate the utility of our model for the purposes of dynamic provisioning,
response time prediction, application configuration, and session policing. Our
experiments demonstrate the ability of our model to correctly identify bottle-
necks in the system and the shifting of bottlenecks due to variations in the
Internet workload. In one scenario, where the arrival rate to an application
increased from 1500 to nearly 4200 requests/minute, our model was able to
continue meeting response time targets by successfully identifying the two bot-
tleneck tiers and increasing their capacity by factors of 2 and 3.5, respectively.

The remainder of this article is structured as follows. Section 2 provides an
overview of multitier applications and related work. We describe our model
in Sections 3 and enhancements to it in Section 4. Sections 5 and 6 present
experimental validation of the model and an illustration of its applications,
respectively. Finally, Section 7 presents our conclusions.

2. BACKGROUND AND RELATED WORK

This section provides an overview of multitier applications and the underlying
server platform assumed in our work. We also discuss related work in the area.

2.1 Internet Application Architecture

Modern Internet applications are designed using multiple tiers (the terms Inter-
net application and service are used interchangeably in this article). A multitier
architecture provides a flexible, modular approach for designing such applica-
tions. Each application tier provides certain functionality to its preceding tier
and uses the functionality provided by its successor to carry out its part of the
overall request processing. The various tiers participate in the processing of
each incoming request during its lifetime in the system. Depending on the pro-
cessing demand, a tier may be replicated using clustering techniques. In such
an event, a dispatcher is used at each replicated tier to distribute requests
among the replicas for the purpose of load balancing. Figure 1 depicts a three-
tier application where the first two tiers are replicated, while the third one is

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 5

Fig. 1. A three-tier application.

not. Such an architecture is commonly employed by e-commerce applications
where a clustered Web server and a clustered Java application server constitute
the first two tiers, and the third tier consists of a nonreplicable database.3

The workload of an Internet application is assumed to be session-based where
a session consists of a succession of requests issued by a client with think times
in between. If a session is stateful, which is often the case, successive requests
will need to be serviced by the same server at each tier, and the dispatcher will
need to account for this server state when redirecting requests.

As shown in Figure 1, each application employs a sentry that polices incom-
ing sessions to an application’s server pool; incoming sessions are subjected
to admission control at the sentry to ensure that the contracted performance
guarantees are met. Excess sessions are turned away during overloads.

We assume that Internet applications typically run on a server cluster that
is commonly referred to as a data center. A data center runs multiple third-
party applications concurrently in return for revenue [Chase and Doyle 2001;
Urgaonkar et al. 2002]. In this work, we assume that each tier of an applica-
tion (or each replica of a tier) runs on a separate server. This is referred to as
dedicated hosting where each application runs on a subset of the servers, and
a server is allocated to at most one application tier at any given time. Unlike
shared hosting where multiple small applications share each server, dedicated
hosting is used for running large clustered applications where server sharing is
infeasible due to the workload demand imposed on each individual application.

Given an Internet application, we assume that it specifies its desired perfor-
mance requirement in the form of a service-level agreement (SLA). The SLA
assumed in this work is a bound on the average response time that is acceptable
to the application. For instance, the application SLA may specify that the aver-
age response time should not exceed one second regardless of the workload. We
assume that averages are computed over intervals of length 30 minutes unless
otherwise specified.

3Traditionally database servers have employed a shared-nothing architecture that does not support

replication. However, certain new databases employ a shared-everything architecture (Oracle9i

2005 http://www.oracle.com/technology/production/oracle9i) that supports clustering and replica-

tion but with certain constraints.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

6 • B. Urgaonkar et al.

Fig. 2. Request processing in an online auction application.

2.2 Request Processing in Multitier Applications

Consider a multitier application consisting of M tiers denoted by T1, T2 through
TM . In the simplest case, each request is processed exactly once by tier Ti and
then forwarded to tier Ti+1 for further processing. Once the result is computed
by the final tier TM , it is sent back to TM−1, which processes this result and
sends it to TM−2, and so on. Thus, the result is processed by each tier in the
reverse order until it reaches T1, which then sends it to the client. Figure 2
illustrates the steps involved in processing a bid request at a three-tier online
auction site. The figure shows how the request trickles downstream and how
the result propagates upstream through the various tiers.

More complex processing at the tiers is also possible. In such scenarios, each
request can visit a tier multiple times. As an example, consider a keyword
search at an online superstore, which triggers a query on the music catalog, a
query on the book catalog, and so on. These queries can be issued to the database
tier sequentially, where each query is issued after the result of the previous
query has been received, or in parallel. Thus, in the general case, each request
at tier Ti can trigger multiple requests to tier Ti+1. In the sequential case, each
of these requests is issued to Ti+1 once the result of the previous request has
finished. In the parallel case, all requests are issued to Ti+1 at once. In both
cases, all results are merged and then sent back to the upstream tier Ti−1.

2.3 Related Work

Single-Tier Internet Applications. Modeling of single-tier Internet applica-
tions, of which HTTP servers are the most common example, has been stud-
ied extensively. A queuing model of a Web server serving static content was
proposed in Slothouber [1996]. The model employs a network of four queues,
two modeling the Web server itself, and the other two modeling the Internet
communication network. A queuing model for performance prediction of single-
tier Web servers with static content was proposed in Doyle et al. [2003]. This
approach (i) explicitly models CPU, memory, and disk bandwidth in the Web
server, (ii) utilizes knowledge of file size and popularity distributions, and (iii)
relates average response time to available resources. A GPS-based queuing
model of a single resource, such as the CPU, at a Web server was proposed
in Chandra et al. [2003]. The model is parameterized by online measurements

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 7

and is used to determine the resource allocation needed to meet desired average
response time targets. A G/G/1 queuing model for replicated single-tier applica-
tions (e.g., clustered Web servers) has been proposed in Urgaonkar and Shenoy
[2004]. The architecture and prototype implementation of a performance man-
agement system for cluster-based Web services was proposed in Levy et al.
[2003]. The work employs an M/M/1 queuing model to compute responses times
of Web requests. A model of a Web server for the purpose of performance con-
trol using classical feedback control theory was studied in Abdelzaher et al.
[2002]; an implementation and evaluation using the Apache Web server was
also presented in the work. A combination of a Markov chain model and a queu-
ing network model to capture the operation of a Web server was presented in
Menasce [2003]. The former model represents the software architecture em-
ployed by the Web server (e.g., process-based versus thread-based), while the
latter computes the Web server’s throughput.

Since these efforts focus primarily on single-tier Web servers, they are not
directly applicable to applications employing multiple tiers, or to components
such as Java enterprise servers or database servers employed by multitier ap-
plications. Further, many of the these efforts assume static Web content, while
multitier applications, by their very nature, serve dynamic Web content.

Extensions Based on Single-Tier Models. A few recent efforts have focused
on the modeling of multitier applications. However, many of these efforts either
make simplifying assumptions or are based on simple extensions of single-tier
models. A number of papers have taken the approach of modeling only the
most constrained or the most bottlenecked tier of the application. For instance,
Villela et al. [2004] considers the problem of provisioning servers only for the
Java application tier; it uses an M/G/1/PS model for each server in this tier. Sim-
ilarly, the Java application tier of an e-commerce application with N servers
is modeled as a G/G/N queuing system in Ranjan et al. [2002]. Other efforts
have modeled the entire multitier application using a single queue; an exam-
ple, that uses a M/GI/1/PS model for an e-commerce application is Kamra et al.
[2004]. While these approaches are useful for specific scenarios, they have many
limitations. For instance, modeling only a single bottlenecked tier of a multi-
tier application will fail to capture caching effects at other tiers. Such a model
can not be used for capacity provisioning of other tiers. Finally, as we show in
our experiments, system bottlenecks can shift from one tier to another with
changes in workload characteristics. Under these scenarios, there is no sin-
gle tier that is the most constrained. In this article, we present a model of a
multitier application that overcomes these drawbacks. Our model explicitly ac-
counts for the presence of all tiers and also captures application artifacts such
as session-based workloads, tier replication, load imbalances, caching effects,
and concurrency limits.

Models Based on Networks of Queues. Some researchers have developed
sophisticated queueing models capable of capturing the simultaneous resource
demands and parallel subpaths that occur within a tier of a multitier applica-
tion. An important example of such models are Layered Queueing Networks
(LQN). LQNs are an adaptation of the Extended Queueing Network defined

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

8 • B. Urgaonkar et al.

specifically to represent the fact that software servers are executed on top of
other layers of servers and processors, giving complex combinations of simulta-
neous requests for resources [Rolia and Sevcik 1995; Woodside and Raghunath
1995; Liu et al. 2001; Xu et al. 2006; Franks 1999]. The focus of most of these
papers is on an Enterprise Java Beans-based application tier, whereas the work
reported in this article is concerned with a model for an entire multitier appli-
cation. While one possible approach to modeling multitier applications could be
based on the use of these existing per-tier models as building blocks, we do not
pursue this direction in this article.

The research efforts most similar to that reported in our work are papers
by Kounev and Buchmann [2003] and Bennani and Menasce [2005]. Kounev
and Buchmann use a model based on a network of queues for performance
prediction of a 2-tier SPECjAppServer2002 application and solve this model
numerically using publicly available analysis software. Bennani and Menasce
model a multitier Internet service serving multiple types of transactions as a
network of queues with customers belonging to multiple classes [Benani and
Menasce 2005; Menasce et al. 2004]. The authors employ an approximate mean-
value analysis algorithm to develop an online provisioning technique using this
model. Whereas Bennani and Menasce focus on using their model for provision-
ing, our main focus is on capturing various features of Internet services such
as concurrency limits and caching at certain tiers. Second, while their model is
validated using simulations with online and batch workloads, we validate our
model using realistic Internet services on a prototype Linux cluster.

Machine Learning Based Models. Work by Cohen et al. [2004] uses a proba-
bilistic modeling approach called Tree-Augmented Bayesian Networks (TANs)
to identify combinations of system-level metrics and threshold values that cor-
relate with high-level performance states—compliance with service-level agree-
ments for average response time—in a three-tier Web service under a variety of
conditions. Experiments based on real applications and workloads indicate that
this model is a suitable candidate for use in offline fault diagnosis and online
performance prediction. While it would be a useful exercise to compare such a
learning-based modeling approach with our queuing-theory-based model, it is
beyond the scope of this article. In the absence of such a comparative study and
given the widely different natures of these two modeling approaches, we do not
make any assertions about the pros and cons of our model over the TAN-based
model.

3. A MODEL FOR A MULTITIER INTERNET APPLICATION

In this section, we present a baseline queuing model for a multitier Internet ap-
plication. In the next section, we present several enhancements to this baseline
model to capture certain application idiosyncrasies.

3.1 The Basic Queuing Model

Consider an application with M tiers denoted by T1, . . . , TM . Initially we as-
sume that no tier is replicated; each tier is assumed to run on exactly one server,
an assumption that is relaxed later.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 9

Fig. 3. Modeling a multitier application using a network of queues.

Modeling Multiple Tiers. We model the application using a network of of
M queues, Q1, . . . , QM (see Figure 3). Each queue represents an application
tier and the underlying server that it runs on. We assume a processor shar-
ing (PS) discipline at each queue since it closely approximates the schedul-
ing policies employed by most commodity operating systems (e.g., Linux CPU
time-sharing).

When a request arrives at tier Ti, it triggers one or more requests at its sub-
sequent tier Ti+1; recall the example of a keyword search that triggers multiple
queries at different product catalogs. In our queuing model, we can capture
this phenomenon by allowing a request to make multiple visits to each of the
queues during its overall execution. This is achieved by introducing a transition
from each queue to its predecessor as shown in Figure 3. A request, after some
processing at queue Qi, either returns to Qi−1 with a certain probability pi or
proceeds to Qi+1 with probability (1 − pi). The only exception is the last tier
queue QM , where all requests return to the previous queue, and the first queue
Q1, where a transition to the preceding queue denotes request completion. As
argued in Section 3.2, our model can handle multiple visits to a tier regardless
of whether they occur sequentially or in parallel.

Observe that caching effects are naturally captured by this model. If caching
is employed at tier Ti, a cache hit causes the request to immediately return to
the previous queue Qi−1 without triggering any work in queues Qi+1 or later.
Thus, the impact of cache hits and misses can be incorporated by appropriately
determining the transition probability pi and the service time of a request atQi.

Modeling Sessions. Recall from Section 2 that Internet workloads are
session-based. A session issues one or more requests during its lifetime, one
after another, with think times in between (we refer to this duration as the
user think time). Typical sessions in an Internet application may last several
minutes. Thus, our model needs to capture the relatively long-lived nature of
sessions as well as the response times of individual requests within a session.

We do so by augmenting our queuing network with a subsystem modeling
the active sessions of the application. We model sessions using an infinite server

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

10 • B. Urgaonkar et al.

queuing system, Q0, that feeds our network of queues and forms the closed-
queuing system shown in Figure 3. The servers in Q0 capture the session-based
nature of the workload as follows. Each active session is assumed to occupy one
server in Q0. As shown in Figure 3, a request issued by a session emanates
from a server in Q0 and enters the application at Q1. It then moves through the
queues Q1, . . . , QM , possibly visiting some queues multiple times (as captured
by the transitions from each tier to its preceding tier) and getting processed
at the visited queues. Eventually, its processing completes, and it returns to a
server in Q0. The time spent at this server models the think time of the user; the
next request of the session is issued subsequently. The infinite server system
also enables the model to capture the independence of the user think times
from the request service times at the application.

Let Si denote the service time of a request at Qi (1 ≤ i ≤ M). Also, pi

denotes the probability of a request making a transition from Qi to Qi−1 (note
that pM = 1); p1 denotes the probability of transition from Q1 to Q0. Finally,
let Z denote the service time at any server in Q0 (which is essentially the user
think time). Our model requires these parameters as inputs in order to compute
the average end-to-end response time of a request.

Our discussion thus far has implicitly assumed that sessions never termi-
nate. In practice, the number of sessions being serviced will vary as existing
sessions terminate and new sessions arrive. Our model can compute the mean
response time for a given number of concurrent sessions N . This property can be
used for admission control at the application sentry as discussed in Section 6.2.

3.2 Deriving Response Times From the Model

The Mean-Value Analysis (MVA) algorithm [Reiser and Lavenberg 1980] for
closed-queuing networks can be used to compute the mean response time ex-
perienced by a request in our network of queues. The MVA algorithm is based
on the following key queuing theory result: in product-form closed queuing
networks4, when a request moves from queue Qi to another queue Q j , at the
time of its arrival at Q j , it sees, a system with the same statistics as a system
with one less customer. Consider a product-form closed-queuing network with
N customers. Let Ām(N) denote the average number of customers in queue Qm

seen by an arriving customer. Let L̄m(N) denote the average length of queue
Qm in such a system. Then, the previous result implies

Ām(N) = L̄m(N − 1). (1)

Given this result, the MVA algorithm iteratively computes the average re-
sponse time of a request. The MVA algorithm uses Equation (1) to introduce
customers into the queuing network one-by-one and determines the result-
ing average delays at various queues at each step. It terminates when all N

4The term product-form applies to any queuing network in which the expression for the equilibrium

probability has the form of P (n1, . . . , nM) = 1
G(N)

π M
i=1

fi(ni), where fi(n1) is some function of the

number of jobs at the ith queue, and G(N) is a normalizing constant. Product form solutions are

known to exist for a broad class of networks, including ones where the scheduling discipline at each

queue is processor sharing (PS).

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 11

Algorithm 1. Mean-value analysis algorithm for an M -tier application.

input : N , S̄m, Vm, 1 ≤ m ≤ M ; Z̄
output : R̄m (avg. delay at Qm), R̄ (avg. resp. time)

initialization:

R̄0 = D̄0 = Z̄ ; L̄0 = 0;

for m = 1 to M do
L̄m = 0;
D̄m = Vm · S̄m /* service demand */;

end
/* introduce N customers, one by one */

for n = 1 to N do
for m = 1 to M do

R̄m = D̄m · (1 + L̄m) /* average delay */;

end

τ =
(

n

R̄0 + ∑M
m=1 R̄m

)
/* throughput */;

for m = 1 to M do
L̄m = τ · R̄m /* little’s law *;

end
L̄0 = τ · R̄0;

end
R̄ = ∑m=M

m=1 R̄m /* response time */;

Table I. Notation Used in Describing the MVA Algorithm

Symbol Meaning

M Number of servers

N Number of sessions

Qm Queue representing tier Tm (1 ≤ m ≤ M)

Q0 Inf. server system to capture sessions

Z̄ User think time

S̄m Avg. per-request service time at Qm
L̄m Avg. length of Qm
τ Throughput

R̄m Avg. per-request delay at Qm
R̄ Avg. per-request response time

D̄m Avg. per-request service demand at Qm
Vm Visit ratio for Qm
Ām Avg. number of customers in Qm

seen by an arriving customer

customers have been introduced and yields the average response time experi-
enced by N concurrent customers. Note that a session in our model corresponds
to a customer in the result described by Equation (1). The MVA algorithm for an
M -tier Internet application servicing N sessions simultaneously is presented
in Algorithm 1 and the associated notation is in Table I.

The algorithm uses the notion of a visit ratio for each queue Q1, . . . , QM . The
visit ratio Vm for queue Qm (1 ≤ m ≤ M) is defined as the average number of

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

12 • B. Urgaonkar et al.

visits made by a request to Qm during its processing (that is, from when it em-
anates from Q0 and when it returns to it). Visit ratios are easy to compute from
the transition probabilities p1, . . . , pM and provide an alternate representation
of the queuing network. Notice that the visit ratio is only concerned with the
mean number of visits made by a request to a queue and not when or in what
order these visits occur. Consequently, our algorithm is equally suitable for de-
riving mean response times regardless of whether a request to a tier triggers
multiple requests at its succeeding tier in parallel or in sequence.

Thus, given the average service times and visit ratios for the queues, the
average think time of a session, and the number of concurrent sessions, the
algorithm computes the average response time R̄ of a request.

3.3 Estimating the Model Parameters

In order to compute the response time, the model requires several parameters
as inputs. In practice, these parameters can be estimated by monitoring the
application as it services its workload. To do so, we assume that the underlying
operating system and application software components (such as the Apache
Web server) provide monitoring hooks to enable accurate estimation of these
parameters. Our experience with the Linux-based multitier applications used
in our experiments is that such functionality is either already available or can
be implemented at a modest cost. The rest of this section describes how the
various model parameters can be estimated in practice.

Estimating Visit Ratios. The visit ratio for any tier of a multitier application
is the average number of times that tier is invoked during a request’s lifetime.
Let λreq denote the number of requests serviced by the entire application over
a duration t. Then the visit ratio for tier Ti can be simply estimated as

Vi ≈ λi

λreq
,

where λi is the number of requests serviced by that tier in that duration. By
choosing a suitably large duration t, a good estimate for Vi can be obtained. We
note that the visit ratios are easy to estimate in an online fashion. The number
of requests serviced by the application λreq can be monitored at the application
sentry. For replicated tiers, the number of requests serviced by all servers of
that tier can be monitored at the dispatchers. Monitoring of both parameters
requires simple counters at these components. For nonreplicated tiers that lack
a dispatcher, the number of serviced requests can be determined by real-time
processing of the tier logs. In the database tier, for instance, the number of
queries and transactions processed over a duration t can be determined by
processing the database log using a script.

Estimating Service Times. Application components such as Web, Java, and
database servers all support extensive logging facilities and can log a variety
of useful information about each serviced request. In particular, these compo-
nents can log the residence time of individual requests as observed at that tier;

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 13

the residence time includes the time spent by the request at this tier and all
the subsequent tiers that processed this request. This logging facility can be
used to estimate per-tier service times. Let X̄ i denote the average per-request
residence time at tier Ti. We start by estimating the mean service time at the
last tier. Since this tier does not invoke services from any other tiers, the re-
quest execution time at this tier under lightly loaded conditions is an excellent
estimate of the service time. Thus, we have,

S̄M ≈ X̄ M .

Let Si, X i, and ni be random variables denoting the service time of a request
at a tier Ti, residence time of a request at tier Ti, and the number of times Ti

requests service from Ti+1 as part of the overall request processing, respectively.
Then, under lightly loaded conditions,

Si = X i − ni · X i+1, 1 ≤ i < M .

Taking averages on both sides, we get,

S̄i = X̄ i − E[ni · X i+1].

Since ni and X i+1 are independent, this gives us,

S̄i = X̄ i − n̄i · X̄ i+1 = X̄ i −
(

Vi+1

Vi

)
· X̄ i+1.

Thus, the service times at tiers T1, . . . , TM−1 can be estimated. Modern Internet
applications are typically well-provisioned and are likely to experience periods
of low-intensity workloads when such measurements of service times may be
conducted in an online fashion.

Estimating Think Times. The average user think time, Z̄ , can be obtained
by recording the arrival and finish times of individual requests at the sentry. Z̄
is estimated as the average time elapsed between when a request finishes and
when the next request (belonging to the same session) arrives at the sentry. By
using a sufficient number of observations, we can obtain a good estimate of Z̄ .

Increased Service Times During Overloads. Our estimation of the tier-
specific service times assumed lightly loaded conditions. As the load on a tier
grows, software overheads such as waiting on locks, virtual memory paging,
and context switch overheads that are not captured by our model can become
significant components of the request processing time.

Incorporating the impact of increased context-switching overhead or con-
tention for memory or locks into our model is nontrivial. Rather than explicitly
modeling these effects, we implicitly account for their impact by associating
increased service times with requests under heavy loads. We use the Uti-
lization Law [Lazowska et al. 1984] for a queuing system which states that
S = ρ/τ , where ρ and τ are the queue utilization and throughput, respectively.
Consequently, we can improve our estimate of the average service time at tier
Ti as

S̄′
i = max

(
S̄i,

ρi

τi

)
,

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

14 • B. Urgaonkar et al.

where ρi is the utilization of the busiest resource (e.g., CPU, disk, or network
interface) and τi is the tier throughput. Since all modern operating systems
support facilities for monitoring system performance (e.g., the sysstat pack-
age in Linux (Sysstat Package http://freshmeat.net/projects/sysstat)), the
utilizations of various resources is easy to obtain online. Similarly, the tier
throughput ρi can be determined at the dispatcher (or from logs) by counting
the number of completed requests in a duration t.

When to Update the Model Parameters. A crucial decision affecting the per-
formance of our model concerns the frequency at which the previous parameters
are updated. We believe that this is a significant research problem on its own
and consider it beyond the scope of this article. However, we identify the fol-
lowing intuitively meaningful requirements on when or how frequently these
decisions should be made. Whereas a very high frequency may result in unsta-
ble/oscillatory behavior due to inadequate data for statistically robust estima-
tion of parameters, a very low frequency may result in decision-making that
is not reactive enough in capturing changes in workload characteristics. Some
recent research on empirically determining appropriate frequencies for recom-
puting the parameters of a model is of direct relevance to this article [Chandra
et al. 2003; Chandra et al. 2003].

4. MODEL ENHANCEMENTS

This section proposes enhancements to our baseline model to capture four ap-
plication artifacts: replication and load imbalance at tiers, concurrency limits,
and multiple session classes.

4.1 Replication and Load Imbalance at Tiers

Recall that our baseline model assumes a single server (queue) per-tier and
consequently does not support the notion of replication at a tier. We now enhance
our model to handle this scenario. Let ri denote the number of replicas at tier
Ti. Our approach to capture replication at tier Ti is to replace the single queue
Qi with ri queues, Qi,1, . . . , Qi,ri , one for each replica. A request in any queue
can now make a transition to any of the ri−1 queues of the previous tier or to
any of the ri+1 queues of the next tier.

In general, whenever a tier is replicated, a dispatcher is necessary to dis-
tribute requests to replicas. The dispatcher determines which request to for-
ward to which replica and directly influences the transitions made by a request.

The dispatcher is also responsible for balancing load across replicas. In a
perfectly load balanced system, each replica processes 1

ri
fraction of the total

workload of that tier. In practice, however, perfect load balancing is difficult
to achieve for the following reasons. First, if a session is stateful, successive
requests will need to be serviced by the same stateful server at each tier; the
dispatcher is forced to forward all requests from a session to this replica re-
gardless of the load on other replicas. Second, if caching is employed by a tier,
a session and its requests may be preferentially forwarded to a replica where
a response is likely to be cached. Thus, sessions may have affinity for partic-
ular replicas. Third, different sessions impose different processing demands.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 15

This can result in variability in the resource usage of sessions, and simple tech-
niques such as forwarding a new session to the least-loaded replica may not
be able to counter the resulting load imbalance. Thus, the issues of replication
and load imbalance are closely related. Our enhancement captures the impact
of both these factors.

In order to capture the load imbalance across replicas, we explicitly model
the load at individual replicas. Let λ

j
i denote the number of requests forwarded

to the j th most loaded replica of tier Ti over some duration t. Let λi denote
the total number of requests handled by that tier over this duration. Then, the
imbalance factor β

j
i is computed as

β
j

i =
(

λ
j
i

λi

)
.

We use exponentially smoothed averages of these ratios β̄
j

i as measures of the
load imbalance at individual replicas. The visit ratios of the various replicas
are then chosen as

Vi, j = Viβ̄
j

i .

The higher the load on a replica, the higher the value of the imbalance factor,
and the higher its visit ratio. In a perfectly load balanced system, β

j
i = 1

ri
, ∀ j .

Observe that the number of requests forwarded to a replica λ
j
i and the total

number of requests λi can be measured at the dispatcher using counters. The
MVA algorithm can then be used with these modified visit ratios to determine
the average response time.

4.2 Handling Concurrency Limits at Tiers

The software components of an Internet application have limits on the amount
of concurrency they can handle. For instance, the Apache Web server uses a
configurable parameter to limit the number of concurrent threads or processes
that are spawned to service requests. This limit prevents the resident memory
size of Apache from exceeding the available RAM and prevents thrashing. Con-
nections may be turned away when this limit is reached. A connection request
that arrives when this limit has been reached is queued up in an operating
system buffer. If the connection does not get processed for a certain amount
of time, it is dropped. Any connections that arrive to find the aforementioned
operating system buffer full are summarily dropped. Other tiers impose similar
limits.

The model developed thus far assumes that each replica at any tier can ser-
vice an unbounded number of simultaneous requests and fails to capture the
behavior of the application when the concurrency limit is reached at any soft-
ware component. This is depicted in Figure 4(a), which shows the response
time of a three-tier application called Rubis that is configured with a concur-
rency limit of 150 for the Apache Web server and a limit of 75 for the middle
Java tier (details of the application appear in Section 5.1). These concurrency
limits were the default values that were found in the configuration files accom-
panying these software components. As shown, the response times predicted

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

16 • B. Urgaonkar et al.

Fig. 4. Response time of Rubis with 95% confidence intervals. A concurrency limit of 150 for

Apache and 75 for the Java servlet tier is used. Figure (a) depicts the deviation of the baseline

model from observed behavior when the concurrency limit is reached. Figure (b) depicts the ability

of the enhanced model to capture this effect.

by the model match the observed response times until the concurrency limit
is reached. Beyond this point, the model continues to assume an increasing
number of simultaneous requests being serviced and predicts an increase in
response time, while the actual response time of successful requests shows a
flat trend due to an increasing number of dropped requests.

In general, when the concurrency limit is reached at a software component
in tier Ti, one of two actions are possible: (1) it can silently drop additional
requests and rely upon a timeout mechanism in the software component in tier
Ti−1 that issued this request to detect these drops, or (2) it can explicitly notify
tier Ti−1 of its inability to serve the request (by returning an error message).
In either case, tier Ti−1 may reissue the request some number of times before
abandoning its attempts. It will then either drop the request or explicitly notify
its preceding tier. Finally, tier T1 can notify the client of the failure.

Rather than distinguishing these possibilities, we employ a general approach
for capturing these effects. As before, we use Vi, j to denote the visit ratio to the
replica Qi, j in tier Ti. Notice that the online technique described in Section 3.3
will not accurately estimate the visit ratio at a software component if its concur-
rency limit has been reached. This is because the concurrency limit will cause
some requests to be dropped, whereas the technique presented in Section 3.3
is based on the assumption that all requests arriving at a software compo-
nent are successfully serviced by it. Therefore, our enhancement relies on visit
ratios estimated using offline measurements conducted with all concurrency
limits set to sufficiently high values. These visit ratios are corrected to capture
load imbalances at replicated tiers exactly as described in Section 4.1. Let Ki

denote the concurrency limit at Qi, j (1 ≤ j ≤ ri). To capture requests that are
dropped at Qi, j when its concurrency limit is reached, we add an additional
transition to the model developed thus far. At the entrance of Qi, j , we add a

transition into an infinite server queuing subsystem Qdrop
i, j . Let V drop

i, j denote the

visit ratio for Qdrop
i, j as shown in Figure 5. For the sake of clarity, we have only

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 17

Fig. 5. Multitier application model enhanced to handle concurrency limits. Since each tier has

only one replica, we use only one subscript in our notation.

shown one replica at each tier. Qdrop
i, j has a mean service time of Sdrop

i ; notice
that this is the same for all the replicas in the tier Ti. This enhancement al-
lows us to distinguish between the processing of requests that get dropped due
to concurrency limits and those that are processed successfully. Requests that
are processed successfully are modeled exactly as in the basic model. Requests
that are dropped at Qi, j experience some delay in the subsystem Qdrop

i, j before
returning to Q0; this models the delay between when a request is dropped at
tier Ti and when this information gets propagated to the client that initiated
the request.

Like in the baseline model, we can use the MVA algorithm to compute the
response time of a request. The algorithm computes the fraction of requests
that finish successfully and those that encounter failures as well as the delays
experienced by both types of requests. To do this, we need to estimate the ad-
ditional parameters that we have added to our basic model, namely, V drop

i, j for

each replica in tier Ti and Sdrop
i for each tier Ti.

Estimating V drop
i, j . Our approach to estimate V drop

i, j consists of the following
two steps.

Step 1. Estimate throughput of the queuing network if there were no concur-
rency limits: solve the queuing network shown in Figure 5 using the MVA algo-

rithm using V drop
i, j = 0 (i.e., assuming that the queues have no concurrency lim-

its). Let λ denote the throughput computed by the MVA algorithm in this step.

Step 2. Estimate V drop
i, j : treat Qi, j as an open, finite-buffer M/M/1/Ki queue

with arrival rate λVi, j (using the λ computed in Step (1)). Let pdrop
i, j denote

the probability of buffer overflow in this M/M/1/Ki queue [Kleinrock 1975].
Then V drop

i, j is estimated as V drop
i, j = pdrop

i, j · Vi, j . Also, Vi, j is updated as Vi, j =
(1 − pdrop

i, j) · Vi, j .

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

18 • B. Urgaonkar et al.

Estimating Sdrop
i . An estimate of Sdrop

i is application-specific and depends
on the manner in which information about dropped requests is conveyed to
the client and how the client responds to it. In our current model, we make the
simplifying assumption that, upon detecting a failed request, the client reissues

the request. This is captured by the transitions from Qdrop
i, j (1 ≤ j ≤ ri) back to

Q0 in Figure 5. Our approach for estimating Sdrop
i is to subject the application to

an offline workload that causes the limit to be exceeded only at tier Ti (this can
be achieved by setting a low concurrency limit at that tier and sufficiently high
limits at all the other tiers), and then record the response times of the requests

that do not finish successfully. Sdrop
i is then estimated as the difference between

the average response time of these unsuccessful requests and the sum of the
service times at tiers T1, . . . , Ti−1, multiplied by their respective visit ratios.

In Figure 4(b), we plot the response times for Rubis as predicted by
our enhanced model. We find that this enhancement enables us to capture
the behavior of the Rubis application even when its concurrency limit is
reached.

4.3 Handling Multiple Session Classes

Internet applications typically classify incoming sessions into multiple classes.
To illustrate, an online brokerage Web site may define three classes and may
map financial transactions to the Gold class, customer requests such as balance
inquiries to the Silver class, and casual browsing requests from noncustomers
to the Bronze class. Typically such classification helps the application sentry
to preferentially admit requests from more important classes during overloads
and drop requests from less important classes.

We can extend our baseline model to account for the presence of different
session classes and to compute the response time of requests within each class.
Consider an Internet application with C session classes: C1, C2, . . . , CC. As-
sume that the sentry implements a classification algorithm to map each incom-
ing session to one of these classes. We can use a straightforward extension of
the MVA algorithm to deal with multiple session classes. This is presented in
Algorithm 2. The notation used in this algorithm is a simple extension of that
used in Algorithm 1 with an additional subscript c for requests of class c. Nc

denotes the number of sessions of class c. We denote the total number of ses-
sions by N as before, so N = ∑C

c=1 Nc. This algorithm is based on the following
extension of the result (1). Let N − 1c = (N1, . . . , Nc−1, Nc − 1, Nc+1, . . . , Nc).
For closed product form networks,

Āc,m(N) = L̄m(N − 1c). (2)

The notion of feasible population used in Algorithm 2 needs explanation. A
feasible population with n total sessions is a set of sessions such that the number
of sessions within each class c is between 0 and Nc, and the sum of the number
of sessions in all classes is n.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 19

Algorithm 2. Mean-value analysis algorithm for an M -tier application with
C classes.

input : Nc (num. sessions of class c), S̄c,m, Vc,m, 1 ≤ c ≤ C, 1 ≤ m ≤ M ; Z̄
output : R̄c,m (avg. delays at Qm), R̄c (avg. resp. time for class c), 1 ≤ c ≤ C

initialization:

for c = 1 to C do
R̄c,0 = D̄c,0 = Z̄ ;

end
L̄0(0) = 0;

for m = 1 to M do
L̄m(0) = 0;
for c = 1 to C do

D̄c,m = Vc,m · S̄c,m /* service demand */;
end

end
/* introduce N customers, one by one */

for n = 1 to N do
for each feasible popl. n = (n1, . . . , nC) s. t. n = ∑C

c=1 nc, nc ≥ 0

for c = 1 to C do
for m = 1 to M do

R̄c,m = D̄c,m · (1 + L̄m(n − 1c)) /* average delay */;
end

end
for c = 1 to C do

τc =
(

nc

R̄c,0 + ∑M
m=1 R̄c,m

)
/* throughput */;

for m = 1 to M do
L̄m(n) = ∑C

c=1 τc · R̄c,m /* little’s law */;
end

end
L̄0(n) = ∑C

c=1 τc · R̄c,0;

end
for c = 1 to C do

for m = 1 to M do
R̄c = ∑m=M

m=1 R̄c,m /* response time */;
end

end

We note that this algorithm requires the visit ratios, service times, and think
time to be measured on a per-class basis. For handling load imbalances at repli-
cated tiers, we propose to correct the per-class visit ratios by employing load
imbalance factors determined using the heuristic described in Section 4.1. Our
approach makes the simplifying assumption of identical load imbalance factors
for the various classes at each tier. Finally, we refine our technique for deal-
ing with concurrency limits presented in Section 4.2 to accommodate multiple

classes. We estimate Sdrop
i exactly as in Section 4.2 because this parameter is

independent of the class of a request. The estimation of the drop probabilities,
however, needs to be done on a per-class basis. We do this by enhancing the

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

20 • B. Urgaonkar et al.

two-step procedure described in Section 4.2. Let us denote by Vc,i, j the visit
ratio for class c requests at Qi, j and by V drop

c,i, j the visit ratio for class c requests

at Qdrop
i, j .

Step 1. Estimate throughput of the queuing network if there were no concur-
rency limits: solve the queuing network using the multiclass MVA algorithm

with V drop
c,i, j = 0, 1 ≤ c ≤ C (i.e., assuming that the queues have no concurrency

limits). Let λ = ∑C
c=1 λc denote the throughput computed by the MVA algorithm

in this step.

Step 2. Estimate V drop
c,i, j : treat Qi, j as an open, finite-buffer M/M/1/Ki queue

with arrival rate λVi, j (using the λ computed in Step (1)). Let pdrop
i, j denote

the probability of buffer overflow in this M/M/1/Ki queue [Kleinrock 1975].

Then V drop
c,i, j is estimated as: V drop

c,i, j = pdrop
i, j · Vc,i, j · λc

λ
. Also, Vc,i, j is updated as:

Vc,i, j = (1 − pdrop
i, j) · Vc,i, j · λc

λ
.

Given a C-tuple (N1, . . . , NC) of sessions belonging to the C classes that
are simultaneously serviced by the application, the algorithm can compute the
average delays incurred at each queue and the end-to-end response time on a
per-class basis. In Section 6.2, we discuss how this algorithm can be used to
flexibly implement session policing policies in an Internet application.

4.4 Other Salient Features

Our closed-queuing model has several desirable features.

Simplicity. For an M -tier application with N concurrent sessions, the MVA
algorithm has a time complexity of O(M N). The algorithm is simple to imple-
ment, and as argued earlier, the model parameters are easy to measure online.

Generality. Our model can handle an application with an arbitrary number
of tiers. Further, when the scheduling discipline is processor sharing (PS), the
MVA algorithm works without making any assumptions about the service time
distributions of the customers [Lazowska et al. 1984]. This feature is highly
desirable for two reasons: (1) it is representative of scheduling policies in com-
modity operating systems (e.g., Linux’s CPU time-sharing), and (2) it implies
that our model is sufficiently general to handle workloads with an arbitrary
service time requirements.5

While our model is able to capture a number of application idiosyncrasies,
certain scenarios are not explicitly captured.

Multiple Resources. We model each server occupied by a tier using a single
queue. In reality, the server contains various resources such as the CPU, disk,
memory, and the network interface. Our model currently does not capture the
utilization of various server resources by a request at a tier. An enhancement
to the model where various resources within a server are modeled as a network
of queues is the subject of future work.

5The applicability of the MVA algorithm is more restricted with some other scheduling disciplines.

For example, in the presence of a FIFO scheduling discipline at a queue, the service time at a queue

needs to be exponentially distributed for the MVA algorithm to be applicable.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 21

Resources Held Simultaneously at Multiple Tiers. Our model essentially cap-
tures the passage of a request through the tiers of an application as a juxta-
position of periods, during each of which the request utilizes the resources at
exactly one tier. Although this is a reasonable assumption for a large class of
Internet applications, it does not apply to certain Internet applications such
as streaming video servers. A video server that is constructed as a pipeline of
processing modules will have all of its modules or tiers active as it continuously
processes and streams a video to a client. Our model does not apply to such
applications.

4.5 Limitations of Our Model

Whereas queueing theory provides an elegant and easy approach for model-
ing multitier applications, it also imparts certains shortcomings that must be
understood.

—Limited applicability in highly transient workload conditions. Queueing mod-
els capture system operation under steady-state conditions, and hence are
potentially of limited use if the workload characteristics change very fast.

—Only averages captured. Models that can capture entire distributions of key
metrics such as response time are not yet well-developed in queueing theory
literature. In many Internet data centers, a high percentile of the response
time, and not just the average, is of interest.

—Only single bottleneck resource captured. Specific to our work, our model is
applicable only to scenarios where a single temporal resoure (such as the
CPU or network bandwidth) might be the bottleneck, and hence the effect
of contention for other resources on the response time is negligible. Treating
a server as a network of queues representing multiple resources inside it is
certainly possible and has been explored by other researchers [Stewart et al.
2007]. Modeling spatial resources such as virtual memory or buffer caches
needs different approaches. In a separate piece of work, we have explored the
use of a machine learning technique for modeling cache behavior [Das et al.
2006]

5. MODEL VALIDATION

In this section, we present our experimental setup followed by our experimental
validation of the model.

5.1 Experimental Setup

Applications. We use two open source multitier applications in our experimental
study. Rubis implements the core functionality of an eBay-like auction site: sell-
ing, browsing, and bidding. It implements three types of user sessions, has nine
tables in the database, and defines 26 interactions that can be accessed from
the clients’ Web browsers. Rubbos is a bulletin-board application modeled after
an online news forum like Slashdot. Users have two different levels of access:
regular user and moderator. The main tables in the database are the users, sto-
ries, comments, and submissions tables. Rubbos provides 24 Web interactions.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

22 • B. Urgaonkar et al.

Both applications were developed by the DynaServer group at Rice University
(Dynaserver project http://compsci.rice.edu/CS/Systems/DynaServer/). Each
application contains a Java-based client that generates a session-oriented work-
load. We modified these clients to generate the workloads and take the measure-
ments needed by our experiments. We chose an average duration of 5 minutes
for the sessions of both Rubis and Rubbos. For both applications, the think time
was chosen from an exponential distribution with a mean of 1 second. The con-
currency limits for various tiers were set to the default values that were found
in the configuration files accompanying these software components.

We used 3-tier versions of these applications. The front tier was based on
the Apache 2.0.48 Web server. We experimented with two implementations
of the middle tier for Rubis (i) based on Java servlets, and (ii) based on
Sun’s J2EE Enterprise Java Beans (EJBs). The middle tier for Rubbos was
based on Java servlets. We employed Tomcat 4.1.29 as the servlets container
and JBoss 3.2.2 as the EJB container. We used Kernel TCP Virtual Server
version 0.0.14 (Kernel TCP Virtual Server http://www.linusvirtualserver.
org/software/ktcpvs/ktcpvs.html) to implement the application sentry. ktcpvs
is an open source, Layer-7 request dispatcher implemented as a Linux ker-
nel module. A round-robin load balancer implemented in ktcpvs was used for
Apache. Request dispatching for the middle tier was performed by mod jk, an
Apache module that implements a variant of round-robin request distribution
while taking into account session affinity. Finally, the database tier was based
on the Mysql 4.0.18 database server.

The concurrency limits for our tiers were set as follows, unless stated other-
wise: 150 for Apache, 75 for Java servlets container, and 150 for Mysql. Note
that real-world Internet servers are likely to have much higher concurrency
limits but they will also employ more capable hardware configurations. Our
limits were chosen in accordance with the capabilities of the hardware avail-
able in our research group.

Hosting Environment. We conducted experiments with the applications
hosted on two different kinds of machines. The first hosting environment con-
sisted of IBM servers (model 6565-3BU) with 662MHz processors and 256MB
RAM connected by 100Mbps ethernet. The second setting used for experiments
reported in Section 6 had Dell servers with 2.8GHz processors and 512MB RAM
interconnected using gigabit ethernet. This served to verify that our model was
flexible enough to capture applications running on different types of machines.
Finally, the workload generators were run on machines with Pentium-III pro-
cessors with speeds of 450MHz-1GHz and RAM sizes in the range 128-512MB.
All the machines ran the Linux 2.4.20 kernel.

Measurement Methodology. Unless otherwise specified, the average re-
sponse times reported are taken over 30-minute periods. In any experiment,
several initial readings are discarded until the system is perceived to have
reached steady state. This is done as follows. We record the absolute differ-
ences between average response times recorded over successive 1 minute long
intervals; 20 successive monotonically nonincreasing differences are taken as
an indicator of the system having attained a steady state.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 23

Fig. 6. Rubis based on Java servlets: bottleneck at CPU of middle tier. The concurrency limits for

the Apache Web server and the Java servlets container were set to be 150 and 75, respectively.

5.2 Performance Prediction

We conduct a set of experiments with the purpose of ascertaining the ability
of our model to predict the response time of multitier applications. We exper-
iment with (i) two kinds of applications (Rubis and Rubbos), (ii) two different
implementations of Rubis (based on Java servlets and EJBs), and (iii) differ-
ent workloads for Rubis. Each of the three application tiers are assigned one
server except in the experiments reported in Section 5.4. We vary the number
of concurrent sessions seen by the application and measure response times of
successfully finished requests. Each experiment lasts an initial period during
which the system is brought to a steady state followed by a recording period
of 30 minutes. We compute the average response time and the 95% confidence
intervals from these observations.

Our first experiment uses Rubis with a Java servlets-based middle tier. We
use two different workloads—W1, CPU-intensive on the Java servlets tier, and
W2, CPU-intensive on the database tier. These were created by modifying the
Rubis client so that it generated an increased fraction of requests that stressed
the desired tier. Earlier, in Figure 4(b), we had presented the average response
time and 95% confidence intervals for sessions varying from 1 to 500 for the
workload W1. Also plotted were the average response times predicted by our
basic model and our model enhanced to handle concurrency limits. Addition-
ally, we present the observed and predicted residence times in Figure 6(a).
Figure 6(b) shows that the CPU on the Java servlets tier becomes saturated
beyond 100 sessions for this workload. As already explained in Section 4.2, the
basic model fails to capture the response times for workloads higher than about
100 sessions due to an increase in the fraction of requests that arrive at the
Apache and servlets tiers only to be dropped because of the tiers operating at
their concurrency limits. We find that our enhanced model is able to capture
the effect of dropped requests at these high workloads and continues to predict
response times well for the entire workload range.

Figures 7 and 8 plot the response times, the residence times, and the server
CPU utilizations for servlets-based Rubis subjected to the workload W2 with

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

24 • B. Urgaonkar et al.

Fig. 7. Rubis based on Java servlets: bottleneck at CPU of database tier. The concurrency limits

for the Apache Web server and the Java servlets container were set to be 150 and 75, respectively.

Fig. 8. Rubis based on Java servlets: bottleneck at CPU of database tier. CPU utilization at the

database tier.

varying number of sessions. As shown in Figure 8, the CPU on the database
server is the bottleneck resource for this workload. We find that our basic model
captures response times well. The predicted response times are within the 95%
confidence interval of the observed average response time for the entire work-
load range.

Next, we repeat the experiment just described with Rubis, based on an EJB-
based middle tier. Our results are presented in Figure 9. Again, our basic model
captures the response time well until the concurrency limits at Apache and
JBoss are reached. As the number of sessions grows beyond this point, increas-
ingly large fractions of requests are dropped, the request throughput saturates,
and the response time of requests that finish successfully shows a flat trend.
Our enhancement to the model is again found to capture this effect well.

Finally, we repeat the experiment with the Rubbos application. We use a
Java servlets-based middle tier for Rubbos and subject the application to the
workload W1 that is CPU-intensive on the servlets tier. Figure 10 presents the
observed and predicted response times as well as the server CPU utilizations.
We find that our enhanced model predicts response times well over the chosen
workload range for Rubbos.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 25

Fig. 9. Rubis based on EJB: bottleneck at CPU of middle tier. The concurrency limits for the

Apache Web server and the Java servlets container were set to be 150 and 75, respectively.

Fig. 10. Rubbos based on Java servlets: bottleneck at CPU of middle tier. The concurrency limits

for the Apache Web server and the Java servlets container were set to be 150 and 75, respectively.

5.3 Query Caching at the Database

Recent versions of the Mysql server feature a query cache. When in use, the
query cache stores the text of a SELECT query together with the correspond-
ing result that was sent to the client. If the identical query is received later,
the server retrieves the results from the query cache rather than parsing and
executing the query again. Query caching at the database has the effect of re-
ducing the average service time at the database tier. We conduct an experiment
to determine how well our model can capture the impact of query caching on
response time. We subject Rubbos to a workload consisting of 50 simultaneous
sessions. To simulate different degrees of query caching at Mysql, we use a
feature of Mysql queries that allows the issuer of a query to specify that the
database server not use its cache for servicing this query.6 We modified the
Rubbos servlets to make them request different fractions of the queries with
this option. For each degree of caching, we plot the average response time with

6Specifically, replacing a SELECT with SELECT SQL NO CACHE ensures that Mysql does not cache this

query.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

26 • B. Urgaonkar et al.

Fig. 11. Caching at the database tier of Rubbos.

Fig. 12. Load imbalance at the middle tier of Rubis. (a) and (b) present number of requests and

response times classified on a per-replica basis; (c) presents response times classified according to

most loaded, second most loaded, and most loaded replicas and overall average response times.

95% confidence intervals in Figure 11. As expected, the observed response time
decreases steadily as the degree of query caching increases. The average re-
sponse time is nearly 1400 milliseconds without query caching and reduces to
about 100 milliseconds when all the queries are cached. In Figure 11, we also
plot the average response time predicted by our model for different degrees of
caching. We find that our model is able to capture well the impact of the reduced
query processing time with increasing degrees of caching on average response
time. The predicted response times are found to be within the 95% confidence
interval of the observed response times for the entire range of query caching.

5.4 Load Imbalance at Replicated Tiers

We configure Rubis using a replicated Java servlets tier; we assign three servers
to this tier. We use the workload W1 with 100 simultaneous sessions. The
user think times for a session are chosen using an exponential distribution
whose mean is chosen uniformly at random from the set {1 second, 5 seconds}.
We choose short-lived sessions with a mean session duration of 1 minute. Our
results are presented in Figure 12. Note that replication at the middle tier
causes the response times to be significantly smaller than in the experiment
depicted in Figure 6(a). Further, choosing sessions with two widely different
think times ensures variability in the workload imposed by individual sessions
and creates load imbalance at the middle tier.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 27

Figure 12(a) plots the number of requests passing through each of the three
servers in the servlets tier over 30 second intervals during a 10-minute run
of this experiment; Figure 12(b) plots the average end-to-end response times
for these requests. These figures show the imbalance in the load on the three
replicas. Also, the most loaded server changes over time—choosing a short ses-
sion duration causes the load imbalance to shift among replicas frequently.
Figure 12(c) plots the average response times observed for requests passing
through the three servers; instead of presenting response times corresponding
to specific servers, we plot values for the least loaded, the second least loaded,
and the most loaded server. Figure 12(c) also shows the response times pre-
dicted by the model assuming perfect load balancing at the middle tier. Under
this assumption, we see a deviation between the predicted values and the ob-
served response times.

Next, we use the model enhancement described in Section 4.1 to capture
load imbalance. For this workload, the values for the load imbalance factors
used by our enhancement were determined to be β̄1

2 = 0.25, β̄2
2 = 0.32, and

β̄3
2 = 0.43. We plot the response times predicted by the enhanced model at

the extreme right in Figure 12(c). We observe that the use of these additional
parameters improves our prediction of the response time. The predicted av-
erage response time (1350 milliseconds) closely matched the observed value
(1295 milliseconds); with the assumption of perfect load balancing, the model
underestimated the average response time to be 950 milliseconds.

It should be pointed out that the load balance described disappears if we
take averages over longer time periods (on the order of tens of minutes as
in the rest of our evaluation). Our concern for the impact of load imbalance,
therefore, is meaningful when the SLA is sensitive to average response times
over short time scales. This could happen if the SLA is concerned with aver-
ages taken over shorter time scales or with a high percentile of the response
time distribution instead of the average response time. Examples of services
that would find such SLAs useful are streaming media servers (Real Media
Servers http://www.realnetworks.com/products/media delivery.html) that need
to ensure guaranteed transfers of large amounts of data to their clients every
second or extremely time-sensitive applications such as game servers (Quake I
http://www.planetquake.com).

5.5 Multiple Session Classes

We created two classes of Rubis sessions using the workloads W1 and W2,
respectively. Recall that the requests in these classes have different service
time requirements at different tiers, W1 is CPU-intensive on the Java servlets
tier, while W2 is CPU-intensive on the database tier. We conduct two sets of
experiments, each of which involves keeping the number of sessions of one
class fixed at 10 and varying the number of sessions of the other class. We then
compute the per-class average response time predicted by the multiclass version
of our model (Section 4.3). We plot the observed and predicted response times
for the two classes in Figure 13. While the predicted response times closely
match the observed values for the first experiment, in the second experiment

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

28 • B. Urgaonkar et al.

Fig. 13. Rubis serving sessions of two classes. Sessions of class 1 were generated using workload

W1, while those of class 2 were generated using workload W2.

(Figure 13(b)), we observe that our model underestimates the response time
for class 1 for 50 sessions. We attribute this to an inaccurate estimation of the
service time of class 1 requests at the servlets tier at this load.

6. APPLICATIONS OF THE MODEL

In this section, we demonstrate some applications of our model for managing
resources in a data center. We also discuss some important issues related to the
online use of our model.

6.1 Dynamic Capacity Provisioning and Bottleneck Identification

Dynamic capacity provisioning is a useful technique for handling the multi-time
scale variations seen in Internet workloads and has been a subject of extensive
research [Chase et al. 2001; Urgaonkar et al. 2002, 2005; Doyle et al. 2003;
Benani and Menasce 2005; Xu and Xu 2004; Appleby et al. 2001; Chandra et al.
2003; Chen et al. 2004, 2005; Rolia et al. 2000; Kallahalla et al. 2004; Zhu
and Singhal 2001; Urgaonkar 2005; Ranjan et al. 2002]. The goal of dynamic
provisioning is to dynamically allocate sufficient capacity to the tiers of an ap-
plication so that its response time needs can be met even in the presence of
the peak workload. Two key components of a dynamic provisioning technique
are: (i) predicting the workload of an application, and (ii) determining the ca-
pacity needed to serve this predicted workload. The former problem has been
addressed in papers such as Hellerstein et al. [1999]. The workload estimates
made by such predictors can be used by our model to address the issue of how
much capacity to provision. Observe that the inputs to our model-based pro-
visioning technique are the workload characteristics, number of sessions to be
serviced simultaneously, and the response time target, and the desired output
is a capacity assignment for the application. We start with an initial assignment
of one server to each tier. We use the MVA algorithm to determine the resulting
average response time as described in Sections 3 and 4. In case this is worse
than the target, we use the MVA algorithm to determine, for each replicable
tier, the response time resulting from the addition of one more server to it. We

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 29

Fig. 14. Model-based dynamic provisioning of servers for Rubis.

add a server to the tier that results in the most improvement in response time.
We repeat this until we have an assignment for which the predicted response
time is below the target; this assignment yields the capacity to be assigned to
the application’s tiers.7 Note that the procedure described previously is only a
heuristic for dynamic provisioning chosen for illustrative purposes. This proce-
dure has a time complexity of O(kMN), where k is the number of servers that
the application is eventually assigned, M is the the number of tiers, and N is
the number of sessions. Since provisioning decisions are typically made over
periods of tens of minutes or hours, this overhead is practically feasible.

We conduct an experiment to demonstrate the application of our model to
dynamically provision Rubis configured using Java servlets at its middle tier.
We assume an idealized workload predictor that can accurately forecast the
workload for the near future. We generated a 1-hour session arrival process
based on a Web trace from the 1998 Soccer World Cup site [Arlitt and Jin
1999]; this is shown in Figure 14(a). Sessions are generated according to this
arrival process using workload W1.

We implemented a provisioning unit that invokes the model-based proce-
dure previously described every 10 minutes to determine the capacity required
to handle the workload during the next interval. Our goal was to maintain an
average response time of 1 second for Rubis requests. Since our model requires
the number of simultaneous sessions as input, the provisioning unit converted
the peak rate during the next interval into an estimate of the number of simul-
taneous sessions for which to allocate capacity using Little’s Law [Kleinrock
1975] as N = � · d , where � is the peak session arrival rate during the next
interval as given by the predictor, and d is the average session duration. The
provisioning unit ran on a separate server. It implemented scripts that remotely
log on to the application sentry and the dispatchers for the affected tiers after ev-
ery recomputation to enforce the newly computed allocations. The concurrency

7Note that our current discussion assumes that it is always possible to meet the response time

target by adding enough servers. Sometimes this may not be possible (e.g., due to the workload

exceeding the entire available capacity, or a nonreplicable tier becoming saturated), and we may

have to employ admission control in addition to provisioning. This is discussed in Section 6.2.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

30 • B. Urgaonkar et al.

limits of the Apache Web server and the Tomcat servlets container were both set
to 100. We present the working of our provisioning unit and the performance
of Rubis in Figure 14(b). The provisioning unit is successful in changing the
capacity of the servlets tier to match the workload (recall that workload W1 is
CPU-intensive on this tier). The session arrival rate goes up from about 10 ses-
sions/minute at t = 20 minutes to nearly 30 sessions/minute at t = 40 min-
utes. Correspondingly, the request arrival rate increases from about 1500 re-
quests/minute to about 4200 requests/minute. The provisioning unit increases
the number of Tomcat replicas from 2 to a maximum of 7 during the experi-
ment. Further, at t = 30 minutes, the number of simultaneous sessions during
the upcoming 10-minute interval is predicted to be higher than the concurrency
limit of the Apache tier. To prevent new sessions from being dropped due to the
connection limit being reached at Apache, a second Apache server is added to
the application. Thus, our model-based provisioning is able to identify potential
bottlenecks at different tiers (connections at Apache and CPU at Tomcat) and
maintain response time targets by adding capacity appropriately. We note that
the single-tier models described in Section 2.3 will only be able to add capacity
to one tier and will fail to capture such changing bottlenecks.

6.2 Session Policing and Class-Based Differentiation

Internet applications are known to experience unexpected surges in their work-
load, known as flash crowds [Welsh and Culler 2003]. Therefore, an important
component of any such application is a sentry that polices incoming sessions
to an application’s server pool—incoming sessions are subjected to admission
control at the sentry to ensure that the contracted performance guarantees
are met; excess sessions are turned away during overloads. In an application
supporting multiple classes of sessions, with possibly different response time
requirements and revenue schemes for different classes, it is desirable to design
a sentry that, during a flash crowd, can determine a subset of sessions admit-
ting which would optimize a meaningful metric. An example of such a metric
could be the overall expected revenue generated by the admitted sessions while
meeting their response time targets (this constraint on response times will be
assumed to hold in the rest of our discussion without being stated). Formally,
given L session classes, C1, . . . , CL, with up to Ni sessions of class Ci and us-
ing overall revenue as the metric to be optimized, the goal of the sentry is to
determine an L-tuple (Nadmit

1 , . . . , Nadmit
L) such that

∀ni ≤ Ni(1 ≤ i ≤ L),
∑

i

revi
(
Nadmit

i

) ≥
∑

i

revi(ni),

where revi(ni) denotes the revenue generated by ni admitted sessions of Ci.
Although a lot of research has been conducted on policing [Kasera et al. 2005;

Abdelzaher and Bhatti 1999; Voigt et al. 2001; Welsh and Culler 2003; Abdelza-
her et al. 2002; Cherkasova and Phaal 2002; Kanodia and Knightly 2000; Li and
Jamin 2000; Elnikety et al. 2004; Kamra et al. 2004; Schroeder and Harchol-
Balter 2003; Fox et al. 1997; Iyer et al. 2000; Appleby et al. 2001; Lassettre
et al. 2003; Li and Jamin 2000; Chase and Doyle 2001; Urgaonkar and Shenoy
2004; Verma and Ghosal 2003], most of this work does not consider or extend

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 31

Fig. 15. Maximizing revenue via differentiated session policing in Rubis. The application serves

two classes of sessions.

to multitiered applications servicing multiple classes of clients. Our multiclass
model described in Section 4.3 provides a flexible procedure for realizing this.
First observe that the inputs to this procedure are the workload characteris-
tics of various classes and the capacity assigned to the application tiers, and
the desired output is the number of sessions of each class to admit. In theory,
we could use the multiclass MVA algorithm to determine the revenue yielded
by every admissible L-tuple. Clearly this would be computationally prohibitive.
Instead, we use a heuristic that considers the session classes in a nonincreasing
order of their revenue-per-session. For the class under consideration, it adds ses-
sions until either all available sessions are exhausted or adding another session
would cause the response time of at least one class, as predicted by the model,
to violate its target. The outcome of this procedure is an L-tuple of the number
of sessions that can be used by the policer to make admission control decisions.

We now describe our experiments to demonstrate the working of the session
policer for Rubis. We configured the servlets version of Rubis with 2 replicas
of the servlets tier. Similar to Section 4.3, we chose W1 and W2 to construct
two session classes C1 and C2, respectively. The response time targets for the
two classes were chosen to be 1 second and 2 seconds; the revenue yielded by
each admitted session was assumed to be $0.1 and $1, respectively. We assume
session durations of exactly 10 minutes for illustrative purposes. We create
the following flash crowd scenarios. We assume that 150 sessions of C1 and
10 sessions of C2 arrive at t = 0; 50 sessions each of C1 and C2 are assumed to
arrive at t = 10 minutes. Figure 15(a) presents the working of our model-based
policer. At t = 0, based on the procedure described previously, the policer first
admits all 10 sessions of the class with higher revenue-per-session, namely, C2;
it then proceeds to admit as many sessions of C1 as it can (90), while keeping
the average response times under target. At t = 10 minutes, the policer first
admits as many sessions of C2 as it can (21); it then admits 5 sessions of C1;
admitting more would, according to the model, cause the response time of C2

to be violated. We find from Figure 15(a) that the response time requirements
of both the classes are met during the experiment. We make two additional
observations: (i) during [0, 10] minutes, the response time of C2 is well below

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

32 • B. Urgaonkar et al.

its target of 2 seconds. This is because there are only 10 sessions of this class,
less than the capacity of the database tier for the desired response time target.
Since the 90 sessions of C1 mainly stress the servlets tier (recall the nature of
W1 and W2), they have minimal impact on the response time of C2 sessions,
which mainly exercise the database tier, and (ii) during (10, 20] minutes, the
response time of C1 is well below its target of 1 second. This is because the
policer admits only 5 C1 sessions; the servlets tier is lightly loaded since the C2

sessions do not stress it, and, therefore, the C1 sessions experience low response
times.

Figure 15(b) demonstrates the impact of admitting more sessions on applica-
tion response time. At t = 0, the policer admits excess C1 sessions; it admits 140
and 10 sessions, respectively. We find that sessions of C1 experience degraded
response times (in excess of 2 seconds as opposed to the desired 1 second).
Similarly, at t = 10 minutes, it admits excess C2 sessions; it admits 5 and 31
sessions, respectively. Now sessions of C2 experience response time violations.
Observe that admitting excess sessions of one class does not cause a percep-
tible degradation in the performance of the other class because they exercise
different tiers of the application.

7. CONCLUSIONS

In this article, we presented an analytical model for multitier Internet applica-
tions. Our model is based on using a network of queues to represent how the tiers
in a multitier application cooperate to process requests. Our model is (i) general
enough to capture Internet applications with an arbitrary number of heteroge-
neous tiers, (ii) is inherently designed to handle session-based workloads, and
(iii) can account for application idiosyncrasies such as load imbalances within a
replicated tier, caching effects, the presence of multiple classes of sessions, and
limits on the amount of concurrency at each tier. The model parameters are easy
to measure and update. We validated the model using two open-source multitier
applications running on a Linux-based server cluster. Our experiments demon-
strated that our model faithfully captures the performance of these applications
for a variety of workloads and configurations. Furthermore, our model success-
fully handles a comprehensive range of resource utilization—from 0 to near
saturation for the CPU—for two separate tiers. We demonstrated the utility
of our model in managing resources for Internet applications under varying
workloads and shifting bottlenecks. In one scenario, where the request arrival
rate to the online auction application Rubis increased from 1500 to nearly 4200
requests/minute, a dynamic provisioning technique based on our model was
able to maintain the response time target by quickly increasing the capacity of
the Web tier and the Java servlets tier by factors of 2 and 3.5, respectively.

REFERENCES

ABDELZAHER, T. AND BHATTI, N. 1999. Web content adaptation to improve server overload behavior.

In Proceedings of the World Wide Web Conference (WWW8). Tornoto, Canada.

ABDELZAHER, T., SHIN, K. G., AND BHATTI, N. 2002. Performance guarantees for Web server end-

systems: A control-theoretical approach. IEEE Trans. Parall. Distrib. Syst. 13, 1.

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 33

APPLEBY, K., FAKHOURI, S., FONG, L., GOLDZMIDT, M. K. G., KRISHNAKUMAR, S., PAZEL, D., PERSHING, J., AND

ROCHWERGER, B. 2001. Oceano—SLA-based management of a computing utility. In Proceedings
of the IFIP/IEEE Symposium on Integrated Network Management.

ARLITT, M. AND JIN, T. 1999. Workload characterization of the 1998 world cup Web site. Tech. rep.

HPL-1999-35R1, HP Labs.

BENANI, M. AND MENASCE, D. 2005. Resource allocation for autonomic data centers using analytic

performance models. In Proceedings of IEEE International Conference on Autonomic Computing
(ICAC’05). Seattle, WA.

CHANDRA, A., GONG, W., AND SHENOY, P. 2003. Dynamic resource allocation for shared data centers

using online measurements. In Proceedings of the 11th International Workshop on Quality of
Service (IWQoS’03). Monterey, CA.

CHANDRA, A., GOYAL, P., AND SHENOY, P. 2003. Quantifying the benefits of resource multiplexing

in on-demand data centers. In 1st Workshop on Algorithms and Architectures for Self-Managing
Systems.

CHASE, J., ANDERSON, D., THAKUR, P., AND VAHDAT, A. 2001. Managing energy and server resources

in hosting centers. In Proceedings of the 18th Symposium on Operating Systems Principles
(SOSP’01).

CHASE, J. AND DOYLE, R. 2001. Balance of power: Energy management for server clusters. In

Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII). Elmau,

Germany.

CHEN, Y., DAS, A., GAUTAM, N., WANG, Q., AND SIVASUBRAMANIAM, A. 2004. Pricing-based strategies

for autonomic control of web servers for time-varying request arrivals. Engin. Applic. Arti. Intell.
Special Issue on Automatic Computing System 17, 7 (Oct.), Elsevier, 841–854.

CHEN, Y., DAS, A., QIN, W., SIVASUBRAMANIAM, A., WANG, Q., AND GAUTAM, N. 2005. Managing server

energy and operational costs in hosting centers. In Proceedings of the ACM International Con-
ference on Measurement and Modeling of Computer Systems (SIGMETRICS’05). Banff, Canada.

CHERKASOVA, L. AND PHAAL, P. 2002. Session-based admission control: A mechanism for

peak load management of commercial Web sites. IEEE Trans. Comput. 51, 6 (June), 669–

685.

COHEN, I., CHASE, J., GOLDSZMIDT, M., KELLY, T., AND SYMONS, J. 2004. Correlating instrumentation

data to system states: A building block for automated diagnosis and control. In Proceedings of
the 6th USENIX Symposium in Operating Systems Design and Implementation (OSDI’04). San

Francisco, CA.

DAS, A., DATTA, R., SIVASUBRAMANIAM, A., AND URGAONKAR, B. 2006. Predicting Web cache behavior

using stochastic state space models. Tech. rep., Department of Computer Science and Engineer-

ing, The Pennsylvania State University.

DOYLE, R., CHASE, J., ASAD, O., JIN, W., AND VAHDAT, A. 2003. Model-based resource provisioning

in a Web service utility. In Proceedings of the 4th USITS.

ELNIKETY, S., NAHUM, E., TRACEY, J., AND ZWAENEPOEL, W. 2004. A method for transparent admission

control and request scheduling in e-eommerce Web sites. In Proceedings of the 13th International
Conference on World Wide Web. New York, NY. 276–286.

FOX, A., GRIBBLE, S., CHAWATHE, Y., BREWER, E., AND GAUTHIER, P. 1997. Cluster-based scalable net-

work services. In Proceedings of the 16th Symposium on Operating Systems Principles (SOSP’97).
FRANKS, R. G. 1999. Performance analysis of distributed server systems. Ph.D. thesis, Carleton

University.

HELLERSTEIN, J., ZHANG, F., AND SHAHABUDDIN, P. 1999. An approach to predictive detection for

service management. In Proceedings of the IEEE Intl. Conference on Systems and Network
Management.

IYER, R., TEWARI, V., AND KANT, K. 2000. Overload control mechanisms for Web servers. In Work-
shop on Performance and QoS of Next Generation Networks.

KALLAHALLA, M., UYSAL, M., SWAMINATHAN, R., LOWELL, D. E., WRAY, M., CHRISTIAN, T., EDWARDS, N.,

DALTON, C. I., AND GITTLER, F. 2004. SoftUDC: A software-based data center for utility comput-

ing. IEEE Comput. 37, 11, 38–46.

KAMRA, A., MISRA, V., AND NAHUM, E. 2004. Yaksha: A controller for managing the performance

of 3-tiered Web sites. In Proceedings of the 12th International Workshop on Quality of Service
(IWQoS).

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

34 • B. Urgaonkar et al.

KANODIA, V. AND KNIGHTLY, E. 2000. Multi-class latency-bounded web servers. In Proceedings of
International Workshop on Quality of Service (IWQoS’00).

KASERA, S., PINHEIRO, J., LOADER, C., LAPORTA, T., KARAUL, M., AND HARI, A. 2005. Robust multi-

class signaling overload control. In Proceedings of IEEE International Conference on Networks
Protocol (ICNP).

LASSETTRE, E., COLEMAN, D., DIAO, Y., FROELICH, S., HELLERSTEIN, J., HSIUNG, L., MUMMERT, T.,

RAGHAVACHARI, M., PARKER, G., RUSSELL, L., SURENDRA, M., TSENG, V., WADIA, N., AND YE, P. 2003.

Dynamic surge protection: An approach to handling unexpected workload surges with resource

actions that have lead times. In Proceedings of the 1st Workshop on Algorithms and Architectures
for Self-Managing Systems.

LAZOWSKA, E., ZAHORJAN, J., GRAHAM, G., AND SEVCIK, K. 1984. Quantitative System Performance.

Prentice–Hall.

LEVY, R., NAGARAJARAO, J., PACIFICI, G., SPREITZER, M., TANTAWI, A., AND YOUSSEF, A. 2003. Perfor-

mance management for cluster based web services. In IFIP/IEEE 8th International Symposium
on Integrated Network Management. Vol. 246, 247–261.

LI, S. AND JAMIN, S. 2000. A measurement-based admission-controlled Web server. In Proceed-
ings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’00). Tel Aviv, Israel.

LIU, T.-K., KUMARAN, S., AND LUO, Z. 2001. Layered queueing models for enterprise java beans

applications. Tech. rep., IBM. June.

MENASCE, D. 2003. Web server software architectures. In IEEE Internet Comput. 7.

MENASCE, D., ALMEIDA, V., AND DOWDY, L. 2004. Performance by Design: Computer Capacity Plan-
ning by Example. Prentice Hall.

RANJAN, S., ROLIA, J., FU, H., AND KNIGHTLY, E. 2002. QoS-driven server migration for internet data

centers. In Proceedings of the 10th International Workshop on Quality of Service, Miami, FL.

REISER, M. AND LAVENBERG, S. 1980. Mean-value analysis of closed multichain queuing networks.

J. ACM 27, 2, 313–322.

ROLIA, J. AND SEVCIK, K. 1995. The method of layers. IEEE Trans. Softw. Engin. 21, 8, 689–700.

ROLIA, J., SINGHAL, S., AND FRIEDRICH, R. 2000. Adaptive internet data centers. In Proceedings of
SSGRR 2000.

S. KOUNEV, A. BUCHMANN. 2003. Performance modeling and evaluation of large-scale J2EE

applications. In Proceedings of the Computer Measurement Group’s International Conference
(CMG’03). Dallas, TX.

SCHROEDER, B. AND HARCHOL-BALTER, M. 2003. Web servers under overload: How scheduling can

help. In Proceedings of the 18th International Teletraffic Congress.

SLOTHOUBER, L. 1996. A model of web server performance. In Proceedings of the 5th International
World Wide Web Conference.

STEWART, C., KELLY, T., AND ZHANG, A. 2007. Exploiting nonstationarity for performance prediction.

In Proceedings of EuroSys 2007. Lisbon, Portugal.

URGAONKAR, B. 2005. Dynamic resource management in internet data centers. Ph.D. thesis, Uni-

versity of Massachusetts, Amherst, MA.

URGAONKAR, B. AND SHENOY, P. 2004. Cataclysm: Handling extreme overloads in internet ser-

vices. In Proceedings of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC’04). St. John’s, Newfoundland, Canada.

URGAONKAR, B., SHENOY, P., CHANDRA, A., AND GOYAL, P. 2005. Dynamic provisioning of multitier

internet applications. In Proceedings of the 2nd IEEE International Conference on Autonomic
Computing (ICAC’05). Seattle, WA.

URGAONKAR, B., SHENOY, P., AND ROSCOE, T. 2002. Resource overbooking and application profiling in

shared hosting platforms. In Proceedings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’02). Boston, MA.

VERMA, A. AND GHOSAL, S. 2003. On admission control for profit maximization of networked ser-

vice providers. In Proceedings of the 12th International World Wide Web Conference (WWW’03).
Budapest, Hungary.

VILLELA, D., PRADHAN, P., AND RUBENSTEIN, D. 2004. Provisioning servers in the application tier

for e-commerce systems. In Proceedings of the 12th International Workshop on Quality of Service
(IWQoS).

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

P1: IAZ

ACMJ268-02 ACM-TRANSACTION April 13, 2007 18:8

Analytic Modeling of Multitier Internet Applications • 35

VOIGT, T., TEWARI, R., FREIMUTH, D., AND MEHRA, A. 2001. Kernel mechanisms for service differ-

rentiation in overloaded Web servers. In Proceedings of USENIX Annual Technical Conference.

WELSH, M. AND CULLER, D. 2003. Adaptive overload control for busy internet servers. In Proceed-
ings of the 4th USENIX Conference on Internet Technologies and Systems (USITS’03).

WOODSIDE, C. AND RAGHUNATH, G. 1995. General bypass architecture for high-performance dis-

tributed algorithms. In Proceedings of the 6th IFIP Conference on Performance of Computer Net-
works. Istanbul, Turkey.

XU, J., OUFIMTSEV, A., WOODSIDE, M., AND MURPHY, L. 2006. Performance modeling and prediction of

enterprise java beans with layered queuing network templates. SIGSOFT Softw. Eng. Notes 31, 2.

XU, M. AND XU, C. 2004. Decay function model for resource configuration and adaptive allocation

on internet servers. In Proceedings of the 12th International Workshop on Quality-of-Service
(IWQoS’04).

ZHU, X. AND SINGHAL, S. 2001. Optimal resource assignment in internet data centers. In Pro-
ceedings of the 9th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems (MASCOTS’01).

Received August 2006; revised January 2007; accepted January 2007

ACM Transactions on the Web, Vol. 1, No. 1, Article 2, Publication date: May 2007.

