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ABSTRACT
Continued advances in technology have led to falling costs and
a dramatic increase in the aggregate amount of solar capacity in-
stalled across the world. A drawback on increased solar penetration
is the potential for supply-demand mismatches in the grid due to
the intermi�ent nature of solar generation. While energy storage
can be used to mask such problems, we argue that there is also
a need to explicitly control the rate of solar generation of each
solar array in order to achieve high penetration while also handling
supply-demand mismatches. To address this issue, we present the
notion of smart solar arrays that can actively modulate their so-
lar output based on the notion proportional fairness. We present
a decentralized algorithm based on Lagrangian optimization that
enables each smart solar array to make local decisions on its fair
share of solar power it can inject into the grid, and then present a
sense-broadcast-respond protocol to implement our decentralized
algorithm into smart solar arrays. Our evaluation on a city-scale
dataset shows that our approach enables 2.6× more solar pene-
tration, while causing smart arrays to reduce their output by as
li�le as 12.4%. By employing an adaptive gradient approach, our
decentralized algorithm has 3 to 30× faster convergence. Finally,
we implement our distributed algorithm on a Raspberry Pi-class
processor to demonstrate its feasibility on grid-tied solar inverters
with limited processing capability.
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1 INTRODUCTION
�e cost of solar energy continues to decline rapidly due to both
advances in solar module e�ciency and economies-of-scale in man-
ufacturing. Today, the total average cost of energy from solar pho-
tovoltaics (PV) in the U.S. is estimated at 12.2¢ per kilowa�-hour
(kWh) [30, 31], which is nearly equivalent to the average retail elec-
tricity rate of 12¢ per kWh [30]. Some have predicted that, based on
current trends, the marginal cost of solar modules will eventually
fall to near zero [23]. �ese declining costs, combined with sub-
sidies from various states, are driving signi�cant increases in the
number and size of solar deployments. As the cost of solar module
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hardware decreases, solar energy cost will be dictated largely by
“balance of system” costs, which capture the indirect costs incurred
by utilities to incorporate renewables despite their intermi�ent na-
ture. �ese costs include inverters, charge controllers, and energy
storage devices, such as ba�eries, among others.

Conventional wisdom holds that there is a limit to the amount
of the solar penetration, i.e., the maximum fraction of demand
satis�ed by solar power that the grid can handle. Since solar gen-
eration is intermi�ent, utilities must o�set any large increases or
decreases in solar output by decreasing or increasing output from
other sources to compensate. However, with high penetration and
variable weather conditions, �uctuations in aggregate solar output
may occur too quickly to be o�set from mechanical generators to
o�set, resulting in supply-demand mismatches. Consequently, cur-
rent regulations strictly limit the number and size of grid-connected
solar deployments that use net metering.

�e problem faced by the grid is reminiscent of problems faced by
the early Internet. Early transport protocols for network data trans-
missions did not include congestion control and allowed users to
inject data into the Internet at arbitrarily high rates. Since network
capacity was �xed, too many users sending data at excessively high
rates drove the network to near congestion collapse. �e imminent
threat of congestion collapse led the design of TCP, a transport
protocol that uses congestion and rate control to gracefully adapt
sending rates upon detecting congestion to maximize aggregate
goodput, prevent congestion collapse, and fairly share the Internet’s
available bandwidth among active �ows [13].

Today’s “dumb” electric grid and solar arrays are akin to the early
Internet—it permits grid-tied solar systems to generate and transmit
large amounts of power into the grid without regard for its current
state and available excess transmission capacity. For example, on a
sunny day, the cumulative output of solar deployments throughout
the grid could cause a supply-side surplus that exceeds demand and
causes grid ”congestion”. In contrast, on a cloudy day, the grid may
be able to accept additional power from many solar systems that
are currently forced o�-grid due to strict caps.

To address this problem, we present the notion of smart “active”
solar arrays that can intelligently control their solar power output—
in contrast to today’s passive solar arrays that simply inject the
maximum amount of power they can generate at each instant based
on current weather conditions. Smart solar arrays have the ability
to accept signals from the grid and can increase or decrease their
output (“solar rate”) in response to these signals—similar to TCP
which can modulate its sending rate based on congestion signals.
Recent research on so�ware-controlled smart solar inverters [27]
can be used as a building block for our smart solar arrays. Our
contributions are as follows.
Proportional-share Solar Rate Control: We formulate the prob-
lem of solar rate control that allocates the available solar capacity
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using the notion of proportional fairness. Our approach enables util-
ities to control the aggregate amount of solar output across its users
by se�ing a limit, or weight, for each array. Each smart array then
generates solar power in proportion to its weight. �e key challenge
for utilities is determining a fair weight for hundreds-to-thousands
of deployments in a distributed fashion without continuously gath-
ering �ne-grained solar data from each array.
Decentralized solar rate control algorithm: We present a de-
centralized algorithm based on Lagrangian optimization that en-
ables each solar array to compute its fair solar rate locally and in
a distributed manner using grid signals. We also present a sense-
broadcast-respond protocol to implement our decentralized algo-
rithm into smart solar arrays while also enabling fast convergence
of our algorithm to the fair rate.
Implementation and Evaluation: We evaluate our approach us-
ing a city-scale dataset and show that our distributed rate control
algorithm performs similar to a centralized approach that requires
full system knowledge. Our results show that our approach en-
ables 2.6× more solar penetration, while causing smart arrays to
reduce their output by as li�le as 12.4%. By employing an adaptive
gradient approach, our decentralized algorithm has 3 to 30× faster
convergence. Finally, by implementing our decentralized algorithm
on a Raspberry Pi-class processor, we demonstrate its feasibility on
grid-tied solar inverters with limited processing capabilities.

2 BACKGROUND
2.1 Solar Arrays
Solar panels installed on buildings can be connected to the grid
through net metering. �ese grid-tied solar panels support local
loads inside a building and feed the surplus power into the grid,
e�ectively selling it back to the utility. However, solar energy gen-
eration is intermi�ent and highly weather dependent (see Figure 1).
For example, on sunny days the amount of solar generated by a
panel is at its maximum, but on overcast days the amount of solar
generation may be relatively low. �us, the amount of solar power
“net metered” to grid depends on: (i) local demand from loads (ii) the
solar radiation incident on the panel, which is weather dependent.

Injecting large amounts of solar power is problematic as grid
operators must continuously balance supply and demand. If the
total output from intermi�ent solar arrays �uctuates too rapidly, it
can cause supply and demand mismatches. Furthermore, as solar
penetration grows, the impact of intermi�ent solar energy makes
balancing supply and demand ever more challenging.

To avoid using “excessive” amount of solar power from being
injected into the grid, many governments strictly regulate grid
solar connections [1]. Many states in the US set hard limits by
passing laws to regulate the number of solar panel connections.
Limiting the solar capacity limits the stochasticity seen from these
distributed sources, which in turn makes matching supply and
demand a more manageable problem despite intermi�ency. For
example, while the state of Virginia has a cap of 1%, a similar
law exists in Massachuse�s that caps the solar at 2% of the total
power generation. Importantly, these caps are generally based on
the rated maximum capacity of a solar installation, regardless of
what it actually generates. �at is, the caps assume a solar panel is
generating at its maximum capacity all the time.
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Figure 1: Solar power output varies based on time of day and
local weather conditions.

In this paper, we propose an alternate approach — smart solar-
powered arrays that are capable of self-regulating their output in
a grid-friendly fashion. Our smart solar arrays can control their
generation rate by backing o� when supply exceeds demand (more
precisely, the aggregate solar output is greater than some threshold),
and increasing the rate when needed. �e idea is similar to rate
control of network �ows in TCP, where sources back o� when
there is congestion in the network and increase the rate when
network capacity is available. While network rate is given by the
bandwidth and measured in Mbps, solar rate is given by the solar
power output and measured in kilowa�s (kW). We argue that solar
rate control has the potential to permit a much larger solar capacity
to be installed, thereby increasing solar penetration. Solar rate
control also provides grid operators with an additional control
”knob” when continuously matching supply and demand.

Relation to energy storage: An alternate solution to managing
high solar intermi�ency is to use energy storage. Energy storage,
such as lithium-ion ba�eries, can absorb surplus energy from solar
arrays and feed the excess power back to the grid when there is
a de�cit [14, 20]. Today, the cost of energy storage remains high,
and large-scale energy storage deployments remain economically
infeasible. However, technology improvements will make energy
storage feasible in the future. It is important to note that energy
storage and solar rate control are complementary approaches for
handling high solar penetration. Both technologies can coexist
with one another, and neither obviates the need for the other. For
example, even with large scale storage deployments, solar rate
control is necessary—since storage ba�eries, which have �nite
capacity, may reach full charge and require solar rate control to
temporarily reduce excess output. �is is similar to ”supply-side”
demand response, where solar output is temporarily reduced on
rare occasion when supply exceeds demand and ba�eries can not
absorb the surplus. Similarly, even with widespread solar rate
control deployment, energy storage can be used to locally store
excess output that can not be net-metered to the grid. Finally, smart
solar arrays also o�er a form of ”reserve capacity” where their
output can be ramped up if there is a sudden increase in demand,
a role that energy storage can also play. While energy storage-
based techniques have received signi�cant a�ention in recent years
[2, 8, 22], solar rate control is a newly emerging topic that has not
seen much a�ention and is the focus of this paper.

2.2 Why is Solar Rate Control Feasible?
Interestingly, practically every solar panel today, as well as solar
arrays, have the ability to control their solar output. At an array
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Figure 2: Rate control approaches in solar panels.

scale, this can be trivially done in discrete steps by dynamically
connecting and disconnecting individual panels. Figure 2(a) shows
an array where panels are connected in parallel and a program
switch can be used to dynamically disconnect k out of n panels,
thereby providing discrete control1.

Even at the granularity of a single panel, it is possible to control
the output of the panel. �e output of photovoltaic solar is given
by its I-V curve depicted in Figure 2(b). Given a certain amount of
solar irradiance, the I-V curve shows all possible operating points
of the panel for that solar irradiation. Speci�cally, any voltage
on the curve can be chosen and the panel will then produce the
corresponding current. Since power is de�ned as the product of
current and voltage i.e. P = I ·V , the panel actually can provide a
di�erent power output based on the choice of voltage. In general,
panels operate at a voltageV at the knee of the curve, which yields
the maximum output. �e point where the panel generates the
maximum power is called the maximum power point (MPP).

However, there is no particular reason to operate a solar panel
at its maximum power point. It is possible to pick other values of
V , which are akin to “backing o�” and producing an output less
than the output at MPP [27]. �us, any solar panel’s output can be
altered by changing its operating voltage. Our smart solar panels
are built on this idea. We assume the presence of so�ware controls
that enable the output to be lowered below the MPPT, and thus
control the power output of the panel. �is mechanism enables
continuous rate control to limit the power injected to the grid.

Modern inverters are beginning to o�er more con�gurability
and in the long run, we expect them to expose rate control mech-
anisms [27]. Both the discrete control above, or the continuous
control can be used to regulate the rate. Given smart solar panels
connected to the grid, our goal is to control the solar output in order
to provide higher control over distributed solar-powered systems.

3 SOLAR RATE CONTROL
�e problem of controlling solar power is similar to the rate control
problem in communication networks [15, 19]. �is body of work
proposes an optimization framework for determining the rates
allocated to di�erent network �ows given network capacity con-
straints. �ese ideas from network rate control were �rst applied
to the power grid scenario by Ardakanian et. al. albeit in a di�erent
context—controlling the rate of electric vehicle charging [3]. In our

1Typical roo�op solar installation is 5kW (20 panels). �us, we can control the power
output in 5% (250W) increments.

case, we use these principles from networking [15, 19] to address
the problem of solar rate control. Next, we present the problem
of solar rate control. We then outline our design objectives and
assumptions.

3.1 Centralized Problem
We �rst formulate our solar rate control problem as a centralized
optimization problem. �e centralized problem requires knowledge
of the load at the feeders/transformers level and the current gen-
eration rate of individual solar installations in order to compute
the solar allocation rate while adhering to certain grid constraints.
�e allocation rate should not only maximize the individual user’s
output but also maximize the overall grid utilization.

Intuitively, we want to limit the aggregated distributed solar
generation to a certain capacity. �is leads to the problem of ap-
portioning the capacity among di�erent solar arrays to determine
the generation rate for each array. Note that the grid demand and
solar generation output is time varying, and may change over the
day. �us, at each time t , the optimization problem needs to recom-
pute the capacity and the allocation rate for each solar array . For
simplicity, we describe the optimization formulation for a single
time step.

We consider a distributed grid transmission network with a set
of transmission feeders F , transformers K and smart solar arrays S .
Electric power is transmi�ed from the power station to substations
at high voltages. At the distribution substation i.e. low voltage (LV)
feeder, voltage is stepped down and distributed to transformers,
wherein it is further stepped down before it is transmi�ed to res-
idential users. �us, the smart solar arrays are connected to the
LV feeder via a transformer. Formally, we say that the smart solar
array s is connected to a LV feeder f , if s ∈ S (k ) and f = F (k ),
where k is the transformer located in between s and f . We model
the key characteristics of our problem as follows:

Transformer constraint: Power �ow at the transformer level can
be bi-directional and the maximum power �ow at the transformer
is dependent on the transformers rating C. �e transformer rating
is between −C to C kVA, where the negative sign indicates reverse
power �ow from the transformers to the feeders. Usually, the trans-
formers are right-sized to ensure that the load at the transformers
does not exceed its rating. However, high solar penetration in res-
idential homes may cause reverse power �ow and the following
constraint must be satis�ed to maintain grid stability.∑

xs ≤ loadk + Ck ∀s ∈ S (k ) and k ∈ K (1)

where xs is the solar generation rate of the smart solar array s ∈
S (k ) and loadk is the aggregate load from the residential homes in
transformer k .

Feeder constraint: Most residential LV feeders are not equipped
with infrastructure to allow reverse power �ow i.e. electricity does
not �ow from an LV feeder to a medium voltage transmission line
and thus obeys the following constraint∑

xs ≤ loadf , ∀s ∈ S ( f ) and f ∈ F (2)

where loadf is the load at the feeder f , and S ( f ) are the smart solar
arrays in feeder f .

Grid capacity constraint: �e grid utility may cap solar output
to reduce variability in grid or due to legislative reasons [1]. �e
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aggregate solar generation output may be capped at a fraction of
the aggregate grid demand∑

xs ≤ capacity, ∀s ∈ S (3)

where capacity is de�ned as a fraction of the total power demand
at the grid level.

Solar PV constraint: �e maximum power generated by a solar
panel lies in the interval [0,xmppt

s ], where xmppt
s is the MPPT rate

of the solar PV and is de�ned as
0 ≤ xs ≤ x

mppt
s ∀s ∈ S (4)

Note that (1), (2) and (3) can be combined and represented as a
single inequality

Rx � c (5)

where R ∈ Rm×n matrix, withm combined constraints from (1), (2)
and (3) and n smart solar arrays; x ∈ Rn×1 vector is the set of smart
solar arrays; c ∈ Rm×1 vector captures the capacity constraints;
and �nally, � represents the generalized inequality of vectors. R
can be represented as:

Ris =



1 if s ∈ S is present in the ith constraint
0 otherwise

Remember our goal is to take some aggregate capacity and ap-
portion it among individual solar installations. �us, our objective
is to maximize the total utility of the individual smart solar ar-
rays Us (xs ); subject to constraints (4) and (5). To summarize, our
optimization problem can be de�ned as:

max
xs

∑
s ∈S

Us (xs )

subject to: Rx � c and,

0 ≤ xs ≤ x
mppt
s ∀s ∈ S

We refer to the above problem as the primal problem. We as-
sume that the utility function is strictly concave, increasing and
twice di�erentiable. Since each constraint is convex, a unique maxi-
mizer exists and solving the optimization problem generates a solar
allocation that is optimal.

�e centralized optimization problem discussed earlier is mathe-
matically tractable. However, solving the optimization necessitates
a prohibitively high communication overhead, as it requires two-
way communication infrastructure between the smart solar arrays
and the control center. Moreover, an increase in solar array deploy-
ments will increase the coordination overhead between the control
center and smart solar arrays to compute the solar allocation rate.
Hence, in section 4, we formulate a distributed approach that solves
the above optimization problem to mitigate some of the issues in
the centralized approach.

3.2 Design Objectives
3.2.1 Maximize utility to end-users and grid. Solar panels are

net-metered and the amount of electricity supplied to the grid earns
residential customers billing credits. To model the bene�t of net
metering, we a�ribute a utility function Us (xs ) to the user for
generating solar output at rate xs . From the user’s perspective,
each user would like to maximize its own utility. However, from

the grid perspective, the utility function should also maximize the
overall utilization of the network.

We explore two utility functions, non-weighted and weighted,
described in Kelly et. al. [16], which maximizes both the grid
and the user’s utility function. �e non-weighted utility function,
Us (xs ) = log(xs ), provides equal utility regardless of the size of
the solar panel. Since, log(xs ) is a strictly increasing function, an
increase in solar output xs denotes an increase in the utility. On
the other hand, the weighted utility, Us (xs ) = ws log(xs ), provides
additional bene�t to users for installing larger solar panel, where
weightws represents the weight corresponding the size of the solar
panel. Both the utility functions are increasing, strictly concave
and continuously di�erentiable.

3.2.2 Fairness in solar rate allocation. We are interested in an
allocation that is fair to the user. In our paper, we use a utility func-
tion that provides proportional fairness and weighted proportional
fairness. Any feasible allocation vector x is proportionally fair, if
for any other feasible rate vector y, the aggregate of proportional
change is non-positive i.e.∑

s ∈S

ys − xs
xs

≤ 0 (6)

Similarly, any feasible allocation vector x is weighted proportion-
ally fair, if for any other feasible vector y the following holds.∑

s ∈S
ws

ys − xs
xs

≤ 0 (7)

As shown in [15], the logarithmic utility function discussed above
achieves proportional fairness and the allocation vector obeys the
fairness property (6). In addition, it is shown that proportional
fairness is pareto optimal, since increasing a user’s allocation will
decrease allocation of another user.

4 DISTRIBUTED RATE CONTROL
�e centralized problem discussed in the previous section has three
key drawbacks in practice. First, it requires full knowledge of the
maximum generation output (MPP) of all grid-connected smart
solar arrays. Second, the control center requires knowledge of the
grid’s network topology in order to compute the solar rate. �ird,
a two-way communication needs to be established between the
control center and smart solar arrays for controlling the solar rate.
Hence, we reformulate the centralized optimization problem to an
equivalent distributed optimization problem, which can then be
solved locally by smart solar arrays and eliminate some of the disad-
vantages of the centralized approach. In contrast to the centralized
approach, the distributed algorithm does not require knowledge of
the grid’s network topology and eliminates the need to share local
information.

4.1 Dual decomposition
We use the dual decomposition approach to divide the centralized
optimization problem into smaller subproblems. Note that the op-
timization problem has a coupling constraint (5), which prevents
solving each subproblem independently. Clearly, without the cou-
pling constraint, each user can maximize its utility independent
of each other, thus maximizing the aggregate objective function.
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Below, we present the Lagrangian dual problem, which relaxes the
coupling constraint using control prices (Lagrangian multipliers)
and thus allows solving the problem as independent subproblem.

We de�ne the Lagrangian of our optimization problem and con-
sider control prices λ to relax the coupling constraint

L (x , λ) =
∑
s ∈S

Us (xs ) −
∑
l ∈L

λl (yl − cl )

=
∑
s ∈S

(Us (xs ) − xsqs ) +
∑
l ∈L

λlcl

where l denotes the row number and L is the total number of
constraints in matrix R; and

yl =
∑
s ∈S

Rlsxs ∀l ∈ L

qs =
∑
l ∈L

Rlsλl ∀s ∈ S

�us, the Lagrangian dual problem can be formulated as:

D(λ) : min
λ≥0

∑
s ∈S

Vs (xs , λs ) +
∑
l ∈L

λlcl (8)

subject to: λl ≥ 0 ∀l ∈ L (9)

where,

Vs (xs , λs ) = max
0≤xs ≤xmppt

s

(Us (xs ) − xsqs ) ∀s ∈ S (10)

As discussed earlier, the utility function (Us ) is strictly concave.
Since the sum of concave function Us is concave and the linear
constraints are concave, strong duality holds i.e. the primal and the
dual solutions are equal. Hence, solving the dual problem solves
our original primal problem.

We solve the dual problem using the gradient projection method.
Note that for a �xed λ, the dual problem is completely separable
in xs and each subproblem in xs can be maximized independently
by each smart solar array using (10). In particular, for a given
price λ, a unique maximizer exists that maximizes (10). Since the
utility function Us is continuously di�erentiable, using the Karush-
Kuhn-Tucker (KKT) theorem2, the unique maximum x∗s is given
by

x∗s = min{max{1/U ′s (xs ), 0},x
mppt
s } (11)

where U ′s is the derivative of the utility function Us .
�e control prices (λ) manage the subproblems and are computed

by the master algorithm that solves the dual problem. �e master
algorithm computes the prices by determining λ that minimizes
the objective function in (8). �is is done by updating λ using the
gradient ∇D (λ) given by

дl =
∂

∂λl
D (λ) = cl − yl (12)

�e gradient projection algorithm solves the dual problem it-
eratively. At each iteration, each subproblem is solved parallely,

2KKT conditions are �rst order necessary conditions for a nonlinear program to yield
a solution that is optimal

and the master algorithm updates the control prices in opposite
direction of the gradient such that

λl (t + 1) = max
{
λl (t ) − γ (cl − yl ), 0

}
, ∀l ∈ L (13)

where, γ > 0 is an appropriate step size.

4.2 Choosing step size
Our algorithm is similar to the distributed algorithm described
in [3] and guarantees to converge as ∇D is Lipschitz continuous3

and bounded, provided the step size is appropriately selected. In
other words, the convergence of the distributed algorithm is sen-
sitive to the step size used for updating the control prices. While
a big step size may cause the algorithm to oscillate around the
optimal solution, a small step size may increase the number of iter-
ations required to converge to the solution. Here, we discuss two
approaches we used to select a step size to solve the dual problem.

4.2.1 Fixed gradient. At each iteration, the master algorithm
updates the control prices using the gradient controlled by a �xed
step size parameter using (13). As shown in [3], the solution gen-
erated by the distributed algorithm converges to the primal-dual
optimal when the step size satis�es the following condition

0 < γ < 2/ᾱ L̄S̄ (14)
where ᾱ = maxs {−1/U ′′s (xs )}; L̄ = maxs {

∑
l ∈L Rls } and S̄ =

maxl {
∑
s ∈S Rls }.

4.2.2 Adaptive gradient (AdaGrad). In contrast to the �xed gra-
dient, the adaptive gradient modi�es the step size as a function of
time and updates the control prices ∀l ∈ L as follows

λl (t + 1) = max
{
λl (t ) −

γ√
Gl (t ) + ϵ

· дl (t ), 0
}

(15)

whereGl (t ) =
∑t
i=1 д

2
l (i ) is the sum of the squares of the gradients

w.r.t. λl up to iteration t ; and ϵ = 1e−8 is a smoothing term to
avoid division by zero error. Note that the accumulated sum Gl (t )
grows with the number of iterations, which in turn causes the step
size to shrink. �e bene�t of Adagrad is it is not very sensitive
to the initial step size, and any appropriate step size converges
in reasonable amount of time. �e convergence guarantees of
Adagrad is well studied and the algorithm converges to the optimal
solution [10]. Empirically, Adagrad converges faster than the �xed
gradient approach and we evaluate both of them in our distributed
algorithm.

4.3 System Design
Having presented the distributed algorithm that solves our rate
control problem, we next describe our assumptions and the Sense-
Broadacast-Respond protocol — a round-based protocol. We assume
that power �ows unidirectionally from the power station to the
feeders. However, below the feeder power �ow is bi-directional
in transformers. Further, we assume the solar arrays have the
capability to receive control signals and adjust its rate accordingly.

In our proposed protocol, each round maps to the iterations the
distributed algorithm takes to converge to the optimal solution. In
each round, prices are computed using (13) and sent to individual
3Lipschitz continuous guarantees existence and uniqueness of a solution
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Figure 3: Sense - Broadcast - Respond protocol communica-
tion among the feeder/transformer level sensors, the control
center and the smart solar arrays.

smart solar arrays to modulate their power outputs. To be�er
illustrate our Sense-Broadacast-Respond protocol, we describe the
steps on how the control center communicates with the smart solar
arrays to rate control its power output (see Figure 3).

4.3.1 Sense. Sensors at the feeder and transformer capture the
load at each time interval. �e feeder then communicates the
captured information to the grid’s control center using Algorithm 1.
Note that the aggregate load sensed at the feeder is the combination
of the uncontrolled load from buildings and the regulated power
from solar panels and is equivalent to the gradient (cl−yl ) presented
in (12).

Algorithm 1 Feeder/Transformer’s algorithm
1: while True do
2: sense loadf
3: send loadf information to the control center
4: wait for the next clock tick
5: end

4.3.2 Broadcast. �e utility’s control center receives the load
from the feeder or transformer and computes the control prices
using Algorithm 2. �e control prices is adjusted using (13) or (15).
Next, the computed control prices are broadcasted to all smart solar
arrays.

Algorithm 2 Utility’s control algorithm
Input: γ

1: while True do
2: receive load from feeders/transformers ∀f ,k
3: compute gradient дl based on the load
4: λl := max{(λl − γ ∗ дl ), 0} . update control prices
5: broadcast prices to solar s ∈ S (l ), in constraint l
6: wait for the next clock tick
7: end

Characteristics Value
Num. of Electric meters 11,186

Electric meter granularity 5 minutes
Num. of Feeders 29

Num. of Transformers 1108
Transformers rating(kVA) 5 to 750

Duration 12 months

Table 1: Key characteristics of the dataset

4.3.3 Respond. �e smart solar array consists of an identi�er
pair that associates the array with its parent feeder/transformer.
When a smart solar array receives the broadcasted control prices, it
computes the rate using (11). �e identi�er aids in associating the
prices relevant to the smart solar array. A�er the rate is computed,
the smart solar array sets its generation rate.

Algorithm 3 Smart solar array’s algorithm
1: while True do
2: receive control price vector λ
3: qs := ∑

l ∈L Rlsλl . aggregate price in l
4: xs := argmax0≤xs ≤xmppt

s
(Us (xs ) − xsqs )

5: set solar generation rate for xs
6: wait for the next clock tick
7: end

5 EVALUATION
In this section, we describe the dataset and experimental setup for
evaluating our distributed algorithm with di�erent utility functions.

5.1 Dataset
For evaluation, we use the smart meter data gathered from a small
city in the New England region of the United States. �e dataset con-
sists of smart meter data from 11,186 residential homes. Apart from
electricity consumption, we also have the electric grid distribution
network information — consisting of the feeders-to-transformers-
to-meters connections. Table 1 shows a brief description of the
dataset characteristics and was obtained from the authors of [12].

�e dataset also contains solar power generated from a single
residential home. To generate solar power dataset for multiple
homes, we �rst normalize the solar power output using its maxi-
mum output for the year. Second, we assume the solar installation
sizes to be in the range of 4 to 10 kW. Next, we scale the normalized
solar output with the uniformly generated points for all homes
from this range.

5.2 Experimental Setup
We run our evaluation for three days in the month of April that
consists of di�erent solar pro�les (see Figure 1) unless otherwise
stated. �ese solar pro�le pa�erns are representative of the di�erent
�uctuations observed over a year. Along with the solar pro�les, we
use the load pro�le from the corresponding dates as an input to our
distributed algorithm.
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Our distributed approach takes step size γ as an input to the
parameter. For the �xed gradient approach, we use γ = 2/ᾱ L̄S̄ − ϵ ,
as this is the maximum step size to guarantee convergence (14). As
discussed earlier, the adaptive gradient (Adagrad) is insensitive to
the initial step size. We use γ = 0.5 as the step size for the Adagrad
approach. For our experiments, we limit the solar capacity to 15%
of the aggregate demand observed at grid level. �e time step
size is 5 minutes (granularity of the dataset). In addition, instead
of reinitializing the control prices at every time step, we use the
control prices of the previous time step as an input for the next
time step.

We use the cvxpy library — a python based convex optimization
library — to solve the centralized formulation. Internally, the cvxpy
solver uses cvxopt solver to �nd the optimal solution. Separately, for
the distributed scenario we use python to simulate the environment.

5.3 Metrics
5.3.1 Fairness Metric. To assess the fairness of our algorithms,

we use the Gini coe�cient to measure the inequality in allocation
distribution. �e Gini coe�cient is a widely used metric in eco-
nomics to show the distribution (inequality) of income among the
residents of a country. �e value for the coe�cient is between 0
(perfect equality) and 1 (perfect inequality). Mathematically, it is
given by (G),

G =

n∑
i=1

n∑
j=1

���xi − x j
���

2
n∑
i=1

n∑
j=1

x j

=

n∑
i=1

n∑
j=1

���xi − x j
���

2 · n
n∑
i=1

xi

(16)

where, in our case, xi is the rate allocated to user i and n is the total
number of grid-tied solar installations.

5.3.2 Variability Metric. Due to solar intermi�ency, volatility
of the load pro�le observed at the grid level increases with the
introduction of solar energy. �is increased volatility makes grid
operation of matching the demand with supply more challenging,
thereby reducing power quality (i.e. more voltage �uctuations).
�is volatility can be reduced by controlling the solar output. We
use variability metric (V) to determine the impact of controlling
the rate of solar output and is measured by taking the standard
deviation of the successive di�erence of the power values

V = σ (∆P ) (17)

where, P is a vector representing the power generated during the
day; ∆P represents the di�erence between successive values in P ;
and σ represents the standard deviation function. Higher value
indicates more variability.

5.4 Experimental Results
5.4.1 Impact on grid demand. We assume 5% solar penetration

at each feeder i.e. 5% of residential homes have solar panel installa-
tions. We compare our approach against no rate control scenario
i.e. each solar panel generates power at its maximum value (MPP).

Figure 4 shows the impact of our distributed rate control on
the aggregate grid demand. �e aggregate grid demand pro�les
usually have two peaks — one in the morning and the other in the

Load Pro�le Apr 16 Apr 21 Apr 22
Grid 0.079 0.076 0.069

Grid + No rate control 0.09 0.079 0.226
Grid + Rate control 0.084 0.079 0.145

Table 2: Variability metric for di�erent days in 2015

evening (Figure 4 (a)). �e aggregate grid demand with increased
solar penetration with no rate control resembles a si�ing duck —
also known as the duck curve — and causes ramp up and ramp
down problems [11]. Our algorithm ensures that the net demand
with solar power never crosses the solar cap set by the grid. �e
solar cap alleviates the ramp down and ramp up problems in power
generation due to high solar penetration, thereby reducing the
need for expensive peaking power plants. �is is clearly seen in
Figure 4(a), where the ramping up/down need is cut in half.

Usually, solar generation on an overcast day is low. Hence, the
overall solar energy generated never exceeds the capacity mandated
at the grid level (Figure 4(b)). In contrast, Figure 4(c) depicts a
demand pro�le with variable solar generation, with generation
greater or less than the capacity during the di�erent times of the
day. Our distributed algorithm adjusts the rate such that it doesn’t
exceed the solar capacity or the solar array’s maximum generation
rate .

We observe a similar behavior at the feeder level (see Figure 5).
Apart from the results shown here, we also ran our simulation for
solar penetrations higher than 5%. Even when the maximum solar
generation capacity exceeds the local demand, our algorithm limits
the rate such that local feeder constraints are met.

Next, we show the impact on variability with and without rate
control mechanisms. We compute the variability in the demand
curve using (17). We observe that the net demand seen by the grid
with rate control is less variable compared to no rate control mecha-
nisms. Table 2 shows the variability metric for three representative
solar pro�les Figure 4. Note that introduction of solar energy (reg-
ulated or unregulated) increases the variability — as shown by the
increased values of the variability metric. However, the variability
is much lower with rate control than without it. Moreover, with
rate control the load pro�le at the grid level is either less or equally
variable compared to no solar scenario.
Result: Our distributed approach limits the aggregate solar gener-
ation output to available solar capacity. Moreover, it decreases the
variability in the aggregate grid demand

5.4.2 Impact of utility function on solar rate. We analyze the
behavior of weighted and non-weighted utility functions of our rate
control algorithm on di�erent panel sizes. Clearly, at the grid level,
the output of both the utility functions remain similar as it maxi-
mizes both the grid’s and user’s utility simultaneously. However,
the rate allocation generated by the utility functions for individual
solar panels would di�er based on the size of the solar panel. �is
is trivially true for the weighted scenario as the allocation is pro-
portional to the size of the panel. In the non-weighted scenario, a
smaller sized panel might have reached its maximum generation
capacity, thereby allowing larger panels to generate more power.
We plot the rate allocation observed on a sunny day for di�erent
sized panels (see Figure 6). As expected, in the weighted scenario,
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(a) Sunny day (Apr 16) (b) Overcast day (Apr 21) (c) Variable day (Apr 22)

Figure 4: Impact of rate control on the aggregate grid demand for di�erent days. With 5% solar penetration and no regulation
the solar output exceeds the solar capacity. Our distributed rate control algorithm caps the power output to the desired level.

2am 6am 10am 2pm 6pm 10pm
Time of day

0

100

200

300

400

500

P
o
w

e
r 

(k
W

)

Feeder 1

Feeder 2

Demand

No rate control

Rate control

Figure 5: Impact of rate control in two feeders with 5% solar
penetration. Feeder 1 has fewer homes comparatively.
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Figure 6: Rate allocation for di�erent sized panel. In
weighted allocation, each panel backs o� its rate propor-
tional to their panel size. However, a non-weighted alloca-
tion treats each panel equally and a small-sized panel may
generate power equal to a larger sized panel.

we observe each panel backs o� its generation rate proportional
to the panel size. Whereas, in the non-weighted scenario, each
panel generate power at a similar rate (unless its maximum rate is
reached for smaller panels).
Result: Small sized panels bene�t more with non-weighted utility,
while weighted utility is favorable to bigger panels

5.4.3 Impact of solar power control policies. As discussed in
section 1, several states in the US have enforced hard limits on the
amount of solar energy net metered into the grid. However, these
hard caps are quite conservative and do not exploit the available
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Figure 7: Impact of average daily rate control period.

solar potential. Moreover, these policies limit the adoption of solar
by residential homeowners. Here, we analyze the change in the
number of homes adopting solar installations and the amount of
solar energy generated with di�erent rate control policies. Unlike
other experiments, we also assume all panels to be of equal size
(5 kW) and evaluate for the entire year 2015. We de�ne the rate
control policy as the average hourly curtailment of solar energy per
day. For this experiment, we choose rate control policies between
0 to 3 hours.

Figure 7 (a) shows the number of homes that can install solar
panel systems with di�erent rate curtailment policies. With no
daily curtailment, a maximum of 185 homes may be permi�ed
to install solar panels of size 5 kW. However, if we allow just 30
minutes of average daily curtailment, the number can be increased
to 309 homes. As we increase the rate curtailment to an hour, we
can double the number of homes adopting solar panel systems.
Furthermore, with 2 and 3 hours of average daily curtailment we
can have 2.6× and 3.4× increase in the number of homes having
solar panel systems respectively.

Figure 7(b) quanti�es the amount of energy delivered to and
curtailed by the grid with di�erent rate curtailment policies. As
discussed earlier, a maximum of 185 homes can install solar panel
system when the total installation size is limited to the minimum
load observed for the entire year. �e total solar energy supplied to
the grid from these distributed sources is around 1137 MWh. How-
ever, increasing the average daily curtailment period to 30 minutes,
the solar energy delivered to the grid increases by 64%, with solar
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Figure 8: Fairness comparison between no rate control
mechanism, weighted and non-weighted utility functions.

energy curtailment of just over 1.8%. Furthermore, increasing the
curtailment period to an hour, the installed panels can contribute
almost doubles the amount of energy to the grid with solar energy
curtailment of 4.6%. Similarly, with 2 and 3 hours of average cur-
tailment period, installed solar panels contributes around 2.3× to
2.7× to the grid, with energy curtailment of around 12.5% to 26.2%
respectively. Clearly, increasing the rate control period increases
the solar energy utilization in the grid provided a small fraction of
curtailment is allowed. Intuitively, a solar panel only reaches its
peak generation capacity around noon on a clear sunny day. For
most periods, the power output is a fraction of the total installation
size. �us, increasing the aggregate installation size increases the
amount of solar energy utilized by the grid.
Result: Increasing the rate control period, increases the overall solar
utilization in the grid. In particular, an average curtailment of 2 hours
enables 2.6× more solar penetration, while causing smart arrays to
reduce their output by as li�le as 12.4%.

5.4.4 Fairness in solar rate allocation. Our allocation scheme
ensures that generation rates of all net-metered solar arrays are
assigned in a fair manner — even when solar generation and grid’s
capacity vary. We use Gini coe�cient, a metric for statistical dis-
persion, to measure the fairness of our proposed approach.

We compare the two utility functions — weighted and non-
weighted — with a solar panel generating power at its maximum
capacity (MPP) i.e no rate control. We evaluate for three days with
5% solar penetration at each feeder level (see Figure 8). With no
rate control, all panels will generate power at its maximum rate,
wherein the rate is proportional to its installation size. �us, the
Gini coe�cient is a constant value, that indicates the inequality
in the distribution of the panel sizes. Similarly, in the weighted
scenario, the rate allocated would be proportional to the size of the
panel. �us, the Gini coe�cient does not change with time and is
similar to the MPP scenario.

In contrast, the Gini coe�cient will not be constant in the non-
weighted scenario as depicted in Figure 8. As shown in Figure 8
(a), until 10 am, the Gini coe�cient is equivalent to the weighted
scenario. �is is because even when all the panel generates power
at its maximum rate it is not able to meet the total available solar
capacity. However, as the day progresses, the total generation
exceeds the maximum solar capacity and all the panels are allocated
equal rate, which causes the Gini coe�cient to reach zero. On an
overcast day (not shown in �gure), the maximum available capacity
is never reached as all the panels operate at MPP. Hence, Gini
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Figure 9: Convergence plots of �xed and adaptive gradient
using our distributed algorithm.
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Figure 10: Aggregated solar power comparison between the
centralized and distributed algorithms.

coe�cient is constant. Separately, on a variable day(see Figure 8
(b)), the Gini coe�cient varies as it depends on the amount of
available capacity met by the generated solar discussed earlier.
Result: Both weighted and non-weighted utilities can be used to
achieve fairness in rate allocation.

5.4.5 Convergence of our distributed approach. As discussed ear-
lier, the convergence of the distributed algorithm is dependent on
the step size. �eoretically, a large step size will oscillate and not
converge to the optimal solution, while a small step size will take
a long time to reach the optimal solution. Here, we empirically,
compare the performance of two step-size selection methods — i)
Fixed gradient, and ii) Adaptive gradient (AdaGrad). We select
step sizes and evaluate for all three days as described in the exper-
imental setup section. Moreover, we assume that the distributed
approach has converged if the objective function’s output within
two consecutive iteration is less than 1e−5.

Figure 9 shows the convergence results of the distributed algo-
rithm using di�erent step size methods. Note that the distributed
algorithm is run for each time instance of a day. �e shaded area
highlights the range of iteration counts executed by the algorithm
to converge over the day. In the �xed gradient method, the mean
and the standard deviation of the number of iterations increases
linearly with the number of homes with solar panels.

In contrast, the adaptive gradient takes smaller number of it-
erations — almost 3× to 30× fewer — to converge compared to
the �xed gradient approach. Moreover, the adaptive gradient is
more reliable, as the standard deviation of the iterations over the
day is small. Further, compared to �xed gradient, the number of
iterations doesn’t grow linearly in the number of homes with solar
panels. However, we notice that on an overcast day, the number of
iterations required for both the �xed and the adaptive gradient is
almost identical. Due to overcast conditions, the maximum solar
generation rate is small, which results in faster convergence.
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Figure 11: Time taken to compute solar rate using control
prices in a Raspberry Pi 3.

We also compare the performance of our distributed approach
with the centralized approach. Note that the centralized approach
has full knowledge about the routing topology and the maximum
power point (MPP) of each solar installation. As seen in Figure 10,
the performance of both the centralized and the distributed ap-
proach is similar. On an average, we observe that the distributed
solution converges to 98.3% of the centralized solution. Moreover,
the maximum absolute di�erence between the distributed and cen-
tralized is 0.029 MW, while the average di�erence is 0.005 MW.
Result: In comparison to �xed gradient, Adagrad requires 3× to 30×
fewer iterations to converge. Moreover, our approach performs similar
to the centralized approach i.e. within 98.3% on average.

5.4.6 Distributed solar rate computation. We assume that a smart
solar-powered arrays will have a Raspberry Pi class processor to
receive control prices and control its solar rate at every iteration.
�us, we analyze the average time Raspberry Pi takes to complete
a single iteration of the distributed algorithm on un-optimized
python code. Note that the solar rate computed depends on the
size of the control prices which varies based on the size of the dis-
tribution network (number of feeders and transformers). However,
the number of feeders and transformers change infrequently for
a given grid network (once in every few months or years). �us,
the time taken to compute the rate should theoretically remain the
same. Figure 11 shows the empirical average time taken to execute
the algorithm on Raspberry Pi 3. We observe that the execution
time per iteration varies between 2.5 to 3 ms. If we assume the
average communication time between the control center and the
smart solar arrays to be 10 ms, with 20 iterations (AdaGrad) per
convergence (for 5% solar penetration), the distributed algorithm
should take less than 0.3 seconds to converge.
Result: With 5% penetration, our distributed approach takes less
than 0.3 sec to �nd the optimal rate allocation.

6 RELATEDWORK
A detailed assessment of distributed solar impact on the grid high-
lights the need for generation �exibility in managing solar variabil-
ity [6]. �e speci�c phenomenon of solar over-generation during
the day causes large ramp up of power generation through peaking
generators, which has been shown to pose operational challenges
and put a tremendous amount of stress on the grid [11]. Prior
work on controlling distributed solar generation include demand
side management using storage or load matching [26] and solar
regulation through curtailment or cuto�. Separately, other research
work has focused on distributed generation control [17] and shown
distributed and centralized voltage control have similar potential
in increasing capacities of distributed generation [29].

Numerous studies on solar regulation through curtailment ex-
ist [4, 18, 25, 28]. Tonkoski et. al. presents an active power curtail-
ment technique to increase the overall distributed solar capacity
at the low-voltage feeder [28]. Rongali et. al. describes a voltage-
based curtailment where the solar rate is reduced if the sensed
voltage is higher than normal [25]. Lo et. al. presents a discrete
curtailment approach by completely disconnecting the solar units
through control signals from the utility’s command center [18]. In
contrast, we present a distributed algorithm that apportions the
available solar capacity to individual smart solar arrays through a
proportional fairness scheme.

In demand side management, user’s demand and solar genera-
tion pro�le is either scheduled intelligently or shi�ed using energy
storage —- to avoid the risk of excess solar supply. Zhao et. al.
presents control algorithms for electric vehicle charging to mitigate
the impact of renewable energy integration to the grid [32]. Palen-
sky et. al. discusses di�erent approaches to control demand side
load [21]. Energy storage absorbs excess energy generated from
solar and acts as a bu�er for large variations in the output [5, 9].
However, energy storage costs are high and when energy storages
are full, excess solar may still need to be curtailed. Our distributed
approach is complementary to the energy storage and provides
more control over distributed solar generation.

Distributed approach for rate control has been widely studied
in the networking literature [15, 19]. However, these approaches
are now being studied in the context of rate control of electric vehi-
cles [3, 7, 24]. Carvalho et. al. discusses di�erent fairness protocols
to mitigate congestion in the grid caused by electric vehicles [7].
Our distributed formulation is similar to the approach proposed
in [3]. However, unlike [3], which explores rate control for electric
vehicles — we explore rate control in the context of distributed solar
and explicitly model electricity distribution network constraints.
Moreover, we explore di�erent approaches for faster convergence
of our distributed algorithm.

7 CONCLUSION
In this paper, we addressed the problem of growth in solar de-
ployments that could cause supply-demand imbalance due to in-
termi�ency in power generation. We designed a decentralized rate
control algorithm to allocate generation rate of individual smart so-
lar arrays and apportion the aggregate grid solar capacity through
a proportional fairness scheme. Our proposed decentralized algo-
rithm made decisions local to a solar deployment to compute its
solar rate without any need for explicit communication with the
utility. We evaluated our rate control algorithm on a city-scale
electric distribution network and showed that it generates a fair
allocation. We observed that a dynamic rate control achieves signif-
icantly higher solar penetration with negligible energy curtailment
compared to the current hard caps placed on solar deployments.
We also presented convergence results that exhibit tractability of
our algorithm. Further, we assessed the feasibility of our approach
on a Raspberry Pi-class processor and showed that it executes in
0.3 seconds for a solar penetration level of 5%. In future, we plan
to prototype the smart solar rate controller that implements our
distributed algorithm.
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