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Today’s one-pass analytics applications tend to be data-intensive in nature and require the ability to process high volumes
of data efficiently. MapReduce is a popular programming model for processing large datasets using a cluster of machines.
However, the traditional MapReduce model is not well-suited for one-pass analytics, since it is geared towards batch processing
and requires the data set to be fully loaded into the cluster before running analytical queries. This paper examines, from
a systems standpoint, what architectural design changes are necessary to bring the benefits of the MapReduce model to
incremental one-pass analytics. Our empirical and theoretical analyses of Hadoop-based MapReduce systems show that the
widely-used sort-merge implementation for partitioning and parallel processing poses a fundamental barrier to incremental
one-pass analytics, despite various optimizations. To address these limitations, we propose a new data analysis platform
that employs hash techniques to enable fast in-memory processing, and a new frequent key based technique to extend such
processing to workloads that require a large key-state space. Evaluation of our Hadoop-based prototype using real-world
workloads shows that our new platform significantly improves the progress of map tasks, allows the reduce progress to keep
up with the map progress, with up to 3 orders of magnitude reduction of internal data spills, and enables results to be returned
continuously during the job.
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1. INTRODUCTION
Today, real-time analytics on large, continuously-updated datasets has become essential to meet
many enterprise business needs. Like traditional warehouse applications, real-time analytics using
incremental one-pass processing tends to be data-intensive in nature and requires the ability to collect
and analyze enormous datasets efficiently. At the same time, MapReduce has emerged as a popular
model for parallel processing of large datasets using a commodity cluster of machines. The key
benefits of this model are that it harnesses compute and I/O parallelism on commodity hardware
and can easily scale as the datasets grow in size. However, the MapReduce model is not well-suited
for incremental one-pass analytics since it is primarily designed for batch processing of queries on
large datasets. Furthermore, MapReduce implementations require the entire data set to be loaded
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into the cluster before running analytical queries, thereby incurring long latencies and making them
unsuitable for producing incremental results.

In this paper, we take a step towards bringing the many benefits of the MapReduce model to
incremental one-pass analytics. In the new model, the MapReduce system reads input data only once,
performs incremental processing as more data is read, and utilizes system resources efficiently to
achieve high performance and scalability. Our goal is to design a platform to support such scalable,
incremental one-pass analytics. This platform can be used to support interactive data analysis, which
may involve online aggregation with early approximate answers, and, in the future, stream query
processing, which provides near real-time insights as new data arrives.

We argue that, in order to support incremental one-pass analytics, a MapReduce system should
avoid any blocking operations and also computational and I/O bottlenecks that prevent data from
“smoothly” flowing through map and reduce phases on the processing pipeline. We further argue
that, from a performance standpoint, the system needs to perform fast in-memory processing of a
MapReduce query program for all, or most, of the data. In the event that some subset of data has to
be staged to disks, the I/O cost of such disk operations must be minimized.

Our recent benchmarking study evaluated existing MapReduce platforms including Hadoop and
MapReduce Online (which performs pipelining of intermediate data [Condie et al. 2010]). Our results
revealed that the main mechanism for parallel processing used in these systems, based on a sort-merge
technique, is subject to significant CPU and I/O bottlenecks as well as blocking: In particular, we
found that the sort step is CPU-intensive, whereas the merge step is potentially blocking and can
incur significant I/O costs due to intermediate data. Furthermore, MapReduce Online’s pipelining
functionality only redistributes workloads between the map and reduce tasks, and is not effective for
reducing blocking or I/O overhead.

Building on these benchmarking results, in this paper we perform an in-depth analysis of Hadoop,
using a theoretically sound analytical model to explain the empirical results. Given the complexity of
the Hadoop software and its myriad of configuration parameters, we seek to understand whether the
above performance limitations are inherent to Hadoop or whether tuning of key system parameters
can overcome those drawbacks from the standpoint of incremental one-pass analytics. Our key results
are two-fold: We show that our analytical model can be used to choose appropriate values of Hadoop
parameters, thereby reducing I/O and startup costs. However, both theoretical and empirical analyses
show that the sort-merge implementation, used to support partitioned parallel processing, poses a
fundamental barrier to incremental one-pass analytics. Despite a range of optimizations, I/O and
CPU bottlenecks as well as blocking persist, and the reduce progress falls significantly behind the
map progress, hence violating the requirements of efficient incremental processing.

We next propose a new data analysis platform, based on MapReduce, that is geared for incremental
one-pass analytics. Based on the insights from our experimental and analytical evaluation of current
platforms, we design two key mechanisms into MapReduce:

Our first mechanism replaces the sort-merge implementation in MapReduce with a purely hash-
based framework, which is designed to address the computational and I/O bottlenecks as well as the
blocking behavior of sort-merge. We devise two hash techniques to suit different reduce functions,
depending on whether the reduce function permits incremental processing or not. Besides eliminating
the sorting cost from the map tasks, these hash techniques can provide fast in-memory processing of
the reduce function when the memory reaches a sufficient size as determined by the workload and
algorithm.

Our second mechanism further brings the benefits of fast in-memory processing to workloads that
require a large key-state space that far exceeds available memory. We propose both deterministic and
randomized techniques to dynamically recognize popular keys and then update their states using a
full in-memory processing path, both saving I/Os and enabling early answers for these keys. Less
popular keys trigger I/Os to stage data to disk but have limited impact on the overall efficiency.

We have built a prototype of our incremental one-pass analytics platform on Hadoop 0.20.1. Using
a range of workloads in click stream analysis and web document analysis, we obtain the following
main results: (1) Our hash techniques significantly improve the progress of the map tasks, due to
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the elimination of sorting, and given sufficient memory, enable fast in-memory processing of the
reduce function. (2) For challenging workloads that require a large key-state space, our dynamic
hashing mechanism significantly reduces I/Os and enables the reduce progress to keep up with
the map progress, thereby realizing incremental processing. For instance, for sessionization over
a click stream, the reducers output user sessions as data is read and finish as soon as all mappers
finish reading the data in 34.5 minutes, triggering only 0.1GB internal data spill to disk in the job.
In contrast, the original Hadoop system returns all the results towards the end of the 81 minute
job, writing 370GB internal data spill to disk. (3) Further trade-offs exist between our hash-based
techniques under different workload types, data localities, and memory sizes, with dynamic hashing
working the best under constrained memory and most workloads.

2. BACKGROUND
To provide a technical context for the discussion in this paper, we begin with background on
MapReduce systems and summarize the key results of our recent benchmarking study.

2.1. The MapReduce Model
At the API level, the MapReduce programming model simply includes two functions: The map
function transforms input data into 〈key, value〉 pairs, and the reduce function is applied to each
list of values that correspond to the same key. This programming model abstracts away complex
distributed systems issues, thereby providing users with rapid utilization of computing resources.

To achieve parallelism, the MapReduce system essentially implements “group data by key, then
apply the reduce function to each group”. This computation model, referred to as MapReduce group-
by, permits parallelism because both the extraction of 〈key, value〉 pairs and the application of the
reduce function to each group can be performed in parallel on many nodes. The system code of
MapReduce implements this computation model (and other functionality such as scheduling, load
balancing, and fault tolerance).

The MapReduce program of an analytical query includes both the map and reduce functions
compiled from the query (e.g., using a MapReduce-based query compiler [Olston et al. 2008]) and
the MapReduce system’s code for parallelism.

2.2. Common MapReduce Implementations
Hadoop. We first consider Hadoop, the most popular open-source implementation of MapReduce.

Hadoop uses block-level scheduling and a sort-merge technique [White 2009] to implement the
group-by functionality for parallel processing (Google’s MapReduce system is reported to use a
similar implementation [Dean and Ghemawat 2004], but further details are lacking due to the use of
proprietary code).

The Hadoop Distributed File System (HDFS) handles the reading of job input data and writing of
job output data. The unit of data storage in HDFS is a 64MB block by default and can be set to other
values during configuration. These blocks serve as the task granularity for MapReduce jobs.

Given a query job, several map tasks (mappers) and reduce tasks (reducers) are started to run
concurrently on each node. As Fig. 1 shows, each mapper reads a chunk of input data, applies the
map function to extract 〈key, value〉 pairs, then assigns these data items to partitions that correspond
to different reducers, and finally sorts the data items in each partition by the key. Hadoop currently
performs a sort on the compound 〈partition, key〉 to achieve both partitioning and sorting in each
partition. Given the relatively small block size, a properly-tuned buffer will allow such sorting to
complete in memory. Then the sorted map output is written to disk for fault tolerance. A mapper
completes after the write finishes.

Map output is then shuffled to the reducers. To do so, reducers periodically ask a centralized
service for completed mappers, and once notified, request data directly from the completed mappers.
In most cases, this data transfer happens soon after a mapper completes and so this data is available
in the mapper’s memory.
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Fig. 1. Architecture of the Hadoop implementation of MapReduce.

Over time, a reducer collects pieces of sorted output from many completed mappers. Unlike before,
this data cannot be assumed to fit in memory for large workloads. As the reducer’s buffer fills up,
these sorted pieces of data are merged and written to a file on disk. A background thread merges these
on-disk files progressively whenever the number of such files exceeds a threshold (in a so-called
multi-pass merge phase). When a reducer has collected all of the map output, it will proceed to
complete the multi-pass merge so that the number of on-disk files becomes less than the threshold.
Then it will perform a final merge to produce all 〈key, value〉 pairs in sorted order of the key. As the
final merge proceeds, the reducer applies the reduce function to each group of values that share the
same key, and writes the reduce output back to HDFS.

Additionally, if the reduce function is commutative and associative, as shown in Fig. 1, a combine
function is applied after the map function to perform partial aggregation. It can be further applied in
each reducer when its input data buffer fills up.

MapReduce Online. We next consider an advanced system, MapReduce Online, that implements a
Hadoop Online Prototype (HOP) with pipelining of data [Condie et al. 2010]. This prototype has
two unique features: First, as each mapper produces output, it can push data eagerly to the reducers,
with the granularity of transmission controlled by a parameter. Second, an adaptive mechanism is
used to balance the work between the mappers and reducers. A potential benefit of HOP is that
with pipelining, reducers receive map output earlier and can begin multi-pass merge earlier, thereby
reducing the time required for the multi-pass merge after all mappers finish.

2.3. Summary of Benchmarking Results
The requirements for scalable streaming analytics—incremental processing and fast in-memory
processing whenever possible—require the MapReduce program of a query to be non-blocking
and have low CPU and I/O overheads. In our recent benchmarking study [Mazur et al. 2011], we
examined whether current MapReduce systems meet these requirements. We considered applications
such as click stream analysis and web document analysis in our benchmark. In the interest of space,
we mainly report results on click stream analysis in this section.

Given a click stream, an important task is sessionization that reorders page clicks into individual
user sessions. In its MapReduce program, the map function extracts the user id from each click and
groups the clicks by user id. The reduce function arranges the clicks of each user by timestamp,
streams out the clicks of the current session, and closes the session if the user has had no activity in
the past 5 minutes. A large amount of intermediate data occurs in this task due to the reorganization
of all the clicks by user id. Other click analysis tasks include counting the number of visits to each
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Table I. Workloads in click analysis and Hadoop running time.

Metric Sessionization Page frequency Clicks per user
Input 256GB 508GB 256GB
Map output 269GB 1.8GB 2.6 GB
Reduce spill 370GB 0.2GB 1.4 GB
Reduce output 256GB 0.02GB 0.6GB
Running time 4860 sec 2400 sec 1440 sec

(a) Hadoop: Task timeline.
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(b) Hadoop: CPU utilization.
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(c) Hadoop: CPU iowait.
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(d) Hadoop: CPU utilization (HDD+SSD).

Fig. 2. Experimental results using the sessionization workload.

url and counting the number of clicks that each user has made. For these problems, using a combine
function can significantly reduce intermediate data sizes. Our study used the click log from the World
Cup 1998 website1 and replicated it to larger sizes as needed.

Our test cluster contains ten compute nodes and one head node. It runs CentOS 5.4, Sun Java
1.6u16, and Hadoop 0.20.1. Each compute node has 4 2.83GHz Intel Xeon cores, 8GB RAM, a
250GB Western Digital RE3 HDD, and a 64GB Intel X25-E SSD. The Hadoop configuration used
the default settings and 4 reducers per node unless stated otherwise. The JVM heap size was 1GB,
and map and reduce buffers were about 140MB and 500MB, respectively. All I/O operations used
the disk as the default storage device.

Table I shows the running time of the workloads as well as the sizes of input, output, and
intermediate data in click stream analysis. Fig. 2(a) shows the task timeline for the sessionization
workload, i.e., the number of tasks for the four main operations: map (including sorting), shuffle,
merge (the multi-pass part), and reduce (including the final merge to produce a single sorted run). In
this task, time is roughly evenly split between the map and reduce phases. A key observation is that
the CPU utilization, as shown in Fig. 2(b), is low in an extended period (from time 1,800 to 2,400)
after all mappers have finished. The CPU iowait in Fig. 2(c) shows that this is largely due to disk I/O

1World Cup 1998: http://ita.ee.lbl.gov/html/contrib/WorldCup.html

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 B. Li et al.

Table II. Symbols used in Hadoop analysis.

Symbol Description
(1) System Settings

R Number of reduce tasks per node
C Map input chunk size
F Merge factor that controls how often on-disk files are merged

(2) Workload Description
D Input data size

Km Ratio of output size to input size for the map function
Kr Ratio of output size to input size for the reduce function

(3) Hardware Resources
N Number of nodes in the cluster
Bm Output buffer size per map task
Br Shuffle buffer size per reduce task

(4) Symbols Used in the Analysis
U Bytes read and written per node, U = U1 + . . . + U5 where

Ui is the number of bytes of the following types
1: map input; 2: map internal spills; 3: map output;
4: reduce internal spills; 5: reduce output

S Number of sequential I/O requests per node
T Time measurement for startup and I/O cost
h Height of the tree structure for multi-pass merge

requests in multi-pass merge, as further verified by the number of bytes read from disk in that period.
Multi-pass merge is not only I/O intensive but also blocking—the reduce function cannot be applied
until all the data has been merged into a sorted run. To reduce disk contention, we used additional
hardware so that the disk handled only the input and output with HDFS, and all the intermediate data
was passed to a fast SSD. As Fig. 2(d) shows, such change can reduce overall running time but does
not eliminate the I/O bottleneck or blocking incurred in the multi-pass merge.

Another main observation regards the CPU cost. We observe from Fig. 2(b) that CPUs are busy in
the map phase. However, the map function in the sessionization workload is CPU light: it simply
extracts the user id from each click record and emits a key-value pair where the value contains the
rest of the record. The rest of the cost in the map phase is attributed to sorting of the map output.

In simpler workloads, such as counting the number of clicks per user, there is an effective combine
function to reduce the size of intermediate data. As intermediate data is reduced, the merge phase
shrinks as there is less data to merge, and then the reduce phase also shrinks as most data is processed
in memory only. However, the overhead of sorting becomes more dominant in the overall cost.

In summary, our benchmarking study made several key observations of the sort-merge implemen-
tation of MapReduce group-by:
I The sorting step of sort-merge incurs high CPU cost, hence not suitable for fast in-memory

processing.
I Multi-pass merge in sort-merge is blocking and can incur high I/O cost given substantial interme-

diate data, hence a poor fit for incremental processing or fast in-memory processing.
I Using extra storage devices (including fast solid state drives) and alternative storage architectures

does not eliminate blocking or the I/O bottleneck.

3. OPTIMIZING HADOOP
Building on our previous benchmarking results, we perform an in-depth analysis of Hadoop in this
section. Our goal is to understand whether the performance issues identified by our benchmarking
study are inherent to Hadoop or whether they can be overcome by appropriate tuning of key system
parameters.

3.1. An Analytical Model for Hadoop
The Hadoop system has a large number of parameters. While our previous experiments used the
default setting, we examine these parameters more carefully in this study. After a nearly year-long
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effort to experiment with Hadoop, we identified several parameters that impact performance from the
standpoint of incremental one-pass analytics, which are listed in Part (1) of Table II. Our analysis
below focuses on the effects of these parameters on I/O and startup costs. We do not aim to model the
actual running time because it depends on numerous factors such as the actual server configuration,
how map and reduces tasks are interleaved, how CPU and I/O operations are interleaved, and even
how simultaneous I/O requests are served. Once we optimize these parameters based on our model,
we will evaluate performance empirically using the actual running time and the progress with respect
to incremental processing.

Our analysis makes several assumptions for simplicity: The MapReduce job under consideration
does not use a combine function. Each reducer processes an equal number of 〈key, value〉 pairs.
Finally, when a reducer pulls a mapper for data, the mapper has just finished so its output can be read
directly from its local memory. The last assumption frees us from the onerous task of modeling the
caching behavior at each node in a highly complex system.

3.1.1. Modeling I/O Cost in Bytes. We analyze the I/O cost of the existing sort-merge implementa-
tion of Hadoop. We first consider the I/O cost in terms of the number of bytes read and written. Our
main result is summarized in the following proposition.

PROPOSITION 3.1. Given the workload description (D, Km, Kr) and the hardware description
(N, Bm, Br), as defined in Table II, the I/O cost in terms of bytes read and written in a Hadoop job is:

U =
D
N
· (1 + Km + KmKr) +

2D
CN
· λF(

CKm

Bm
, Bm) · 1[C·Km>Bm ]

+ 2R · λF(
DKm

NRBr
, Br), (1)

where 1[·] is an indicator function, and λF(·) is defined to be:

λF(n, b) =
(

1
2F(F− 1)

n2 +
3
2

n− F2

2(F− 1)

)
· b. (2)

PROOF. Our analysis includes five I/O-types listed in Table II. Each map task reads a data chunk
of size C as input, and writes C · Km bytes as output. Given the workload D, we have D/C map
tasks in total and D/(C · N) map tasks per node. So, the input cost, U1, and output cost, U3, of all
map tasks on a node are:

U1 =
D
N

and U3 =
D · Km

N
.

The size of the reduce output on each node is U5 = D·Km ·Kr
N .

Map and reduce internal spills result from the multi-pass merge operation, which can take place in
a map task if the map output exceeds the memory size and hence needs to use external sorting, or in
a reduce task if the reduce input data does not fit in memory.

We make a general analysis of multi-pass merge first. Suppose that our task is to merge n sorted
runs, each of size b. As these initial sorted runs are generated, they are written to spill files on disk
as f1, f2, . . . Whenever the number of files on disk reaches 2F− 1, a background thread merges the
smallest F files into a new file on disk. We label the new merged files as m1, m2, . . . Fig. 3 illustrates
this process, where an unshaded box denotes an initial spill file and a shaded box denotes a merged
file. For example, after the first 2F− 1 initial runs generated, f1, . . . , fF are merged together and
the resulting files on disk are m1, fF+1, . . . , f2F−1 in order of decreasing size. Similarly, after the
first F2 + F − 1 initial runs are generated, the files on disk are m1, . . . , mF, fF2+1, . . . , fF2+F−1.
Among them, m1, fF2+1, . . . , fF2+F−1 will be merged together and the resulting files on disk will
be mF+1, m2, . . . , mF in order of decreasing size. After all initial runs are merged, a final merge
combines all the remaining files (there are at most 2F− 1 of them).
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Fig. 3. Analysis of the tree of files created in multi-pass merge.

For the analysis, let αi denote the size of a merged file on level i (2 ≤ i ≤ h) and let α1 = b. Then
αi = αi−1 + (F− 1)b. Solving this recursively gives αi = (i− 1)Fb− (i− 2)b. Hence, the total
size of all the files in the first h levels is:

F(αh +
h−1

∑
i=1

(αi + (F− 1)b)) = bF
(

hF +
(F− 1)(h− 2)(h + 1)

2

)
.

If we count all the spill files (unshaded boxes) in the tree, we have n = (F + (F − 1)(h− 2))F.
Then we substitute h with n and F using the above formula and get

λF(n, b) =
(

1
2F(F− 1)

n2 +
3
2

n− F2

2(F− 1)

)
· b

Then, the total I/O cost is 2λF(n, b) as each file is written once and read once. The remaining issue
is to derive the exact numbers for n and b in the multi-pass merge in a map or reduce task.

In a map task, if its output fits in the map buffer, then the merge operation is not needed. Otherwise,
we use the available memory to produce sorted runs of size Bm each and later merge them back. So,
b = Bm and n = C·Km

Bm
. As each node handles D/(C · N) map tasks, we have the I/O cost for map

internal spills on this node as:

U2 =

{
2D

C·N · λF(
C·Km

Bm
, Bm) if C · Km > Bm;

0 otherwise.

In a reduce task, as we do not have a combine function, the input for reduce usually cannot fit in
memory. The size of input to each reduce task is D·Km

N·R . So, b = Br and n = D·Km
N·R·Br

. As each node
handles R reduce tasks, we have the reduce internal spill cost:

U4 = 2R · λF(
D · Km

N · R · Br
, Br)

Summing up U1, . . . , U5, we then have Eq. 1 in the proposition.

3.1.2. Modeling the Number of I/O requests. In our analysis we also model the number of I/O
requests in a Hadoop job, which allows us to estimate the disk seek time when these I/O requests are
performed as random I/O operations. Again we summarize our result in the following proposition.
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PROPOSITION 3.2. Given the workload description (D, Km, Kr) and the hardware description
(N, Bm, Br), as defined in Table II, the number of I/O requests in a Hadoop job is:

S =
D

CN

(
α + 1 + 1[CKm>Bm ] ·

(
λF(α, 1)(

√
F + 1)2 + α− 1

))
+ R

(
βKr(
√

F + 1)− β
√

F + λF(β, 1)(
√

F + 1)2
)

, (3)

where α = CKm
Bm

, β = DKm
NRBr

, λF(·) is defined in Eq. 2, and 1[·] is an indicator function.

PROOF. We again consider the five types of I/O listed in Table II. For each map task, a chunk of
input data is sequentially read until the map output buffer fills up or the chunk is completely finished.
So, the number of I/O requests for the map input C·Km

Bm
. All map tasks on a node will trigger the

number of I/O requests, S1, as:

S1 = (
D

CN
) · (CKm

Bm
).

If the map output fits in memory, there is no internal spill and the map output is written to disk
using one sequential I/O. Considering all map tasks on a node, we have

S2 + S3 =
D

CN
if CKm ≤ Bm .

If the map output exceeds the memory size, it is sorted using external sorting which involves
multi-pass merge.

Since both map and reduce tasks may involve multi-pass merge, we first do a general analysis of
the I/O requests incurred in this process. How many I/O requests to make depends not only on the
data size but also on the memory allocation scheme, which can vary with the implementation and
system resources available. Hence, we consider the optimal scheme regarding the I/O requests below.

Suppose that a merge step is to merge F files, each of size f , into a new file with memory size B.
For simplicity, we assume the buffer size for each input file is the the same, denoted by Bin. Then the
buffer size for the output file is B− F · Bin. The number of read and write requests is

s =
F · f
Bin

+
F · f

B− F · Bin
.

By taking the derivative with respect to Bin we can minimize s, which is:

sopt =
F · f

B
(
√

F + 1)2 when Bopt
in =

B
F +
√

F
.

Revisit the tree of files in multi-pass merge in Fig. 3. Each merge step, numbered j in the formula
below, corresponds to the creation of a merged file (shaded box) in the tree. When we sum up the I/O
requests of all these steps, we can apply our previous result on the total size of all the files:

∑
j

sopt
j =

∑j F · f j

B
(
√

F + 1)2 =
λF(n, b)

B
(
√

F + 1)2,

where n is the number of initial spill files containing sorted runs and b is the size of each sorted run.
But this above analysis does not include the I/O requests of writing the n initial sorted runs from
memory to disk, so we add n requests and have the total number:

smerge = n +
λF(n, b)

B
(
√

F + 1)2. (4)

The value of n and b in map and reduce tasks have been analyzed previously. In a map task, if
CKm > Bm, then multi-pass merge takes place. For the above formula, B = Bm, b = Bm and
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n = CKm
Bm

. Considering all D
CN map tasks on a node, we have:

S2 + S3 =
D

CN

(
CKm

Bm
+ λF(

CKm

Bm
, 1)(
√

F + 1)2
)

if CKm > Bm.

For a reduce task, we have B = Br, b = Br and n = DKm
NRBr

. We can get the I/O requests by
plugging these values in Eq. 4. However, this result includes the disk requests for writing output in
the final merge step, which does not actually exist because the output of the final merge is directly
fed to the reduce function. The overestimation is the number of requests for writing data of size DKm

NR
with an output buffer of size Br − F · Bopt

in = Br√
F+1

. So, the overestimated number of requests is
DKm(

√
F+1)

NRBr
. Given R reduce tasks per node, we have:

S4 = R
(

λF(
DKm

NRBr
, 1)(
√

F + 1)2 − DKm

NRBr
·
√

F
)

.

Finally, the output size of a reducer task is DKmKr
NR , written to disk with an output buffer of size

Br√
F+1

. So, we can estimate the I/O requests for all reduce tasks on a node, S5, with

S5 = R
(

DKm

NRBr
· Kr(
√

F + 1)
)

.

The sum of S1, . . . , S5 gives the result in the proposition.

We note that for common workloads, the I/O cost is dominated by the cost of reading and writing
all the bytes, not the seek time. We provide detailed empirical evidence in Section 3.2.

3.1.3. Modeling the Startup Cost. We further consider the cost of starting map and reduce tasks
as it has been reported to be a nontrivial cost [Pavlo et al. 2009]. Since the number of map tasks is
usually much larger than that of reduce tasks, we mainly consider the startup cost for map tasks. If
cm is the cost in second of creating a map task, the total map startup cost per node is cstart · D

CN .

3.1.4. Combining All in Time Measurement. Let U be the number of bytes read and written in a
Hadoop job and let S be the number of I/O requests made. Let cbyte denote the sequential I/O time
per byte and cseek denote the disk seek time for each I/O request. We define the time measurement T
that combines the cost of reading and writing all the bytes, the seek cost of all I/O requests, and the
map startup cost as follows:

T = cbyte ·U + cseek · S + cstart ·
D

CN
. (5)

The above formula is our complete analytical model that captures the effects of all of the involved
parameters.

3.2. Optimizing Hadoop based on our Analytical Model
Our analytical model enables us to predict system behaviors as Hadoop parameters vary. Then, given
a workload and system configuration, we can choose values of these parameters that minimize the
time cost in our model, thereby optimizing Hadoop performance.

3.2.1. Optimizations. To show the effectiveness of our model, we compare the predicted system
behavior based on our model and the actual running time measured in our Hadoop cluster. We
used the sessionization task and configured the workload, our cluster, and Hadoop as follows: (1)
Workload: D=97GB, Km=Kr=1;2 (2) Hardware: N=10, Bm=140MB, Br=260MB; (3) Hadoop: R=4

2We used a smaller dataset in this set of experiments compared to the benchmark because changing Hadoop
configurations often required reloading data into HDFS, which was very time-consuming.
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(d) Effects of the map input chunk size C
and the merge factor F on the I/O cost

Fig. 4. Validating our model against actual measurements in a Hadoop cluster.

or 8, and varied values of C and F. We also fed these parameter values to our analytical model. In
addition, we set the constants in our model by assuming sequential disk access speed to be 80MB/s,
disk seek time to be 4 ms, and the map task startup cost to be 100 ms.

Our first goal is to validate our model. In our experiment, we varied the map input chunk size, C,
and the the merge factor, F. Under 100 different combinations of (C, F), we measured the running
time in a real Hadoop system, and calculated the time cost predicted by our model. The result is
shown as a 3-D plot in Fig. 4(a).3 Note that our goal is not to compare the absolute values of these
two time measurements: In fact, they are not directly comparable, as the former is simply a linear
combination of the startup cost and I/O costs based on our model, whereas the latter is the actual
running time affected by many system factors as stated above. Instead, we expect our model to
predict the changes of the time measurement when parameters are tuned, so as to identify the optimal
parameter setting. Fig. 4(a) shows that indeed the performance predicted by our model and the actual
running time exhibit very similar trends as the parameters C and F are varied. We also compared the
I/O costs predicated by our model and those actually observed. Not only do we see matching trends,
the predicted numbers are also close to the actual numbers. As shown in Fig. 4(c), the differences
between the predicted numbers and the actual numbers are mostly within 5%. Here the errors are
mainly due to the fact that our analysis assumes the multi-pass merge tree to be full but this is not
always true in practice.

Our next goal is to show how to optimize the parameters based on our model. To reveal more
details from the 3-D plots, we show the results of a smaller range of (C, F) in Fig. 4(b) and Fig. 4(d)

3For both the real running time and modeled time cost, the respective 100 data points were interpolated into a
finer-grained mesh.
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where the solid lines are for the actual measurements from the Hadoop cluster and the dashed lines
are for predication using our model.

(1) Optimizing the Chunk Size. When the chunk size C is very small, the MapReduce job uses
many map tasks and the map startup cost dominates in the total time cost. As C increases, the map
startup cost reduces. However, once the map output exceeds its buffer size, multi-pass merge is
incurred with increased I/O cost, as shown in Fig. 4(d). As a result, the time cost jumps up at this
point, and then remains nearly constant since the reduction of startup cost is not significant. When C
exceeds a large size (whose exact value depends on the merge factor, e.g., size 256 when F=4 shown
in Fig. 4(d)), the number of passes of on-disk merge goes up, thus incurring more I/Os. The overall
best performance in running time is observed at the maximum value of C that allows the map output
to fit in the buffer. Given a particular workload, we can easily estimate Km, the ratio of output size to
input size, for the map function and estimate the map output buffer size Bm to be about 2

3 of the total
map memory size (given the use of other metadata). Then we can choose the maximum C such that
C · Km ≤ Bm.

(2) Optimizing the Merge Factor. We then investigate the merge factor, F, that controls how
frequently on-disk files are merged in the multi-pass merge phase. Fig. 4(b) shows three curves for
three F values. The time cost decreases with larger values of F (from 4 to 16), mainly due to fewer
I/O bytes incurred in the multi-pass merge as shown in Fig. 4(d). When F goes up to the number
of initial sorted runs (around 16), the time cost does not decrease further because all the runs are
merged in a single pass. For several other workloads tested, one-pass merge was also observed to
provide the best performance.

Our model can also reveal potential benefits of small F values. When F is small, the number of
files to merge in each step is small, so the reads of the input files and the writes of the output file
are mostly sequential I/O. As such, a smaller F value incurs more I/O bytes, but fewer disk seeks.
According to our model, the benefits of small F values can be shown only when the system is given
limited memory but a very large data set, e.g., several terabytes per node, which is beyond the current
storage capacity of our cluster.

(3) Effect of the Number of Reducers. The third relevant parameter is the number of reducers per
node, R. The original MapReduce proposal [Dean and Ghemawat 2004] has recommended R to
be the number of cores per node times a small constant (e.g., 1 or 2). As this parameter does not
change the workload but only distributes it over a variable number of reduce workers, our model
shows little difference as R varies. Empirically, we varied R from 4 to 8 (given 4 cores on each node)
while configuring C and F using the most appropriate values as reported above. Interestingly, the
run with R=4 took 4,187 seconds, whereas the run with R=8 took 4,723 seconds. The reasons are
two-fold. First, by tuning the merge factor, F, we have minimized the work in multi-pass merge.
Second, given 4 cores on each node, we have only 4 reduce task slots per node. Then for R=8, the
reducers are started in two waves. In the first wave, 4 reducers are started. As some of these reducers
finish, a reducer in the second wave can be started. As a consequence, the reducers in the first wave
can read map output soon after their map tasks finish, hence directly from the local memory. In
contrast, the reducers in the second wave are started long after the mappers have finished. So they
have to fetch map output from disks, hence incurring high I/O costs in shuffling. Our conclusion
is that optimizing the merge factor, F, can reduce the actual I/O cost in multi-pass merge, and is a
more effective method than enlarging the number of reducers beyond the number of reduce task slots
available at each node.

In summary, the above results demonstrate two key benefits of our model: (1) Our model predicts
the trends in I/O cost and time cost close to the observations in real cluster computing. (2) Given
a particular workload and hardware configuration, one can run our model to find the optimal
values of the chunk size C and merge factor F, and choose an appropriate value of R based on the
recommendation above.
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Fig. 5. Performance of optimized Hadoop based on our model.

3.2.2. Analysis of Optimized Hadoop. We finally reran the 240GB sessionization workload de-
scribed in our benchmark (see Section 2). We optimized Hadoop using 64MB data chunks, one-pass
merge, and 4 reducers per node as suggested by the above results. The total running time was reduced
from 4,860 seconds to 4,187 seconds, a 14% reduction of the total running time.

Given our goal of one-pass analytics, a key requirement is to perform incremental processing and
deliver a query answer as soon as all relevant data has arrived. In this regard, we propose metrics for
the map and reduce progress, as defined below.

Definition 3.3 (Incremental Map and Reduce Progress). The map progress is defined to be the
percentage of map tasks that have completed. The reduce progress is defined to be: 1

3 · % of shuffle
tasks completed + 1

3 · % of combine function or reduce function completed + 1
3 · % of reduce output

produced.

Note that our definition differs from the default Hadoop progress metric where the reduce progress
includes the work on multi-pass merge. In contrast, we discount multi-pass merge because it is
irrelevant to a user query, and emphasize the actual work on the reduce function or combine function
and the output of answers.

Fig. 5(a) shows the progress of optimized Hadoop in bold lines (and the progress of stock Hadoop
in thin lines as a reference). The map progress increases steadily and reaches 100% around 2,000
seconds. The reduce progress increases to 33% in these 2,000 seconds, mainly because the shuffle
progress could keep up with the map progress. Then the reduce progress slows down, due to the
overhead of merging, and lags far behind the map progress. The optimal reduce progress, as marked
by a dashed line in this plot, keeps up with the map progress, thereby realizing fast incremental
processing. As can be seen, there is a big gap between the optimal reduce progress and what the
optimized Hadoop can currently achieve.
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(b) MR Online with larger blocks (256MB)
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(c) MR Online: CPU utilization.

��

���

���

���

���

����

� ���� ���� ���� ���� ���� ���� ����

��
�
��
�
�
��
��
��

�

����������������

�����

(d) MR Online: CPU iowait.
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(e) MR Online: 80 vs. 40 reducers.
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(f) MR Online with 4 snapshots.

Fig. 6. Performance of MapReduce Online with pipelining of data.

Fig. 5(b), 5(c), and 5(d) further show the CPU utilization, CPU iowait, and the number of bytes
read using optimized Hadoop. We make two main observations: (1) The CPU utilization exhibits a
smaller dip in the middle of a job compared to stock Hadoop in Fig. 2(b). However, the CPU cycles
consumed by the mappers, shown as the area under the curves before 2,000 seconds, are about the
same as those using stock Hadoop. Hence, the CPU overhead due to sorting, as mentioned in our
benchmark, still exists. (2) The CPU iowait plot still shows a spike in the middle of job and remains
high in the rest of the job. This is due to the blocking of CPU by the I/O operations in the remaining
single-pass merge.

3.3. Pipelining in Hadoop
Another attempt to optimize Hadoop for one-pass analytics would be to pipeline data from mappers
to reducers so that reducers can start the work earlier. This idea has been implemented in MapReduce
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Online [Condie et al. 2010], as described in Section 2.2. In our benchmark, we made the following
observations about pipelining data from mappers to reducers in the Hadoop framework:

(1) Benefits of pipelining. We first summarize the benefits of pipelining that were observed in
our benchmark. First, pipelining data from mappers to reducers can result in small performance
benefits. For instance, for sessionization, Fig. 6(a) shows 5% improvement in total running time over
the version of stock Hadoop, 0.19.2, on which MapReduce Online’s code is based. However, the
overall performance gain of MapReduce Online over Hadoop is small (e.g., 5%), less that the gain
of our model-based optimization (e.g., 14%). Second, pipelining also makes the performance less
sensitive to the HDFS chunk size. As Fig. 6(b) shows, when the chunk size is increased from 64MB
to 256MB, the performance of MapReduce Online, denoted by the bold lines, stays about the same
as that of 64MB, whereas the performance of stock Hadoop, denoted by the thin lines, degrades.
This is because a larger block size places additional strain on the map output buffer and therefore
increases the chance of having to spill the map output to disk in order to perform sorting. Pipelining,
however, is able to mitigate this effect by eagerly sending data at a finer granularity to the reducers
with the intention to use merging later to bring all the data in sorted order.

(2) Limitations of pipelining. However, we observe that adding pipelining to an overall blocking
implementation based on sort-merge is not an effective mechanism for incremental processing. Most
importantly, the reduce progress lags far behind the map progress, as shown in Fig. 6(a) and 6(b). To
explain this behavior, we observe from Fig. 6(c) that the CPU utilization still has low values in the
middle of the job and is on the average 50% or below over the entire job. While CPU can be idle
due to I/O wait or network wait (given the different communication model used), the CPU iowait in
Fig. 6(d) again shows a spike in the middle of the job and overall high values during the job. Hence,
the problems with blocking and intensive I/O due to multi-pass merge still exist.

(3) Effect of adding reducers. We further investigate whether using more reducers can help close
the gap between the map progress and reduce progress. It is important to note that pipelining does not
reduce the total amount of work in sort-merge but rather rebalances the work between the mappers
and reducers. More specifically, eager transmission of data from mappers to reducers reduces the
sorting work in the mappers but increases the merge work in the reducers. To handle more merge
work, increasing the number of reducers helps improve the overall running time, as shown in Fig. 6(e)
where the number of reducers is increased from 4 per node to 8 per node. However, the reduction
of the running time comes at the cost of significantly increased resource consumption and the gap
between the map progress and the reduce progress is not reduced much. Moreover, further increasing
the number of reducers, e.g., to 12 per node, starts to perform worse due to the drawbacks of using
multiple waves of reducers mentioned in Section 3.2.1.

(4) Effect of using snapshots. Finally, MapReduce Online has an extension to periodically output
snapshots (e.g., when reducers have received 25%, 50%, 75%, ..., of the data). However, this is
done by repeating the merge operation for each snapshot, not by incremental in-memory processing.
As a result, the simple snapshot-based mechanism can incur high I/O overheads and significantly
increased running time, as shown in Fig. 6(f).

Summary. We close the discussion in this section with the summary below:
I Our analytical model can be used to choose appropriate values of Hadoop parameters, thereby

improving performance.
I Optimized Hadoop, however, still has a significant barrier to fast incremental processing: (1) The

remaining one-pass merge can still incur blocking and a substantial I/O cost. (2) Due to the above
reason, the reduce progress falls far behind the map progress. (3) The map tasks still have the
high CPU cost of sorting.

I Pipelining from mappers to reducers does not resolve the blocking or I/O overhead in Hadoop,
hence not an effective mechanism for providing fast incremental processing.
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Fig. 7. MR-hash: hashing in mappers and two phase hash processing in reducers.

4. A NEW HASH-BASED PLATFORM
Based on the insights from our experimental and analytical evaluation of current MapReduce systems,
we next propose a new data analysis platform that aims to transform MapReduce computation into
incremental one-pass processing. To build the new platform, our first mechanism is to devise
a hash-based alternative to the widely used sort-merge implementation for partitioned parallel
processing, with the goal to minimize computational and I/O bottlenecks as well as blocking. The
hash implementation can be particularly useful when analytical tasks do not require the output
of the reduce function to be sorted across different keys.4 More specifically, we design two hash
techniques for two different types of reduce functions, respectively, which we describe in Section 4.1
and Section 4.2, respectively. These techniques enable fast in-memory processing when there is
sufficient memory for a given workload. In addition, our second mechanism brings the benefits
of such fast in-memory processing further to workloads that require a large key-state space far
exceeding available memory. Our techniques dynamically identify popular keys and update their
states using a full in-memory processing path. These dynamic techniques are described in Section 4.3.
In Section 4.4, we discuss the optimization of key Hadoop system parameters in our hash-based
framework.

4.1. A Basic Hash Technique (MR-hash)
Recall from Section 2 that to support parallel processing, the MapReduce computation model
implements “group data by key, then apply the reduce function to each group”. The main idea
underlying our hash framework is to implement the MapReduce group-by functionality using a series
of independent hash functions h1, h2, h3, . . ., across the mappers and reducers.

As depicted in Fig. 7, the hash function h1 partitions the map output into subsets corresponding to
the scheduled reducers. Hash functions h2, h3, . . ., are used to implement group-by at each reducer.
We adopt the hybrid-hash algorithm [Shapiro 1986] from parallel databases as follows: h2 partitions
the input data to a reducer to n buckets, where the first bucket, say, D1, is held completely in memory
and other buckets are streamed out to disks as their write buffers fill up. This way, we can perform
group-by on D1 using the hash function h3 and apply the reduce function to each group in memory.
Other buckets are processed subsequently, one at a time, by reading the data from the disk. If a
bucket Di fits in memory, we use in-memory processing for the group-by and the reduce function.

4Our implementation offers a knob for a MapReduce job to be configured with either the hash implementation
or the sort-merge implementation. When our platform is used to build a query processor on top of MapReduce,
if both sort-merge and hashing algorithms are available for implementing an operator like join, our system will
enable the query processor to quickly implement the hash algorithm of choice by utilizing the internal hashing
functionality of our MapReduce platform.
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Otherwise, we recursively partition Di using hash function h4, and so on. In our implementation, we
use standard universal hashing to construct a series of independent hash functions.

Following the analysis of the hybrid hash join [Shapiro 1986], simple calculation shows that if h2
can evenly distribute the data into buckets, recursive partitioning is not needed if the memory size is
greater than 2

√
|D|, where |D| is the number of pages of data sent to the reducer, and the I/O cost is

2(|D| − |D1|) pages of data read and written. The number of buckets, h, can be derived from the
standard analysis by solving a quadratic equation.

The above technique, called MR-hash, exactly matches the current MapReduce model that collects
all the values of the same key into a list and feeds the entire list to the reduce function. This baseline
technique in our work is similar to the hash technique used in parallel databases [DeWitt et al.
1990], but implemented in the MapReduce context. Compared to stock Hadoop, MR-hash offers
several benefits: First, on the mapper side, it avoids the CPU cost of sorting as in the sort-merge
implementation. Second, this hash implementation offers a step towards incremental processing: It
allows answers for the first bucket, S0, to be returned from memory after all the data arrives, and
answers for other buckets to be returned one bucket at a time. In contrast, sort-merge cannot return
any answer until all the data is sorted. However, such incremental processing is very coarse-grained,
as a bucket can contain a large chunk of data. Moreover, in many cases the total I/O is not significantly
better than the I/O of sort-merge [Ramakrishnan and Gehrke 2003].

4.2. An Incremental Hash Technique (INC-hash)
Our second hash technique is designed for reduce functions that permit incremental processing,
including simple aggregates like sum and count, and more complex problems that have been studied
in the area of sublinear-space stream algorithms [Muthukrishnan 2006]. For such reduce functions,
we propose a more efficient hash algorithm, called incremental hash (INC-hash).

Algorithm. The algorithm is illustrated in Fig. 8 (the reader can ignore the darkened boxes for now,
as they are used only in the third technique). In Phase 1, as a reducer receives map output, called
tuples for simplicity, we build a hash table H (using hash function h2) that maps from a key to the
state of computation for all the tuples of that key that have been seen so far. When a new tuple arrives,
if its key already exists in H, we update the key’s state using the new tuple. If its key does not exist
in H, we add a new key-state pair to H if there is still memory. Otherwise, we hash the tuple (using
h3) to a bucket, place the tuple in the write buffer, and flush the write buffer when it becomes full
(similar to Hybrid Cache [Hellerstein and Naughton 1996] in this step). At the end of Phase 1, the
reducer has seen all the tuples and returned final answers for all the keys in H. Then in Phase 2, it
reads disk-resident buckets back one at a time, repeating the procedure above to process each bucket.
If the key-state pairs produced from a specific bucket fit in memory, no further I/O will be incurred.
Otherwise, the algorithm will again process some keys in memory and write the tuples of other keys
to disk-resident buckets, i.e., applying recursive hashing.

INC-hash offers two major advantages over MR-hash: (1) Reduced data volume and I/O: For those
keys held in memory, their tuples are continuously collapsed into states in memory, hence avoiding
I/O’s for those tuples altogether. I/O’s can be completely avoided in INC-hash if the memory is large
enough to hold all key-state pairs, in contrast to all the data in MR-hash. (2) Earlier results: For
those keys held in memory, query answers can be returned before all the data is seen. In particular,
earlier results are possible for filter queries (e.g., when the count of a URL exceeds a threshold),
join queries (whose results can be pipelined out), and window queries (whose results can be output
whenever a window closes).

Partial Aggregation. An opportunity for further optimization is that some reduce functions that
permit incremental processing are also amenable to partial aggregation, which splits incremental
processing to a series of steps on the processing pipeline with successively reduced data volume.
Classical examples are the aggregates sum, count, and avg. To support partial aggregation in the
MapReduce context, we define three primitive functions:
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I The initialize function, init(), reduces a sequence of data items of the same key to a state;
I The combine function, cb(), reduces a sequence of states of the same key to a new state;
I The finalize function, f n(), produces a final answer from a state.
The initialize function is applied immediately when the map function finishes processing. This
changes the data in subsequent processing from the original key-value pairs to key-state pairs. The
combine function can be applied to any intermediate step that collects a set of states for the same key,
e.g., in updating a key-state pair in the hash table with a new data item (which is also a key-state
pair) or in packing multiple data items in the write buffer of a bucket. Finally, the original reduce
function is implemented by cb() followed by f n().

Partial aggregation provides several obvious benefits: The initialize function reduces the amount
of data output from the mappers, thereby reducing the communication cost in shuffling and the CPU
and I/O costs of subsequent processing at the reducers. In addition, the reducers can apply cb() in all
suitable places to collapse data aggressively into compact states, hence reducing the I/O cost.

In implementation, the INC-hash algorithm is applied to “group data by key” in both init() and
cb(). The operation within each group, in both init() and cb(), is very similar to the user-specified
reduce function, as in the original proposal of combiner functions [Dean and Ghemawat 2004].

Memory and I/O Analysis. We next analyze the INC-hash algorithm for its memory requirements
and I/O cost. Let D be the size of data input to the algorithm (e.g., data sent to a reducer), U be the
size of the key-state space produced from the data, and B be the memory size, all in terms of the
number of pages covered. Let h be the number of buckets created in the INC-hash algorithm. In
Phase 1, we need 1 page for the input data and h pages for write buffers of the disk-resident buckets.
So, the size of the hash table is B− h− 1 ≥ 0. Assume that the key-state pairs not covered by the
hash table, whose size is U − (B− h− 1), are evenly distributed across h buckets. To make sure
that the key-state pairs produced from each bucket fit in memory in Phase 2, the following equality
has to hold: U − (B− h− 1) ≤ h · (B− 1). Rewriting both constraints, we have:

U − 1
B− 2

− 1 ≤ h ≤ B− 1. (6)

The above analysis of memory requirements has several implications:
• When the memory size B reaches U+1, all the data is processed in memory, i.e., h = 0.
• When B is in the range [

√
U + 1, U], given a particular value of B, the number of buckets h can

be chosen between the lower bound (U− 1)/(B− 2)− 1 and the upper bound B− 1, as marked
by the shaded area in Fig. 9.
• Also for the above range of B, under the assumption of uniform distribution of keys in the data,

no recursive partitioning is needed in INC-hash: those tuples that belong to the in-memory hash
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Fig. 9. Determining the number of buckets h given memory size B and key-state space size U.

table are simply collapsed into the states, and other tuples are written out and read back exactly
once. In this case, the fraction of the data that is not collapsed into the in-memory hash table is
(U − (B− h− 1))/U. So the I/O cost of INC-hash is:

2 · (1− B− h− 1
U

) · D. (7)

• To minimize I/O according to the above formula, we want to set the number of buckets h to be its
lower bound (U − 1)/(B− 2)− 1.

We note that for common workloads, the memory size is expected to exceed
√

U. All modern
computers with several GB’s of memory can meet this requirement for any practical value of U.

Sensitivity to Parameters. The above analysis reveals that the optimal I/O performance of INC-hash
requires setting the right number of buckets, h, which depends on the size of the key-state space, U.
This issue is less a concern in traditional databases because the DBMS can collect detailed statistics
from stored data and size estimation for relational operators has been well studied. For our problem
of scalable, incremental analytics, the lack of knowledge of the key space often arises when data
is streamed over the wire or from upstream complex operators (coded in user-defined functions) in
the processing pipeline. Consider the performance loss when we do not know the key space size.
According to Eq. 6, without knowing U we do not know the lower bound of h and hence the only
safe value to choose would be the upper bound B− 1. Given this worst choice of h, we pay the
following extra I/O according to Eq. 7:(

(B− 1)2

U
− 1
)
· D

B− 2
.

For example, when U = 20GB and B = 10GB, the extra I/O paid amounts to the data size D, which
can be quite large.

To mitigate such performance loss, we would like to acquire an accurate estimate of the key-state
space size U. Since many workloads use fixed-sized states, estimating U is equivalent to estimating
the number of distinct keys in the data set. In today’s analytics workloads, the key space can be very
large, e.g., tens of billions of URLs on the Web. So estimating the number of keys can itself consume a
lot of memory. Hence, we propose to perform approximate estimation of the key space size using fast,
memory-efficient “mini-analysis”: state-of-the-art sketch techniques [Kane et al. 2010] can provide
1 + ε approximation for the number of distinct keys in space about O(ε−2) with low CPU overheads.
Hence, given memory of modest size, these techniques can return fairly accurate approximations.
Such “mini-analysis” can be applied in two ways: If the data is to be first loaded into the processing
backend and later analyzed repeatedly, mini-analysis can be piggybacked in data loading with
little extra overhead. For streaming workloads, such mini-analysis can be run periodically at data
sources and the resulting statistics can be transferred to the MapReduce processing backend to better
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configure our hash algorithms. A detailed mechanism for communication between data sources and
the processing backend is beyond the scope of this paper and will be addressed in our future work.

4.3. A Dynamic Incremental Hash Technique (DINC-hash)
Our last technique is an extension of the incremental hash approach where we dynamically determine
which keys should be processed in memory and which keys will be written to disk for subsequent
processing. The basic idea behind the new technique is to recognize hot keys that appear frequently
in the data set and hold their states in memory, hence providing incremental in-memory processing
for these keys. The benefits of doing so are two-fold. First, prioritizing these keys leads to greater I/O
efficiency since in-memory processing of data items of hot keys can greatly decrease the volume of
data that needs to be first written to disks and then read back to complete the processing. Second, it
is often the case that the answers for the hot keys are more important to the user than the colder keys.
Then this technique offers the user the ability to terminate the processing before data is read back
from disk if the coverage of data is sufficiently large for those keys in memory.

Below we assume that we do not have enough memory to hold all states of distinct keys. Our
mechanism for recognizing and processing hot keys builds upon ideas in a widely used data stream
algorithm called the FREQUENT algorithm [Misra and Gries 1982; Berinde et al. 2009] that can be
used to estimate the frequency of different values in a data stream. While we are not interested in the
frequencies of the keys per se, we will use estimates of the frequency of each key to date to determine
which keys should be processed in memory. However, note that other “sketch-based” algorithms
for estimating frequencies, such as Count-Sketch [Charikar et al. 2004], Count-Min [Cormode and
Muthukrishnan 2005] and CR-Precis [Ganguly and Majumder 2007], will be unsuitable for our
purposes because they do not explicitly encode a set of hot keys. Rather, additional processing is
required to determine frequency estimates and then use them to determine approximate hot keys,
which is too costly for us to consider.

Dynamic Incremental (DINC) Hash. We propose to perform dynamic incremental hash using a
caching mechanism governed by the FREQUENT algorithm, i.e., to determine which tuples should
be processed in memory and which should be written to disk. We use the following notation in our
discussion of the algorithm: Let K be the total number of distinct keys. Let M be the total number of
key-data item pairs in input, called tuples for simplicity. Suppose that the memory contains B pages,
and each page can hold np key-state pairs with their associated auxiliary information. Let up be an
update function that collapses an data item v into a state u to make a new state, up(u, v).

Fig. 8 illustrates the DINC-hash algorithm. While receiving tuples, each reducer divides the B
pages in memory into two parts: h pages are used as write buffers, one for each of h files that will
reside on disk, and B− h pages for “hot” key-state pairs. Hence, the number of keys that can be
processed in-memory is s = (B− h)np.5

The sketch of our algorithm is shown in Algorithm 1. The algorithm maintains s counters
c[1], . . . , c[s], s associated keys k[1], . . . , k[s] referred to as “the keys currently being monitored”,
and the state s[i] of a partial computation for each key k[i]. Initially, all the counters are set to
0, and all the keys are marked as empty (Line 1). When a new tuple (k, v) arrives, if this key is
currently being monitored, the corresponding counter is incremented and the state is updated using
the update function (Line 4). If k is not being monitored and c[j] = 0 for some j, then the key-state
pair (k[j], s[j]) is evicted and k starts to be monitored by c[j] (Line 7-8). If k is not monitored and all
c > 0, then the tuple needs to be written to disk and all c[i] are decremented by one (Line 10-11).
Whenever the algorithm decides to evict a key-state pair in-memory or write out a tuple, it always
first assigns the item to a hash bucket and then writes it out through the write buffer of the bucket, as
in INC-hash.

5If we use p > 1 pages for each of the h write buffers (to reduce random-writes), then s = np · (B− hp). We
omit p below to simplify the discussion.
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Once the tuples have all arrived, most of the computation for the hot keys may have already been
performed. At this point we have the option to terminate if the partial computation for hot keys is
“good enough” in a sense we will make explicit shortly. If not, we proceed with performing all the
remaining computation: we first write out each key-state pair currently in memory to disk to the
appropriate bucket file. We then read each bucket file into memory and complete the processing for
each key in the bucket file.

To compare the different hash techniques, first note that the improvement of INC-hash over the
baseline MR-hash is only significant when the total number of keys K is small. Otherwise, the keys
processed incrementally in main memory will only account for a small fraction of the tuples, hence
limited performance benefits. DINC-hash mitigates this problem in the case when, although K may
be large, some keys are considerably more frequent then other keys. By ensuring that it is these keys
that are usually monitored in memory, we ensure that a large fraction of the tuples are processed
before the remaining data is read back from disk.

Algorithm 1 Sketch of the DINC-hash algorithm
1: c[i]← 0, k[i]← ⊥ for all i ∈ {1, 2, · · · , s}
2: for each tuple (k, v) from input do
3: if k is being monitored then
4: Suppose k is monitored by c[j], do c[j]← c[j] + 1, and s[j]← update(s[j], v)
5: else
6: if ∃j such that c[j] = 0 then
7: Evict key-state pair (k[j], s[j]) to disk
8: c[j]← 1, k[j]← k, and s[j]← v
9: else

10: Write tuple (k, v) to disk
11: c[i]← c[i]− 1 for all i ∈ {1, 2, · · · , s}
12: end if
13: end if
14: end for

We note that besides the FREQUENT algorithm, our DINC-hash technique can also be built on a
closely related variant called the Space-Saving algorithm [Metwally et al. 2005]. Like the FREQUENT
algorithm, Space-Saving monitors frequent items in memory and for each monitored item, maintains
a counter as an estimate of the item’s frequency. When the two algorithms are used as the caching
mechanism in DINC-hash, they perform the same in the following two cases:

Case I: If a monitored key is received, both algorithms increment the associated counter by 1.
Case II: If an unmonitored key is received and there is at least one counter of value 0 under the
FREQUENT algorithm, both algorithms evict a monitored key-state pair with the smallest counter
(which must be 0 in the FREQUENT algorithm), monitor the new key-state pair with that counter,
and increment the counter by 1.

The two algorithms only differ in the following case:
Case III: The arriving key is not monitored and all the counters of the monitored keys are greater
than 0 in the FREQUENT algorithm. In this case, Space-Saving evicts a key-state pair with the
smallest counter to make room for the new key-state pair as in Case II, whereas the FREQUENT
algorithm does not take in the new key-state pair but simply decrements all counters by 1.

In most real-world workloads, the distribution of the frequencies of keys is naturally skewed.
Consequently, in the FREQUENT algorithm when there is no key with counter 0, it is likely that
a large number of infrequent keys have counter 1 as they appear only once in a long period of
time. When Case III occurs, the counters of these infrequent keys are reduced to 0, which prevents
Case III from happening again in the near future. As a result, Case III occurs infrequently under
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real-world workloads, and the two algorithms perform the same most of the time. We will show
that the difference in performance of the two algorithms is less than 1% in the evaluation section.
Due to this reason, we focus our discussion in the rest of the section on the widely used FREQUENT
algorithm.

4.3.1. Analysis of the DINC Algorithm. We next provide a detailed analysis of the DINC algorithm.

I/O Analysis. Suppose that there are fi tuples with key ki. Then we have the total number of tuples
M = ∑i fi. Without loss of generality assume f1 ≥ f2 ≥ . . . ≥ fK. Since the memory can hold s
keys, the best we can hope for is to process ∑1≤i≤s fi arriving tuples in memory, i.e., to collapse
them into in-memory states as they are sent to the reducer. This is achieved if we know the “hot”
keys, i.e., the top-s, in advance. Existing analysis for the FREQUENT algorithm can be applied to our
setting to show that using the above strategy, at least M′ tuples can be collapsed into states, where

M′ = ∑
1≤i≤s

max
(

0, fi −
M

s + 1

)
If the data is highly skewed, our theoretical analysis can be improved by appealing to a result of
[Berinde et al. 2009]. Specifically if the data is distributed with Zipfian parameter α our strategy
guarantees that at least

M′ = ∑
1≤i≤s

max
(

0, fi −
M

max(s + 1, (s/2)α)

)
tuples have been collapsed into states. Since every tuple that is not collapsed into an existing state in
memory triggers a write-out, the number of tuples written to disk is M− s−M′ + s, where the first
s in the formula corresponds to the fact that the first s keys do not trigger a write-out, and the second
s comes from the write out of the hot key-state pairs in main memory. Hence, the upper bound of the
number of tuples that trigger I/O is M−M′.

This result compares favorably with the offline optimal if there are some very popular keys, but
does not give any guarantee for non-skewed data if there are no keys whose relative frequency is
more than 1/(s + 1). For example, suppose that the r = εs most popular keys have total frequency
∑r

i=1 fi ≥ (1− ε)M, i.e., a (1− ε) fraction of the tuples have one of r keys. Then we can conclude
that

M′ = ∑
1≤i≤s

max
(

0, fi −
M

s + 1

)
≥ ∑

1≤i≤r
fi −

M
s + 1

≥ (1− 2ε)M

i.e., all but a 2ε fraction of the tuples are collapsed into states.
Note that even if we assume the data is skewed, in INC-hash there is no guarantee on the number

of tuples processed in-memory before the hash files are read back from disk. This is because the keys
chosen for in-memory processing are just the first keys observed.

Sensitivity to Parameters. We further investigate whether the parameters used in the DINC-hash
algorithm can affect its performance. By analyzing the memory requirements as for the INC-hash
algorithm, we can obtain the following constraints:

U
B− 1

≤ h ≤ B− 1, for B ∈ [
√

U + 1, U]

where U is the total size of key-state pairs, B is the memory size, and h is the number of buckets
created when evicting key-state pairs from memory to disk and writing tuples of unmonitored keys
to disk. Intuitively, we again want to minimize h so that we minimize the memory consumed by the
write buffers of the buckets. This way, we maximize the number of keys held in memory, s, and hence
the lower bound of the number of tuples collapsed in memory, M′. The sketch-based mini-analysis
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proposed in the previous section can again be used here to estimate U and help set h to be its lower
bound U/(B− 1).

However, it is worth noting that setting the number of buckets h to be its optimal value may
not guarantee the optimal performance of DINC-hash. This is because DINC-hash is a dynamic
caching-based scheme whose performance depends not only on the parameters used in the hash
algorithm but also on the temporal locality of the keys in the input data. We detail the impact of the
second factor when discussing the potential flooding behavior below.

Approximate Answers and Coverage Estimation. One of the features of DINC-hash is that a large
fraction of the update operations for a very frequent key will already have been performed once all
the tuples have arrived. To estimate the number of update operations performed for a given key we
use the t values: these count the number of tuples that have been collapsed for key k since most
recent time k started being monitored. Define the coverage of key ki to be

coverage(ki) =

{
t[j]/ fi if k[j] = ki for some j
0 otherwise

.

Hence, once the tuples have arrived, the state corresponding to ki in main-memory represents the
computation performed on a coverage(ki) fraction of all the tuples with this key. Unfortunately we
do not know the coverage of a monitored key exactly, but we know that t[i] ≤ fi ≤ t[i] + M/(s+ 1)
from the analysis of FREQUENT and therefore we have the following under-estimate

γi :=
t[j]

t[j] + M/(s + 1)
≤ t[j]

fi
= coverage(ki) ≤ 1 .

which is very accurate when t[j] or f j is sufficiently larger that M/(s + 1). Hence, for a user-
determined threshold φ, if γi ≥ φ we can opt to return the state of the partial computation rather
than to complete the computation.

Potential Pathological Behaviors. Using the FREQUENT algorithm as described above leads to
a deterministic policy for updating the keys being monitored. Unfortunately, by analogy to online
page-replacement policies [Sleator and Tarjan 1985], it is known that any deterministic policy is
susceptible to flooding and that the competitive ratio (i.e., the worst-case ratio between the number
of I/O operations required by the algorithm and the optimal number) is at least a factor s, the number
of keys held in memory. We note that this analysis also applies to other page-replacement policies
such as LRU because they are also deterministic. For a simple example, consider the behavior of the
FREQUENT algorithm on a sequence that consists of repeating the following sequence of M keys:

〈k1, k2, . . . , ks, ks+1, ks+2, . . . , k2s+1〉 . (8)

The FREQUENT algorithm will require (M− s) I/O operations corresponding to all but the first s
terms requiring a tuple to be written to disk. In contrast, the optimal solution would be to monitor
only k1, . . . , ks and this would require M · s+1

2s+1 I/O operations.

4.3.2. Heuristic Improvement and the Marker Algorithm. In our implementation of FREQUENT we
added a simple random heuristic that helps avoid the pathological cases described above. When
evicting a currently monitored key (and its associated state), our heuristic is to randomly select from
those keys whose counters are zero, rather than simply picking the first such key each time. For
example, when processing

〈k1, k2, . . . , ks, ks+1, ks+2, k1, k1, k1, . . .〉, (9)

the heuristic means that k1 is unlikely to be replaced by ks+2 (as would happen without the heuristic)
due to randomization and hence we are able to combine all the k1’s in the sequence in memory. Note
that the heuristic does not jeopardize the above performance guarantees. This behavior is inspired in
part by the Marker algorithm [Fiat et al. 1991; McGeoch and Sleator 1991], a paging algorithm that
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is known to have good I/O performance (under a worst-case analysis) as a paging algorithm, but no
analysis has been conducted to determine their abilities to recognize frequent keys.

The algorithm is sketched in Algorithm 2. The basic algorithm is relatively simple and can be
described in terms of the difference to the FREQUENT algorithm with our heuristic: we do not
increment the counters c[i] beyond 1. More specifically, the algorithm maintains s bits (binary
counters) c[1], . . . , c[s], s associated keys k[1], . . . , k[s] currently being monitored, and the state s[i]
for each key k[i]. Initially, all the bits are set to 0, and all the keys are marked as empty (Line 1).
When a new tuple (k, v) arrives, if this key is currently being monitored, the corresponding bit is set
to 1 and the state is updated using the update function (Line 4). If k is not being monitored and there
exists at least one bit c = 0, the algorithm randomly picks a j such that c[j] = 0, evicts the key-state
pair (k[j], s[j]), and let c[j] monitor k (Line 7-9). If k is not monitored and all c = 1, then the tuple
needs to be written to disk and all c[i] are set to 0 (Line 11-12).

Algorithm 2 Sketch of the Marker algorithm
1: c[i]← 0, k[i]← ⊥ for all i ∈ {1, 2, · · · , s}
2: for each tuple (k, v) from input do
3: if k is being monitored then
4: Suppose k is monitored by c[j], do c[j]← 1, and s[j]← update(s[j], v)
5: else
6: if {i : c[i] = 0} 6= ∅ then
7: j← randomly pick from {i : c[i] = 0}
8: Evict key-state pair (k[j], s[j]) to disk
9: c[j]← 1, k[j]← k, and s[j]← v

10: else
11: Write tuple (k, v) to disk
12: c[i]← 0 for all i ∈ {1, 2, · · · , s}
13: end if
14: end if
15: end for

Marker versus Frequent Policies for DINC. The randomization of the Marker algorithm plays a
key role in minimizing pathological behavior. Specifically it is known that competitive ratio of the
enchanted Marker algorithm [McGeoch and Sleator 1991] has the competitive ratio O(log s) and
that this is optimal. Note that this should not be understood to mean that the Marker algorithm is
immune to flooding. For example the Marker algorithm will perform equally badly on the example
in Eq. 8. However, the fact that the counters saturate at 1 in the Marker algorithm (in contrast to
the unbounded counters in the FREQUENT algorithm) has a significant effect on the ability of the
algorithm to identify frequent keys. In particular, if an otherwise popular key becomes temporarily
infrequent, the Marker algorithm will quickly stop monitoring this key. Hence, there is no guarantee
that the frequent elements are identified and therefore a policy based on the Marker algorithm would
not support coverage estimation and early approximate answers as detailed above. On the other hand,
the FREQUENT algorithm is more sensitive to keys have been historically popular. This is because
a popular key ki that is being monitored will have a high counter value c[i] and therefore it will
require the processing of at least c[i] more tuples before ki is in danger of being evicted. The extent
to which it is advisable to use the historical frequency of an item to guide the monitoring of future
keys is dependent on the data set. We will explore the issue further empirically in Section 6.3 but the
summary is that because the Marker algorithm adapts more quickly to changes in the key distribution,
it can end up generating more or less I/O depending on whether or not (respectively) the changes in
the distribution are temporary.
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Fig. 10. Architecture of our new one-pass analytics platform.

4.4. Optimizing Other System Parameters
We finally discuss the optimization of key parameters of MapReduce systems such as the Hadoop
system. We have described the optimization of Hadoop parameters under the sort-merge implemen-
tation in Section 3. Those key parameters, such as the chunk size C and the number of reducers
R, are important to our hash-based implementation as well. In particular, when the chunk size is
small, we incur high startup cost due to a large number of map tasks. An excessively large chunk
size is not favorable, either. One reason is that when a combine function is used in the mappers, the
hash algorithm used in the reducers is also applied in the mappers. When the chunk size is large, the
output size of a map task may exceed the map buffer size and hence the hash algorithm applied to
the map output incurs internal I/O spills, adding significant overheads. The second reason is that a
large chunk size delays the delivery of data to the reducers, which is undesirable for incremental
processing. Considering both reasons, we use the insights from Section 3 and set the chunk size C to
the largest value that keeps the output of a map task fit in the map buffer. Regarding the number of
reduce tasks R, we set it such that there is only one wave of reduce tasks, i.e. R equals the number of
reduce task slots. Using multiple waves of reduce tasks incurs more I/Os because only the first wave
of reduce tasks can fetch map output directly from local memory, while the reduce tasks in other
waves are likely to read data from disks.

5. PROTOTYPE IMPLEMENTATION
We have built a prototype of our incremental one-pass analytics platform on Hadoop. Our prototype
is based on Hadoop version 0.20.1 and modifies the internals of Hadoop by replacing key compo-
nents with our Hash-based and fast in-memory processing implementations. Figure 10 depicts the
architecture of our prototype; the shaded components and the enlarged sub-components show the
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various portions of Hadoop internals that we have built. Broadly these modifications can be grouped
into two main components.

Hash-based Map Output. Vanilla Hadoop consists of a Map Output Buffer component that
manages the map output buffer, collects map output data, partitions the data for reducers, sorts the
data by partition id and key (external sort if the data exceeds memory), and feeds the sorted data to
the combine function if there is one or writes sorted runs to local disks otherwise. Since our design
eliminates the sort phase, we replace this component with a new Hash-based Map Output component.
Whenever a combine function is used, our Hash-based Map Output component builds an in-memory
hash table for key-value pairs output by hashing on the corresponding keys. After the input has been
processed, the values of the same key are fed to the combine function, one key at a time. In the
scenario where no combine function is used, the map output must be grouped by partition id and
there is no need to group by keys. In this case, our Hash-based Map Output component records
the number of key-value pairs for each partition while processing the input data chunk, and moves
records with the same key to a particular segment in the buffer, while scanning the buffer once.

HashThread Component. Vanilla Hadoop comprises an InMemFSMerge thread that performs in-
memory and on-disk merges and writes data to disk whenever the shuffle buffer is full. Our prototype
replaces this component with a HashThread implementation, and provides a user-configurable option
to choose between MR-hash, INC-hash, and DINC-hash implementations within HashThread.

In order to avoid the performance overhead of creating a large number of Java objects, our prototype
implements its own memory management by placing key data structures into byte arrays. Our current
prototype includes several byte array-based memory managers to provide core functionality such as
hash table, key-value or key-state buffer, bitmap, or counter-based activity indicator table, etc., to
support our three hash-based approaches.

We also implement a bucket file manager that is optimized for hard disks and SSDs and provide a
library of common combine and reduce functions as a convenience to the programmer. Our prototype
also provides a set of independent hash functions, such as in recursive hybrid hash, in case such
multiple hash functions are needed for analytics tasks. Also, if the frequency of hash keys is available
a priori, our prototype can customize the hash function to balance the amount of data across buckets.

Finally, we implement several “utility” components such as a system log manager, a progress
reporter for incremental computation, and CPU and I/O profilers to monitor system status.

Pipelining. In our current system, the granularity of data shuffling is determined by the chunk
size (with a default value of 64MB), which is fairly small compared with typical sizes of input data
(e.g., a terabyte) and hence suitable for incremental processing. In the future, if data needs to be
shuffled at a higher frequency, our hash-based framework for incremental processing can be extended
with the pipelining approach used in MapReduce Online [Condie et al. 2010]. The right granularity
of shuffling will be determined based on the application latency requirement, the extra network
overhead of fine-grained data transmission, and the existence of the combine function or not. With
some of these issues addressed in MapReduce Online, we will treat them thoroughly in the hash
framework in our future work.

Integration within the Hadoop Family. Our system can be integrated with other software in the
Hadoop family with no or minimal effort. Any storage system in the Hadoop family, such as HBase,
can serve as input to your data analytics system. This is because our internal modification to Hadoop
does not require any change of input. Any query processing or data analytics system that is built
over Hadoop, such as Hive, can directly benefit from our hash-based system because all our changes
are encapsulated in the MapReduce processing layer. The only slight modification required in the
query processing layer is transforming the reduce function for Hadoop to init(), cb() and f n()
functions tailored for incremental computation. The effort of the transformation is typically minimal
for analytics tasks.
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6. PERFORMANCE EVALUATION
We present an experimental evaluation of our analytics platform and compare it to optimized Hadoop
0.20.1, called 1-pass SM, as described in Section 3. We evaluate all three hash techniques, MR-hash,
INC-hash and DINC-hash, described in Section 4 in terms of running time, the size of reduce spill
data, and the progress made in map and reduce.

In our evaluation, we use three real-world datasets: 236GB of the WorldCup click stream, 52GB of
the Twitter dataset, and 156GB of the GOV2 dataset6. We use workloads over the WorldCup dataset:
(1) sessionization where we split the click stream of each user into sessions; (2) user click counting,
where we count the number of clicks made by each user; (3) frequent user identification, where we
find users who click at least 50 times. We also use a fourth workload over both the Twitter and the
GOV2 datasets, trigram counting, where we report word trigrams that appear more than 1000 times.
Our evaluation environment is a 10-node cluster as described in Section 2.3. Each compute node is
set to hold a task tracker, a data node, four map slots, and four reduce slots. In each experiment, 4
reduce tasks run on each compute node.

6.1. Small Key-state Space: MR-hash versus INC-hash
We first evaluate MR-hash and INC-hash under the workloads with small key-state space, where the
distinct key-state pairs fit in memory or slightly exceed the memory size. We consider sessionization,
user click counting, and frequent user identification.

Sessionization. To support incremental computation of sessionization in reduce, we configure
INC-hash to use a fixed-size buffer that holds a user’s clicks. A fixed size buffer is used since the order
of the map output collected by a reducer is not guaranteed, and yet online sessionization relies on the
temporal order of the input sequence. When the disorder of reduce input in the system is bounded, a
sufficiently large buffer can guarantee the input order to the online sessionization algorithm. In the
first experiment, we set the buffer size, i.e. the state size, to 0.5KB.

Fig. 11(a) shows the comparison of 1-pass SM, MR-hash, and INC-hash in terms of map and
reduce progress. Before the map tasks finish, the reduce progress of 1-pass SM and MR-hash is
blocked by 33%. MR-hash blocks since incremental computation is not supported. In 1-pass SM, the
sort-merge mechanism blocks the reduce function until map tasks finish; a combine function can’t
be used here since all the records must be kept for output. In contrast, INC-hash’s reduce progress
keeps up with the map progress up to around 1,300s, because it performs incremental in-memory
processing and generates pipelined output until the reduce memory is filled with states. After 1,300s,
some data is spilled to disk, so the reduce progress slows down. After map tasks finish, it takes 1-pass
SM and MR-hash longer to complete due to the large size of reduce spills (around 250GB as shown
in Table III). In contrast, INC-hash finishes earlier due to smaller reduce spills (51GB).

Thus by supporting incremental processing, INC-hash can provide earlier output, and generates
less spill data, which further reduces the running time after the map tasks finish.

User click counting & Frequent user identification. In contrast to sessionization, user-click count-
ing can employ a combine function and the states completely fit in memory at the reducers.

Fig. 11(b) shows the results for user click counting. 1-pass SM applies the combine function in each
reducer whenever its buffer fills up, so its progress is more of a step function. Since MR-hash does
not support the combine function, its overall progress only reaches 33% when the map tasks finish.
In contrast, INC-hash makes steady progress through 66% due to its full incremental computation.
Note that since this query does not allow any early output, no technique can progress beyond 66%
until all map tasks finish.

This workload generates less shuffled data, reduce spill data, and output data when compared
to sessionization (see Table III). Hence the workload is not as disk- and network-I/O- intensive.

6http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm
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(a) Sessionization (0.5KB state).
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(b) User click counting.
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(c) Frequent user identification (number of
clicks ≥ 50).
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(d) Sessionization with INC-hash.
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(e) Sessionization with DINC-hash.
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(f) Trigram counting with INC- & DINC-
hash.

Fig. 11. Progress report using hash implementations.

Consequently both hash-based techniques have shorter running times, when compared to 1-pass SM,
due to the reduction in CPU overhead gained by eliminating the sort phase.

We further evaluate MR-hash and INC-hash with frequent user identification. This query is based
on user click counting, but allows a user to be output whenever the counter of the user reaches 50.
Fig. 11(c) shows 1-pass SM and MR-hash perform similarly as in user click counting, as the reduce
function cannot be applied until map tasks finish. The reduce progress of INC-hash completely keeps
up with the map progress due to the ability to output early.

In summary, given sufficient memory, INC-hash performs fully in-memory incremental processing,
due to which, its reduce progress can potentially keep up with the map progress for queries that
allow early output. Hash techniques can run faster if I/O and network are not bottlenecks due to the
elimination of sorting.
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Table III. Comparing optimized Hadoop (using sort-merge), MR-hash,
and INC-hash.

Sessionization 1-Pass SM MR-hash INC-hash
Running time (s) 4135 3618 2258
Map CPU time per node (s) 1012 659 571
Reduce CPU time per node (s) 518 566 565
Map output / Shuffle (GB) 245 245 245
Reduce spill (GB) 250 256 51
User click counting 1-Pass SM MR-hash INC-hash
Running time (s) 1430 1100 1113
Map CPU time per node (s) 853 444 443
Reduce CPU time per node (s) 39 41 35
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0
Frequent user identification 1-Pass SM MR-hash INC-hash
Running time (s) 1435 1153 1135
Map CPU time per node (s) 855 442 441
Reduce CPU time per node (s) 38 38 34
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0

Table IV. Comparing sessionization to INC-hash with 0.5KB state,
INC-hash with 2KB state, and DINC-hash with 2KB state.

INC (0.5KB) INC (2KB) DINC (2KB)
Running time (s) 2258 3271 2067
Reduce spill (GB) 51 203 0.1

6.2. Large Key-state Space: INC-hash versus DINC-hash
We next evaluate INC-hash and DINC-hash for incremental processing for workloads with a large
key-state space, which can trigger substantial I/O. Our evaluation uses two workloads below:

Sessionization with varying state sizes. Fig. 11(d) shows the map and reduce progress of INC-hash
under three state sizes: 0.5KB, 1KB, and 2KB. A larger state size means that the reduce memory can
hold fewer states and that the reduce progress diverges earlier from the map progress. Also, larger
states cause more data to be spilled to disk, as shown in Table IV. So after map tasks finish, the time
for processing data from disk is longer.

To enable DINC-hash for sessionization, a streaming workload, we use the state of a monitored
key to hold the clicks of a user in her recent sessions. We evict a state from memory if: (1) all the
clicks in the state belong to an expired session; (2) the counter of the state is zero. Rather than spilling
the evicted state to disk, the clicks in it can be directly output. As shown in Table IV, DINC-hash
only spills 0.1 GB data in reduce with 2KB state size, in contrast to 203 GB for the same workload
in INC-hash. As shown in Fig. 11(e), the reduce progress of DINC-hash closely follows the map
progress, and spends little time processing the on-disk data after mappers finish.

We further quote numbers about stock Hadoop for this workload (see Table I). Using DINC-hash,
the reducers output continuously and finish as soon as all mappers finish reading the data in 34.5
minutes, with 0.1GB internal spill. In contrast, the original Hadoop system returns all the results
towards the end of the 81 minute job, causing 370GB internal data spill to disk, 3 orders of magnitude
more than DINC-hash.

Trigram Counting. Fig. 11(f) shows the map and reduce progress plot for INC-hash and DINC-
hash with the Gov2 dataset. The reduce progress in both keeps growing below, but close to the map
progress, with DINC-hash finishing a bit faster. In this workload, the reduce memory can only hold
1/30 of the states, but less than half of the input data is spilled to disk in both approaches. This
implies that both hash techniques hold a large portion of hot keys in memory. DINC-hash does not
outperform INC-hash like with sessionization because the trigrams are distributed more evenly than
the user ids, so most hot trigrams appear before the reduce memory fills up. INC-hash naturally holds
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Table V. Comparing INC-hash, DINC-Frequent and DINC-Marker in terms of
reduce spill (GB).

Workload INC-hash DINC-Frequent DINC-Marker
Trigram counting (Twitter) 318 288 316
Trigram counting (Gov2) 221 176 188
Sessionization (2KB) 203 0.1 0

them in memory. The reduce progress in DINC-hash falls slightly behind that of INC-hash because if
the state of a key is evicted, and the key later gets into memory again, the counter in its state starts
from zero again, making it harder for a key to reach the threshold of 1,000. Both hash techniques
finish the job in the range of 4,100-4,400 seconds. In contrast, 1-pass SM takes 9,023 seconds. So
both hash techniques outperform Hadoop.

In summary, for workloads that require a large key-state space, our frequent-key mechanism
significantly reduces I/Os and enables the reduce progress to keep up with the map progress, thereby
realizing incremental processing.

6.3. Dynamic Hashing with Alternative Caching Algorithms
We have compared INC-hash with dynamic hashing based on the deterministic FREQUENT algorithm.
Now we further extend the evaluation to dynamic hashing technique based on the randomized
Marker algorithm, as described in Section 4.3. We refer the two dynamic hashing techniques as
DINC-Frequent, and DINC-Marker, respectively. We compare the sizes of reduce intermediate files
across these schemes. We consider three workloads: trigram counting on the Twitter dataset, trigram
counting on the Gov2 dataset, and sessionization on the WorldCup dataset with 2KB state.

Different Workloads. To enable an in-depth analysis of these hashing techniques, we characterize
our workloads as in one of the following two types:

I Non-streaming: When a key-state pair is evicted from memory, it is written to a reduce intermediate
file for further processing. Trigram counting belongs to this type of workload. If a trigram is
evicted, its state, which is a counter, is written to disk and later summed with other counters for
the same trigram.

I Streaming: For streaming workloads, the decision to monitor a new key in memory is based both
on the existence of a state containing complete data for reduce processing, e.g., when a window
closes, and on how the paging algorithm used in each hashing technique finds such a state in
memory to evict: (1) For DINC-Frequent, the states with zero counters are scanned to find a
qualified state with complete data for reduce processing. (2) For DINC-Marker, the states with
zero markers are scanned in a random order to find a qualified state. (3) INC-hash does not allow
any state to be replaced. If such a key-state pair exists for eviction, it is output directly but not
written to a file on disk. Sessionization belongs to this type of workload. For each user, its state is
a window containing the user’s recent clicks. The window closes when the user’s click session
is considered complete. If a user’s state needs to be replaced, it is directly output at the time of
eviction.

As shown in Table V, for the non-streaming workloads, i.e. trigram counting using Twitter and
Gov2 datasets, DINC-Frequent has the smallest intermediate file size because it maintains more
history information and is thus more effective to identify hot key than the others. For sessionization,
the streaming workload, the two dynamic hashing techniques perform remarkably better than INC-
hash. INC-hash incurs significant intermediate I/O because it does not allow a state to be replaced,
and thus all the input tuples with keys not in memory are written to files. Both dynamic hashing
techniques have negligible intermediate I/O. Their I/O numbers are slightly different due to the
way we use them to find a qualified state to evict. It does not show intrinsic difference of the two
techniques.
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Effects of Locality and Memory Size. We further evaluate our hashing techniques under different
data locality properties and different memory sizes using trigram counting on the Twitter dataset. To
explore different localities, we construct two datasets: (1) In the original dataset, tweets in various
languages are mixed together. (2) The manipulated dataset is generated from the original dataset.
We group the tweets that belong to 8 language families into 8 subsets. The set of trigrams from one
subset hardly overlaps that from another subset. The subsets are arranged sequentially in the input to
each algorithm, and thus show strong locality. This type of locality is similar to the evolving trends of
hot topics in real world social networks. In our evaluation we also explore the effect of the memory
size by using two settings: Constrained memory with 100MB per reducer, which can hold 2% of all
key-states across all reducers; Larger memory with 600MB per reducer, which can hold 11%-15% of
all key-states, depending on the meta data size in different techniques.

Besides DINC-Frequent and DINC-Marker, we also take this opportunity to report the performance
of dynamic hashing using another deterministic algorithm, the Space-Saving algorithm (referred to
as DINC-SS), as we vary the data locality and memory size. For fair comparison, each technique
allocates the given memory for both key-state pairs and meta data. Meta data includes the data
structures that organize key-states as a hash-table in order to efficiently search any state by its key,
and additional data structures for realizing a replacement policy efficiently. All the techniques share
the same meta data for the hash table. The sizes of additional meta data for cache management vary.
INC-hash has no additional meta data since it does not support state replacement. DINC-Frequent
maintains a set of counters with distinct values, and the two-way mapping between a key-state and
its corresponding counter. The implementation of DINC-SS does not include the data structures in
the Space-Saving algorithm that do not affect the replacement policy. As a result, DINC-SS has the
same data structures for meta data as DINC-Frequent. DINC-Marker maintains the two-way mapping
between a key-state and two static markers: 0 and 1. So, the comparison of meta data sizes of the
three techniques is: INC-hash < DINC-Marker < DINC-Frequent = DINC-SS.

The comparison of intermediate file sizes is shown in Table VI. In all the combinations of
data locality types and memory sizes, DINC-Frequent and DINC-SS differ less than 1% in terms
of intermediate I/Os. The reason is the intrinsic similarity of the two algorithms as explained in
Section 4.3. With constrained memory size, DINC-Frequent/SS outperforms the others on both the
original dataset and the manipulated dataset. This is because DINC-Frequent/SS recognizes hot keys
more efficiently based on the history memorized by the counters, and thus makes better use of limited
memory. It is also noticeable that the advantage of DINC-Frequent/SS over DINC-Marker is less with
the manipulated dataset. This shows the trade-off between DINC-Frequent/SS and DINC-Marker. On
one hand, DINC-Frequent/SS is still better at identifying hot keys than DINC-Marker. On the other
hand, as stated in Section 4.3, when a subsequent subset of data is read from the manipulated dataset,
the states from the previous subset are protected by counters in memory. Since the keys from the new
subset are different from the old subset, some tuples from the new subset are written to disk due to
this reason until the counters of old states become zero. To the contrary, DINC-Marker protects states
with markers, which are boolean counters. So, DINC-Marker is more I/O efficient in the process of
clearing states from an old subset for a new subset. We will show this trade-off again with the larger
memory setting.

In the larger memory setting using the original dataset, INC-hash performs the best. INC-hash
covers the hot keys very well for two reasons. First, there is no strong locality in the dataset. That
is, the distinct keys are quite evenly distributed in the dataset. Second, the memory is sufficiently
large such that most hot keys are likely to show up in the first s keys. In this case, since INC-
hash can hold more keys than the others due to the smallest meta data size as explained before.
Hence, it has the least intermediate I/O. In the larger memory setting using the manipulated dataset,
INC-hash becomes much worse and DINC-Marker performs the best. INC-hash incurs more I/O
because the first s keys do not cover hot keys well due to data locality. DINC-Marker outperforms
DINC-Frequent/SS, demonstrating their trade-off again. But with larger memory, the advantage
of DINC-Frequent/SS on identifying hot keys is not as significant as before. Thus, DINC-Marker
outperforms DINC-Frequent/SS.
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Table VI. Comparing INC-hash, DINC-Frequent, DINC-SS and DINC-Marker with the trigram counting
workload over the Twitter dataset in terms of reduce spill (GB).

Language Memory per reducer(MB) INC-hash DINC-Frequent (DINC-SS) DINC-Marker
Mixed 100 318 288 (288) 316

Separate 100 502 266 (265) 272
Mixed 600 217 241 (241) 244

Separate 600 455 251 (251) 212

In this set of experiments, we show that for streaming workloads, all dynamic hashing tech-
niques have significantly less intermediate I/O than INC-hash. For non-streaming workloads with
constrained memory, DINC-Frequent (or similarly, DINC-SS) outperforms the others because it
recognizes hot keys more efficiently and thus makes better use of limited memory. For non-streaming
workloads with larger memory, when keys are evenly distributed in the data INC-hash outperforms
the others due to the early appearance of hot keys and the small meta data used, whereas in the
presence of strong locality in the key distribution, dynamic hashing works better than INC-hash and
in particular DINC-Marker performs the best for the type of locality of evolving trends.

6.4. Validation using Amazon EC2
We further validate our evaluation results using much larger datasets in the Amazon Elastic Compute
Cloud (EC2). Our EC2 cluster consists of 20 standard on-demand extra large instances (4 virtual
cores and 15GB memory per instance) launched with 64-bit Amazon Linux AMI 2012.03 (based on
Linux 3.2). One of the instances serves as a head node running the name node and the job tracker.
The other 19 instances serve as slave nodes, where each node carries a data node and a task tracker.
Each slave node is attached with three Elastic Block Store (EBS) volumes: an 8GB volume for the
operating system, a 200GB volume for HDFS, and another 200GB volume for intermediate files.
Each slave node is configured with 3 map task slots and 4 reduce task slots.7 Due to the constraints
of the physical memory size and the EC2 setting, the maximum buffer size that we can set for a map
task or a reduce task is slightly more than 700MB of memory.8 Therefore, we set the buffer size for a
map or reduce task to be 700MB by default, unless we intentionally reduce the buffer size to evaluate
our techniques in the case of constrained memory.

Click Stream Analysis. We first validate the results of click stream analysis on EC2. We use 1TB
of the WorldCup click stream, the size of which is increased by a factor of 4 in order to keep the
data-to-memory ratio close to that in our previous experiments.

The first set of experiments compare INC-hash with 1-pass SM and MR-hash in the case that
memory is sufficiently large for holding most (but not all) key-state pairs. The progress plots of three
workloads, namely sessionization, user click counting, and frequent user identification, are shown in
Fig. 12(a), 12(b) and 12(c), respectively. These results agree with the observations in Section 6.1: (1)
When the memory is sufficiently large, INC-hash is able to perform incremental processing fully in
memory, which allows the reduce progress to get closer to the map progress when early output can
be generated for the query; this is shown in Fig. 12(a) for sessionization before the map progress
reaches 50% and in Fig. 12(c) for frequent user identification over the entire job. (2) The INC-hash
technique runs faster than 1-pass SM and MR-hash due to the elimination of sorting and less I/O,
which can be seen in all of the three experiments.

7Due to the limited performance of a virtual core in EC2 (in contrast to a real core in our previous cluster), the
data shuffling progress cannot keep up with the map progress under the setting of 4 map task slots and 4 reduce
task slots per node, which was used in our previous experiments. To solve the problem, we set 3 map task slots
and 4 reduce task slots per node in EC2.
8The details of our memory allocation scheme are the following: On a slave node, we are able to allocate 1.4GB
JVM heap space for each of the 7 map and reduce task slots, while reserve the remaining memory for the data
node, task tracker and the other services in the operating system. And we are able to allocate about half of the
JVM heap space, 700MB per task, as the buffer.
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(a) Sessionization (0.5KB state).
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(b) User click counting.
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(c) Frequent user identification (number of
clicks ≥ 50).
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(d) Sessionization with INC-hash.
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(e) Sessionization with DINC-hash.

Fig. 12. Progress report using hash implementations on EC2.

We next compare the performance of INC-hash (Fig. 12(d)) and that of DINC-hash (Fig. 12(e))
using the sessionization workload that involves a large key-state space far exceeding available
memory. These results validate our observations in Section 6.2: When the memory cannot hold all
key-state pairs, DINC-hash dramatically reduces I/O to realize incremental processing, and enables
the reduce progress to keep up with the map progress.

The results on EC2 also show some different characteristics. We list the performance measurements
of the above experiments in Table VII and Table VIII. (1) Higher CPU cost: All the experiments have
higher per-node CPU cost than our previous experiments, as shown in Table VII. This is because each
node on EC2 processes more data whereas the virtual cores on each node have less processing power
than the real cores used in our previous experiments. (2) More I/O for the hash-based techniques:
Comparing the reduce spill numbers in Table VIII and the corresponding numbers in Table IV, we
can see that the I/O cost of reduce spill on EC2 increases by a factor ranging between 4.8 and 10.7,
more than the factor 4 by which the data increases. This is because the total buffer size on EC2 is less
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Table VII. Comparing optimized Hadoop (using sort-merge), MR-hash,
and INC-hash on EC2.

Sessionization 1-Pass SM MR-hash INC-hash
Running time (s) 6605 6694 4895
Map CPU time per node (s) 1872 1121 1112
Reduce CPU time per node (s) 1353 3080 1648
Map output / Shuffle (GB) 1087 1087 1087
Reduce spill (GB) 1048 1126 547
User click counting 1-Pass SM MR-hash INC-hash
Running time (s) 2965 1641 1674
Map CPU time per node (s) 1949 960 960
Reduce CPU time per node (s) 107 91 84
Map output / Shuffle (GB) 8.5 8.5 8.5
Reduce spill (GB) 4.8 0 0
Frequent user identification 1-Pass SM MR-hash INC-hash
Running time (s) 2951 1626 1616
Map CPU time per node (s) 1953 961 958
Reduce CPU time per node (s) 93 82 84
Map output / Shuffle (GB) 8.5 8.5 8.5
Reduce spill (GB) 4.8 0 0

Table VIII. Comparing sessionization to INC-hash with 0.5KB state,
INC-hash with 2KB state, and DINC-hash with 2KB state on EC2.

INC (0.5KB) INC (2KB) DINC (2KB)
Running time (s) 4895 6252 3523
Reduce spill (GB) 547 978 0.9

Table IX. Comparing INC-hash, DINC-Frequent and DINC-Marker with the trigram count-
ing workload over the Twitter dataset on EC2 in terms of reduce spill (GB).

Language Memory per reducer(MB) INC-hash DINC-Frequent DINC-Marker
Mixed 100 825 754 820

Separate 100 1189 597 612
Mixed 700 557 581 572

Separate 700 1074 542 428

than 4 times the buffer size in our previous experiments, as we explained earlier, which aggregates
the memory pressure and causes more I/Os. (3) Longer running time: As shown in Table VII and
Table VIII, the running times of all the experiments are longer than our pervious experiments. Both
the increase in CPU cost and the increase in I/O contribute to the longer running times. We finally
note that we also encountered unexpected CPU measurements largely due to the interference from
other jobs, such as the reduce CPU time of MR-hash for sessionization in Table VII, which illustrates
the difficulty of doing CPU studies in shared environments like EC2.

Trigram Counting. We next validate the results of trigram counting using the Twitter dataset. The
goal is to evaluate different hash-based techniques under different data locality properties and reduce
buffer sizes. Since the maximum total size of reduce buffers on EC2 is approximately 2.25 times
that in our previous experiments, in order to validate results using the same data-to-buffer ratio, we
also increase the input data by a factor of 2.25, to 117GB. Similar to our previous experiments, we
use two datasets: the Original dataset, where tweets in various languages are mixed together; and
the Manipulated dataset, where the tweets are grouped into multiple language families and fed into
each algorithm sequentially. We also vary the reduce buffer size using two settings: Constrained
memory with 100MB per reducer, and Larger memory with 700MB per reducer. The comparison
of intermediate file sizes is shown in Table IX. In the constrained memory setting, DINC-Frequent
performs the best on both datasets. In the larger memory setting using the original dataset, INC-hash
outperforms the other two. In the larger memory setting using the manipulated dataset, DINC-Marker
performs the best. The results agree with our previous experiments, as summarized in Section 6.3.
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Summary. The results in this section are summarized below:
I Our incremental hash technique provides much better performance than optimized Hadoop using

sort-merge and the baseline MR-hash: INC-hash significantly improves the progress of the map
tasks, due to the elimination of sorting, and given sufficient memory, enables fast in-memory
processing of the reduce function.

I For a large key-state space, dynamic hashing based on frequency analysis can significantly reduce
intermediate I/O and enable the reduce progress to keep up with the map progress for incremental
processing.

I For streaming workloads, our dynamic hashing techniques can provide up to 3 orders of magnitude
reduction of intermediate I/O compared to other techniques.

I For non-streaming workloads, there are trade-offs between hashing techniques depending on the
data locality and memory size. Dynamic hashing using the frequency analysis tends to work well
under constrained memory. When there is sufficiently large memory, other hashing techniques
may perform better for various data locality properties.

I Most of the above results are also validated using much larger datasets and a larger cluster in
Amazon EC2, with only minor differences due to the use of virtual cores and the hard constraint
on the buffer size in the cloud setting.

7. RELATED WORK
Query Processing using MapReduce. [Chaiken et al. 2008; Jiang et al. 2010; Olston et al. 2008;

Pavlo et al. 2009; Thusoo et al. 2009; Yu et al. 2009] has been a research topic of significant interest
lately. To the best of our knowledge, none of these systems support incremental one-pass analytics as
defined in our work. The closest work to ours is MapReduce Online [Condie et al. 2010] which we
discussed in detail in Sections 2 and 3. Dryad [Yu et al. 2009] uses in-memory hashing to implement
MapReduce group-by but falls back on the sort-merge implementation when the data size exceeds
memory. Merge Reduce Merge [Yang et al. 2007] implements hash join using a technique similar to
our baseline MR-hash, but lacks further implementation details. SCOPE [Chaiken et al. 2008] is a
SQL-like declarative language designed for parallel processing with support of three key user-defined
functions: process (similar to map), reduce (similar to reduce) and combine (similar to a join
operator). SCOPE provides the same functionality as Merge Reduce Merge and does not propose
new hash techniques beyond the state-of-the-art. Several other projects are in parallel to our work:
The work in [Babu 2010] focuses on optimizing Hadoop parameters and ParaTimer [Morton et al.
2010] aims to provide an indicator of remaining time of MapReduce jobs. Neither of them improves
MapReduce for incremental computation. Finally, many of the above systems support concurrent
MapReduce jobs to increase system resource utilization. However, the resources consumed by each
task will not reduce, and concurrency does not help achieve one-pass incremental processing.

Computation Models for MapReduce. Karloff et al. [Karloff et al. 2010] suggest a theoretical
abstraction of MapReduce. The abstraction employs a model that is both general and sufficiently
simple such that it encourages algorithm research to design and analyze more sophisticated MapRe-
duce algorithms. However, this model is based on simple assumptions that are not suitable for
system research like our study. First, no distinction is made between disk and main memory. Second,
the model is only applicable to the case that each machine has memory O(n1−ε) where n is the
size of entire input and ε is a small constant. Third, the model assumes that all map tasks have to
complete before the beginning of the reduce phase, which makes the model invalid for incremental
computation.

Advanced Algorithms for Finding Frequent Items. The FREQUENT algorithm [Misra and Gries
1982; Berinde et al. 2009], also known as the Misra-and-Gries algorithm, is a deterministic algorithm
to identify ε-approximate frequent items in a entire data stream with 1/ε counters. Each counter
corresponds to an item monitored in memory, and gives an underestimate about the frequency of
the item. The algorithm makes no assumption on the distribution of the item frequencies, and can
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be implemented such that each update caused by a data item takes O(1) time. The Space-Saving
algorithm [Metwally et al. 2005] employs a mechanism similar to that in the FREQUENT algorithm.
Each counter in Space-Saving gives an overestimate about the frequency of the corresponding
monitored item. In addition, an upper bound for the error of each counter from the true frequency
is maintained. Thus, Space-Saving is also able to give an underestimate of the frequency for each
monitored item. However, when Space-Saving is used as a paging algorithm, the paging behavior
relies only on the counters, but not affected by the error bounds.We explained the similar performance
for paging between the above algorithms in Section 4.3 and exhibited it empirically in Section 6.3.
The algorithm proposed in [Lee and Ting 2006] aims to find frequent elements in sliding windows,
which combines the FREQUENT algorithm with another existing algorithm. Nevertheless, the update
time scales with the number of monitored keys, and hence renders poor performance without window
operators. This work is related to our future work of extending our one-pass analytics platform to
support stream processing.

Parallel Databases. Parallel databases [DeWitt et al. 1986; DeWitt and Gray 1992] require special
hardware and lacked sufficient solutions to fault tolerance, hence having limited scalability. Their
implementations use hashing intensively. In contrast, our work leverages the massive parallelism of
MapReduce and extends it to incremental one-pass analytics. We use MR-hash, a technique similar
to hybrid hash used in parallel databases [DeWitt et al. 1986], as a baseline. Our more advanced hash
techniques emphasize incremental processing and in-memory processing for hot keys in order to
support parallel stream processing.

Distributed Stream Processing. has considered a distributed federation of participating nodes in
different administrative domains [Abadi et al. 2005] and the routing of tuples between nodes [Tian
and DeWitt 2003], without using MapReduce. Our work differs from these techniques as it considers
the new MapReduce model for massive partitioned parallelism and extends it to incremental one-pass
processing, which can be later used to support stream processing.

Parallel Stream Processing. The systems community has developed parallel stream systems like
System S [Zou et al. 2010] and S4 [Neumeyer et al. 2010]. These systems adopt a workflow-
based programming model and leave many systems issues such as memory management and I/O
operations to user code. In contrast, MapReduce systems abstract away these issues in a simple user
programming model and automatically handle the memory and I/O related issues in the system.

Our work presented in this paper significantly extends our previous work [Li et al. 2011]: (i)
We provide a more detailed analysis of MapReduce online [Condie et al. 2010] with pipelining of
data. Through an extensive set of experiments we provide new understanding of the effects of the
HDFS chunk size, the number of reducers, and the snapshot mechanism when adding pipelining
to existing MapReduce implementations. (ii) To better validate our analytical model of existing
MapReduce systems, we strengthen our evaluation with new results on the I/O cost in addition to
the time cost. (iii) We significantly extend our discussion of incremental hashing, INC-hash, by
separating the concepts of incremental processing and partial aggregation, adding a new analysis
of memory requirements and I/O cost, and proposing to treat its sensitivity to unknown parameters
using sketch-based analysis. (iv) We also include a major extension of dynamic incremental hashing,
DINC-hash, with new guarantees for skewed data, discussion of its sensitivity to unknown parameters
and potential pathological behaviors (e.g., flooding), and a new randomized caching algorithm to
overcome the flooding problem. (v) We perform over a dozen new experiments to compare various
hashing algorithms and caching policies under different workloads, data localities, and memory sizes.
The detailed results are reported in Section 6.

8. CONCLUSIONS
In this paper, we examined the architectural design changes that are necessary to bring the benefits
of the MapReduce model to incremental one-pass analytics. Our empirical and theoretical analyses
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showed that the widely-used sort-merge implementation for MapReduce partitioned parallelism
poses a fundamental barrier to incremental one-pass analytics, despite optimizations. We proposed a
new data analysis platform that employs a purely hash-based framework, with various techniques to
enable incremental processing and fast in-memory processing for frequent keys. Evaluation of our
Hadoop-based prototype showed that it can significantly improve the progress of map tasks, allows
the reduce progress to keep up with the map progress with up to 3 orders of magnitude reduction of
internal data spills, and enables results to be returned early.

In future work, we will build use cases and evaluate our system in more application domains, such
as web document analysis, web log analysis [PigMix 2008], complex graph analysis and genomic
analysis [Roy et al. 2012]. We will also extend our hash-based data analytics platform in several
ways. First, we will explore further improvement of our dynamic incremental hashing techniques,
including seeking performance gains by generalizing the Marker algorithm, where the counter of each
monitored item can go up to a parameterized value instead of 1, and seeking hybrid approaches that
adapt between the FREQUENT algorithm and the marker algorithm for best performance. Second, we
will explore a dynamic mechanism for controlling the number of hash buckets in our hash algorithms,
which provides good performance without requiring precise knowledge of the key-state space of
input data. Third, we will extend our work to online query processing that provides early approximate
answers with statistical guarantees. Fourth, we will further extend to stream processing by adding the
support of pipelining and window operations. Our incremental data processing platform developed in
this work provides fundamental systems support for the above two analytics systems.
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