
TailClipper: Reducing Tail Response Time of
Distributed Services Through System-Wide Scheduling

Nathan Ng

University of Massachusetts

Amherst

kwanhong@cs.umass.edu

Abel Souza

University of California Santa

Cruz

absouza@ucsc.edu

Ahmed Ali-Eldin

Chalmers University of

Technology

ahmed.hassan@chalmers.se

David Irwin

University of Massachusetts

Amherst

irwin@ecs.umass.edu

Don Towsley

University of Massachusetts

Amherst

towsley@cs.umass.edu

Prashant Shenoy

University of Massachusetts

Amherst

shenoy@cs.umass.edu

ABSTRACT
Reducing tail latency has become a crucial issue for opti-

mizing the performance of online cloud services and dis-

tributed applications. In distributed applications, there are

many causes of high end-to-end tail latency, including oper-

ating system delays, request re-ordering due to fan-out/fan-

in, and network congestion. Although recent research has

focused on reducing tail latency for individual application

components, such as by replicating requests and scheduling,

in this paper, we argue for a holistic approach for reducing

the end-to-end tail latency across application components.

We propose TailClipper, a distributed scheduler that tags

each arriving request with an arrival timestamp, and propa-

gates it across the microservices’ call chain. TailClipper then

uses arrival timestamps to implement an oldest request first

scheduler that combines global first-come first serve with a

limited form of processor sharing to reduce end-to-end tail

latency. In doing so, TailClipper can counter the performance

degradation caused by request reordering in multi-tiered and

microservices-based applications. We implement TailClipper

as a userspace Linux scheduler and evaluate it using cloud

workload traces and a real-world microservices application.

Compared to state-of-the-art schedulers, our experiments

reveal that TailClipper improves the 99
𝑡ℎ

percentile response

time by up to 81%, while also improving the mean response

time and the system throughput by up to 54% and 29% re-

spectively under high loads.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1286-9/24/11.

https://doi.org/10.1145/3698038.3698554

CCS CONCEPTS
• Software and its engineering→ Scheduling; • Com-
puter systems organization→ Cloud computing.

KEYWORDS
Cloud computing, scheduling, tail latency reduction

ACM Reference Format:
Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don

Towsley, and Prashant Shenoy. 2024. TailClipper: Reducing Tail Re-

sponse Time of Distributed Services Through System-Wide Schedul-

ing. In ACM Symposium on Cloud Computing (SoCC ’24), November
20–22, 2024, Redmond,WA, USA.ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3698038.3698554

1 INTRODUCTION
Today’s cloud platforms run on a plethora of distributed web

services in domains such as finance, news, and entertainment.

Many modern distributed services employ a containerized

microservices architecture, where application functionality

is partitioned into independent containerized services that

interact with each other via well-defined interfaces (e.g.,

REST or gRPC). In contrast to traditional multi-tiered web

applications that consist of a few tiers, microservices-based

applications can consist of tens or hundreds of modular com-

ponents [52], and requests need to undergo processing at

numerous stages to complete execution. This modular de-

sign enables the independent development and deployment

of each microservice component, allowing them to scale

individually based on workload demands.

Optimizing the tail latency of requests is one of the key

issues in enhancing the performance of distributed web ser-

vices. Studies have highlighted that high tail latency can sig-

nificantly increase customer abandonment rate [2, 11, 29, 33].

For example, one study found that even small increases

in response times can cause a one percent reduction in e-

commerce sales [2]. One of the major causes of high tail

https://doi.org/10.1145/3698038.3698554
https://doi.org/10.1145/3698038.3698554

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

latency is the complexity of modern software and hardware

stacks in distributed applications. Scheduling delays [31],

garbage collection [47], energy optimizations [45], and the

execution of background tasks [11] can all cause significant

and random delays in the execution of a request, leading to

requests being served orders of magnitude slower than the

average [31]. Distributed applications exacerbate the prob-

lem since requests need to go throughmultiple microservices

(or tiers) to complete execution, increasing the likelihood of

encountering the above delays. Additionally, straggler prob-

lems can occur because request processing times can vary

across different microservices.

Various approaches have been proposed to minimize the

high tail latencies seen during request processing. One ap-

proach involves dedicating a CPU core to handle network

interrupts or core re-allocations [31, 36]. Another approach

is a modern version of the Borrowed Virtual Time (BVT)

scheduler, which reduces tail latency by incorporating real-

time priorities to prioritize requests that have been in the

system for an extended period of time [30]. Furthermore,

hardware virtualization techniques have been introduced to

minimize context switch overhead, enabling efficient round-

robin scheduling to prevent starvation of short requests [25].

In addition, prior work has proposed replicating requests to

mitigate the high tail latency caused by stragglers [19, 46].

Notably, the extensive prior work on this topic has largely

focused on optimizing the tail latency of individual appli-

cation components and has not addressed the end-to-end

tail latency problem seen in distributed applications, where

requests require processing by multiple components. How-

ever, techniques that independently optimize tail latency for

each application component do not fully address distributed

request processing effects across components that can re-

sult in high end-to-end tail latencies. Specifically, local tail

latency reduction techniques at a component do not have

visibility into how much time each request has spent in the

system since its arrival. Consequently, schedulers at later

components are unable to compensate for longer delays or

greater processing overheads incurred at earlier components

and thus are likely to incur long end-to-end tail latencies.

Moreover, requests may be reordered during end-to-end pro-

cessing, with recent requests arriving at a particular compo-

nent before older requests—an effect caused by variability

in request processing times at early components and non-

determinism in OS schedulers. Such request reordering can

cause old requests that incur long processing times to fall

behind in their overall progress, potentially increasing their

overall tail latencies. Addressing both of these factors re-

quires knowledge of the system-level arrival time of each

request and techniques to prioritize the scheduling of older

requests over more recent ones at each component. While

such end-to-end system-wide scheduling has been studied

for batch processing of DAG computations [4, 48], it remains

relatively unexplored for latency-sensitive online services.

Motivated by these observations, this paper presents Tail-

Clipper, a distributed scheduler that implements an end-to-

end approach for minimizing the tail latency of distributed

cloud applications. In designing, implementing, and evaluat-

ing TailClipper, our paper makes the following contributions.

• TailClipper provides visibility into the total time spent

by each request since its arrival by timestamping each

incoming request with its system arrival time. This

timestamp, which we refer to as the global arrival time

(GAT), is then propagated horizontally—along the mi-

croservices call chain—and vertically—from microser-

vice requests to the thread serving the request and to

the OS scheduler.

• TailClipper employs a new OS scheduling approach to

minimize the end-to-end tail latency that is inspired

by queueing theory. Specifically, TailClipper employs

Oldest Request First (ORF) scheduling that schedules

requests based on their GAT tags and prioritizes older

requests in the scheduler run queue over more recent

ones. Since ORF is a type of global FCFS policy (gFCFS)

and FCFS policies cause starvation of short requests,

especially when the requests have heavy-tailed distri-

butions, we combine ORF’s global FCFS with a limited

processor sharing (LPS) policy that uses fine-grain

time slices to avoid starvation. TailClipper’s hybrid

gFCFS-LPS ORF scheduler is inspired by queueing the-

ory results that show that global FCFS is optimal for

light-tailed workloads, while processor sharing is pre-

ferred for heavy-tailed workloads.

• We implement a prototype of TailClipper using ghOSt,

a userspace Linux scheduling framework that en-

ables delegation of kernel scheduling policies to

userspace [23]. We open source our implementation

and evaluate it against the ghOSt implementation

of Shinjuku (Shinjuku-gh) [25] and Linux CFS (CFS-

gh) [37], two commonly deployed scheduling policies

that only consider local information. Our experiments

use a mix of synthetic workloads, cluster workload

traces [32], and a real-world image classification ap-

plication. Our results show that TailClipper improves

upon Shinjuku-gh by up to 81% in tail latency, 54%

in mean latency, and 29% in throughput under high

loads.

2 BACKGROUND
This section presents background on distributed web ap-

plications, tail latency reduction techniques, and request

reordering problems that arise during distributed request

processing.

https://github.com/umassos/TailClipper

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

2.1 Distributed Web Applications
Modern web services that run on cloud platforms employ

a distributed architecture comprising multiple tiers or com-

ponents. A traditional multi-tiered application consists of

a front-end HTTP tier, a middle tier comprising the busi-

ness logic, and a back-end database tier [44, 52]. To further

improve flexibility and scalability, web applications now in-

creasingly adopt a microservices approach, where the busi-

ness logic and data tiers are split into a number of smaller,

interacting components. In both cases, incoming requests

undergo processing by some subset of the application compo-

nents – requests are partially processed by each component

in the processing path and forwarded to the next tier. Re-

quest processing may also involve fan-outs and fork-joins

across application components [2, 15]. The total end-to-end

response time seen by a request is the sum of all processing

and queuing delays across all components along a call chain

path.

2.2 Tail Latency Reduction
There has been a wealth of research on optimizing the av-

erage response time of web requests using methods such

as horizontal and vertical scaling, request scheduling, and

the use of caches such as memcached [17, 31]. More recent

work has emphasized tail latency reduction since it has been

shown to strongly correlate with user satisfaction [11, 29].

For this reason, typical service level objectives (SLO) for web

applications are often specified in terms of a bound on the

tail of the response time distribution, e.g., a threshold bound

on the 99
𝑡ℎ

percentile (P99) of response times. In the case of

microservices or multi-tiered web applications, the chance

of a request incurring a high latency increases due to the

presence of multiple components—a performance bottleneck

at any component can cause high end-to-end tail latencies.

Typical performance pitfalls in microservices [11] include

transient workload spikes, network bottlenecks caused by

workload spikes, queuing delays in the OS, and application-

level delays due to, e.g., garbage collection [47].

As noted in §1, prior work has proposed many techniques

for reducing the tail latency of web services. OS-level tech-

niques include the use of a dedicated core to handle net-

work interrupts [36], core reallocations [31], and the use of

real-time priorities to implement fair scheduling [30]. Ad-

ditionally, cluster scheduling techniques such as the use of

redundant requests for straggler mitigation [19, 46] have

been proposed. Recent work has also incorporated higher-

level application context into scheduling decisions for tail

latency [3, 18, 36]. One recent example is Shinjuku [3], which

is designed to reduce tail latencies through a custom schedul-

ing policy. Shinjuku achieves up to 6.6× higher throughput

and 88% lower tail latency, leading to significant performance

10 ms1 ms1 ms1 ms ...

Arrival order Core 1

Core 2

Component 1 Component 2

Core 1

Core 2

Arrival order

1 ms1 ms1 ms ...10 ms

(a) Service time variability introduces reordering.

10 ms10 ms

Arrival order

Component 1 Component 2

Arrival order

10 ms10 ms

Core 1

Core 2

OS Interrupts

Core 1

Core 2

(b) OS interrupts create non-determinism.

Figure 1: Two reasons that can cause request reordering
in distributed services.

improvements. Shenango [36] and Caladan [18] both take a

systems approach and allocate a set of cores to applications,

and as workload changes, core reallocations are triggered

across applications. As noted earlier, these approaches fo-

cus on tail latency reduction at a single node or at a single

application component.

2.3 Request Reordering
Consider a distributed application that consists of multiple

components such as tiers or microservices. Request process-

ing in such applications involves a sequence of 𝑘 components

that execute each request, with each component performing

some partial processing before handing the request to the

next component in the path. Different requests may incur dif-

ferent processing times at each component or take different

processing paths.

As such, the nature of distributed processing makes re-

quests more susceptible to tail latency issues. One key source

of increased tail latency is request reordering—a phenome-

non where later arriving requests jump ahead of requests

that arrived before them at some stage in the request pro-

cessing path, which increases the queuing delay and the

overall latency incurred by such requests [31]. Request re-

ordering across components occurs for two reasons. First,

when the request processing demand varies across requests,

requests with shorter processing times will rapidly complete

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

execution at one component and proceed to the next one,

while those with longer processing times will spend more

time at that component and fall behind. A natural conse-

quence of requests with greater processing demands is that

they take longer to complete; if they also incur longer queu-

ing delays during their execution, this can also impact their

tail latencies. This is depicted in Figure 1a, which shows a

two-component application serving a mix of long and short

requests. The example shows an arrival order at the first

component consisting of a long request with a 10 ms service

time, followed by ten short requests each with a 1 ms service

time. In a two-core system with FCFS scheduling, the ten

short requests will finish before the long request, resulting in

a different arrival order at the second component as shown.

The reordering can potentially increase the queuing time

seen by the long request at the second component, impacting

its end-to-end response time. Importantly, such reordering

occurs even when the scheduler uses time slicing, as is the

case in modern operating systems. For example, if the sys-

tem in Figure 1a uses round-robin time slicing with 1 ms

time slices, the arrival order at the second component will

be similar to the FCFS case.

Second, OS scheduler non-determinism can also introduce

reordering effects. As another example, if requests have equal

processing demands and arrive in a deterministic fashion,

OS scheduler non-determinism can introduce small reorder-

ing effects at a downstream component. This is depicted in

Figure 1b where two requests with identical 10 ms service

times arrive at the same instant and are serviced using the

two cores using 1 ms time slices. However, scheduler non-

determinism, due to factors such as the need to process OS

interrupts caused by I/O, network and memory operations,

cache misses, and system calls can cause the requests to

arrive out of order at the next component. Our empirical

results discussed next reveal that request reordering arises

even with simple deterministic workloads, and is exacer-

bated in more complex distributions prevalent in real-world

applications.

To demonstrate request reordering in practice, we con-

ducted an experiment with three microservices arranged in

a sequential chain. In this experiment, all requests arrive at

the first microservice and are processed by each of the three

components before departing from the third microservice.

We assume that each service runs on a separate 3-core server

and that requests are processed in First-Come First-Served

(FCFS) order by executing each request on the next available

core on each machine. Figure 2 then shows the percentage

of requests that are reordered, i.e., requests with completion

orders that deviate from the ideal completion order where

requests can execute upon arrival without queueing delay,

as well as the 99
𝑡ℎ

percentile of request slowdown, defined

0 100 200 300 400 500 600
Request rate (RPS)

0

20

40

60

80

100

R
eq

ue
st

 re
or

de
rin

g
%

0 100 200 300 400 500 600
Request rate (RPS)

100

200

300

400

500

P9
9

sl
ow

do
w

n

Fixed Exp Bimodal

(a) (b)

Figure 2: (a) Request reordering percentage and (b) P99
slowdown with local-FCFS scheduling. All service time
distributions have a mean of 5 ms.

as the ratio of a request’s end-to-end latency, including the

processing delay on each microservice and network delay

between microservices, to its total service time among all

tiers.

In Figure 2, requests are processed following three dif-

ferent service time distributions: fixed, exponential, and bi-

modal, all with a mean of 5 ms. Even when all requests

impose identical processing demands of 5 ms at each tier,

FCFS processing results in 40% reordering at a rate of 300

requests per second. This is primarily due to scheduler non-

determinism from processing background kernel tasks (e.g.,

network and memory operations) on each machine. Request

reordering worsens when requests at each tier are of unequal

lengths, as shown by the exponential and bimodal distribu-

tions, where the exponential distribution has a mean of 5 ms,

and the bimodal distribution has 99% of requests with expo-

nential service times of 4 ms and the remaining 1% have a

mean of 100 ms. As shown, the percentage of request reorder-

ing increases compared to fixed-length requests, and so does

the P99 slowdown for all requests due to request reordering.

Although not shown here, similar reordering effects were

seen in processor sharing (i.e., time-sliced) systems.

2.4 Queuing Theory Foundations
The design of TailClipper is inspired by theoretical results

from queueing theory. Queueing theory research has math-

ematically analyzed systems where requests undergo pro-

cessing by multiple components using a network of queues

approach [5]. While many closed-form results exist for mean

response times seen in these systems under different work-

load distributions, tail response times remain more challeng-

ing to analyze. An early result from the early 1990s [43]

showed that a global FCFS policy, where each component

schedules requests in FCFS order based on their system-wide

arrival time (rather than arrivals at the current component),

minimizes variance in response time over all other policies.

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Since minimizing variance in response time also reduces tail

latency, this result inspires the use of global arrival times-

tamps and the oldest request first scheduler presented in

Section 3. We note, however, that this classical querying

theory result only holds for the case that non-preemptive

schedulers are used at each component. When workloads are

heavy-tailed, further improvements can be obtained through

time slicing, a class of preemptive policy. Intuitively, FCFS-

based schedulers can increase waiting times in the presence

of heavy-tailed requests, since executing long requests causes

short requests to wait, increasing their wait times. For long,

OS schedulers have used time slicing, also known as proces-

sor sharing, to avoid such issues. Recent queueing theory

results confirm this practice and show that processor shar-

ing is an optimal approach for heavy-tailed workloads [41],

with the caveat that the theoretical result was shown for a

single queue (a single component) and has not been gener-

alized to a network of queues scenario. Nevertheless, our

empirical results in Section 5.1 show the benefits of proces-

sor sharing for handling heavy-tailed requests in distributed

applications with multiple components. Since real-world sys-

tems can experience a range of workloads—light, medium,

and heavy-tailed—these theory results inspire our overall

systems approach of combining global FCFS with a form

of processor sharing to achieve good tail latency behavior

under a range of workload scenarios.

3 TAILCLIPPER DESIGN
This section presents the design of our TailClipper system.

TailClipper’s design consists of two key components. First, it

provides visibility into how much time requests have spent

in the system since their arrival. This is done by attaching

an arrival timestamp to each request and propagating this

timestamp across components traversed by the request. Sec-

ond, TailClipper employs a queueing theory-inspired Oldest

Request First (ORF) scheduler that combines arrival-based

FCFS with limited processor sharing to reduce end-to-end

tail latencies. We describe our design of these TailClipper

components below.

3.1 Global Arrival Time Timestamping
To provide visibility into request arrival times, TailClipper

timestamps each incoming request with a global arrival time

(GAT) tag. These timestamps are propagated horizontally

and vertically as follows. First, distributed applications in

TailClipper are assumed to consist of numerous microser-

vices, and overall request processing involves each compo-

nent along the call chain making (one or more) independent

requests to the next downstream component [29]. Hence, the

arrival timestamp is propagated to all downstream compo-

nents during request processing. Second, each microservice

is assumed to dispatch requests to threads in its own thread

pool, which are then scheduled by the OS CPU scheduler.

The arrival timestamp information should also be propagated

down to the OS thread servicing each request in order to

enforce the ORF policy.

Suppose that 𝑔 denotes the time at which a request enters

the system (global time, GAT). The local arrival time (LAT) at

component 𝑖 , denoted by 𝑙𝑖 , is the time at which the request

arrives at that component. The age of the request – the

total time spent by the request since its arrival – is (𝑡 − 𝑔),
where 𝑡 is the current time. Thus, when the request arrives at

component 𝑖 , its age is (𝑙𝑖 −𝑔). Older requests are those with
greater age values of (𝑡 − 𝑔) and need to be prioritized over

newer ones. Finally, if 𝑑 is the departure time of the request

– the time when it completes execution – the end-to-end

response time is (𝑑 − 𝑔).
TailClipper attaches the GAT tag 𝑔 to the request at the

system entry point (e.g., the load balancer or the frontend

microservice). This is done by including 𝑔 in the request

headers and is transparent to the application. TailClipper

is designed to support many request types such as HTTP

and RPCs. The GAT tag is propagated along the call chain

sequence by copying it from the current local request to the

next one as it completes processing at a component. Impor-

tantly, TailClipper makes the GAT tag visible to the thread

servicing a request, which enables the underlying CPU sched-

uler to employ these tags when making scheduling decisions.

Once a request completes execution through the call chain,

a response is sent to the client after removing the GAT tag

from the reply.

Conceptually, TailClipper divides the end-to-end system

into two domains – a GAT domain and a non-GAT domain.

Horizontally, the non-GAT domain consists of all nodes

(clients, switches) that handle the request until it reaches

the server running the load balancer or the first component

where the GAT is generated. Nodes beyond this point are part

of the GAT domain. On each server node, only threads that

have access to GAT tags are part of the GAT domain. Other

applications, background processes, and kernel threads are

part of the non-GAT domains and are handled by the default

OS scheduler as usual. We next describe TailClipper’s ORF

scheduler designed for scheduling threads using GAT tags.

3.2 Oldest Request First (ORF) Scheduling
TailClipper’s Oldest Request First (ORF) scheduler is de-

signed to reduce tail latencies experienced by requests in the

system across its entire call chain. The novelty of its ORF

scheduler lies in three aspects. First, ORF is designed to min-

imize end-to-end tail latency rather than latency at the local

component level. Second, ORF combines global FCFS with a

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

t2t3t4
H
E
A
D

t5

Limited Processor Sharing
 Queue with size c

1
2

t1

t6t7
t8

t10 4

Waiting Requests
Sorted by GAT

3

Figure 3: TailClipper Design – Despite arriving later
than all other requests 1 , TailClipper prioritizes 𝑡1 by
placing it at the head of the queue due to its oldest GAT
2 , resulting in the rearrangement of the previously
𝑐-th oldest requests 𝑡5 3 and in the limited proces-
sor sharing (𝑐 = 4). Younger requests are subsequently
sorted at the end of the queue 4 .

limited processor sharing (LPS) policy to provide robust la-

tency performance across a wide range of workloads. Third,

ORF uses a tunable parameter that enables performance fine-

tuning in different settings.

At its core, ORF is a global FCFS scheduler (gFCFS) that

prioritizes requests based on their age (i.e., lower GATs). Tail-

Clipper requires two input parameters: 1. the GAT of each

request, and 2. a configurable parameter 𝑐 , which controls

the concurrency degree. TailClipper propagates a request’s

GAT tag to the thread servicing that request, ensuring that

threads are added to the scheduler run queue in GAT order.

This approach allows the OS scheduler of each component

to service requests in their arrival order to the system, effec-

tively implementing global FCFS. This is depicted in Figure

3, showing threads in the run queue ordered by their age

(i.e., GAT tags). However, as is well known, any FCFS sched-

uler is vulnerable to starvation issues since a thread serving

long requests can delay or starve other queued threads [13].

Consequently, ORF combines global FCFS with time slicing,

where the first 𝑐 threads in the queue are serviced using

round-robin processor sharing. We refer to this approach as

limited processor sharing (LPS) and, as noted in §2.4, such

a policy works well for heavy-tailed workloads with a mix

of long and short requests [34]. In TailClipper’s LPS, 𝑐 is

a configurable system parameter that provides a balance

between gFCFS and processor sharing. If 𝑐 is set to 1, ORF

degenerates to pure gFCFS which is optimal for light-tailed

workloads, while 𝑐 = ∞ turns ORF into a pure PS (round-

robin) scheduler. Typically, TailClipper uses small values of

𝑐 (e.g., 𝑐 = 5) to prevent starvation while ensuring priority

for older requests at the head of the run queue. In Section

5.5, we will evaluate how different settings of 𝑐 affect the

system performance. This hybrid gFCFS-LPS policy provides

a good balance between reducing tail latencies and avoiding

starvation [13, 34, 43].

4 TAILCLIPPER IMPLEMENTATION
We now discuss the implementation of TailClipper and its

scheduling logic, which combines gFCFS and LPS to enforce

the ORF policy (§3.2). We have implemented a prototype of

TailClipper in C++ using 1200 SLOC, and the source code is

publicly available
1
.

Scheduling Framework TailClipper’s implementation is

tightly integrated with the Operating System (OS) scheduler,

using thread-level information to make decisions according

to the ORF policy. Our TailClipper prototype is implemented

using ghOSt, a Linux framework from Google that enables

the delegation of kernel scheduling decisions to userspace

applications [23]. We utilize ghOSt due to its comprehensive

and lightweight API that provides efficient mechanisms to

directly adjust and control the kernel’s scheduling policy. In

addition, ghOSt ensures a fair comparison of different poli-

cies, including baselines, since all strategies are subject to

the same environmental overheads, e.g., context switch, ker-

nel optimizations, etc. Applications process requests using

ghOSt threads, a wrapper around native Linux threads. The

scheduling of ghOSt threads is controlled by a user-defined

scheduler, i.e., TailClipper.

TailClipper Applications To implement ORF scheduling,

TailClipper requires visibility into the system arrival times

of requests. The system entry point (e.g., load balancer) en-

codes the request arrival time into the request header (e.g.,

HTTP header), and this information is propagated along the

microservice call chain. If multiple entry points exist, they

need to be time-synchronized to maintain a consistent global

arrival order. Another option is to use a logical clock to main-

tain the request arrival order across multiple entry points.

Importantly, other than the entry points, servers hosting

microservices do not need to be time-synchronized, as the

system arrival times in the request headers are sufficient to

locally order requests in system arrival order.

GATTagsWhen a request arrives at a microservice, TailClip-

per extracts the GAT from its header and processes it using

a ghOSt thread selected from a pool (thread pool model) or

created on the fly (thread-per-request model). TailClipper

utilizes ghOSt APIs to propagate its GAT to the ORF sched-

uler through a small memory buffer. After completing local

processing, the request may still need to undergo processing

at several other tiers to complete execution. To propagate

the GAT along the call chain sequence, all child requests

to downstream components inherit the GAT of the parent

request. The same GAT is encoded in the request header of

child requests so that the following tiers can adhere to the

ORF policy.

1
https://github.com/umassos/TailClipper

https://github.com/umassos/TailClipper

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

insert()

Min-heap
sorted by GAT

GAT()

requests

t10

t11
1

2

t9
pop()

insert()

4

3

t3t7t8 t8

Round-Robin
Queue of size 3

pop()5

System
entry point

(a) Tier-1

insert()6

t3

Min-heap
sorted by GAT

t1t2

Round-Robin
Queue of size 3

t4

remove()7

(b) Tier-2

Figure 4: Example of the scheduling logic of a two-tier distributed application using TailClipper. For simplicity,
each tier is deployed on a one-core server. TailClipper employs a min-heap and a round-robin queue to collectively
implement the ORF policy.

Algorithm 1 TailClipper’s ORF Scheduling Logic

Require: 𝑄𝑟𝑟 , 𝑄ℎ𝑒𝑎𝑝 // Round-robin queue and min-heap
1: procedure ScheduleRound()
2: for 𝑝 ∈ {𝐶𝑃𝑈𝑖𝑑𝑙𝑒 } do
3: 𝑝𝑖 ← 𝑄𝑟𝑟.pop() // Assign threads to idle CPUs
4: for Thread 𝑡, 𝑝 ∈ {𝐶𝑃𝑈𝑙𝑖𝑠𝑡 } do // Thread per CPU
5: if time(𝑡𝑖) > 𝐶𝑃𝑈𝑠𝑙𝑖𝑐𝑒 then
6: // 𝑡𝑖 exceeds time slice, reset its time and swap

with a new thread from the round-robin
queue

7: 𝑡𝑖 ← reset(𝑡𝑖)
8: 𝑄𝑟𝑟 ← 𝑄𝑟𝑟 ∪ 𝑡𝑖
9: 𝑝𝑖 ← 𝑄𝑟𝑟.pop()
10: if length(𝑄𝑟𝑟) < 𝑐 then
11: // Insert oldest thread from heap into round-robin

queue
12: 𝑡 ← 𝑄ℎ𝑒𝑎𝑝.pop()
13: 𝑄𝑟𝑟 ← 𝑄𝑟𝑟 ∪ t
14: else if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑄𝑟𝑟) > 𝑐 then
15: // Insert (𝑐 + 1)-th oldest thread from the round-

robin queue back into the heap
16: 𝑡 ← 𝑄𝑟𝑟.pop()
17: 𝑄ℎ𝑒𝑎𝑝 ← 𝑄ℎ𝑒𝑎𝑝 ∪ t

TailClipper ORF Scheduling To implement the Oldest

Request First scheduler using ghOSt, TailClipper employs

two primary data structures that collectively implement LPS

while also minimizing request reordering with global FCFS.

These structures consist of a binary min-heap and a round-

robin queue for efficient request scheduling. The round-robin

queue holds a subset of the c-th oldest requests that share

processing time, while the min-heap sorts all other requests

based on their GAT. TailClipper dynamically determines

which requests from the min-heap enter or exit the round-

robin queue, prioritizing older requests to prevent prolonged

queuing time while enforcing that only 𝑐 requests multiplex

the processor. Additionally, 𝑐 can be dynamically adjusted

by modifying the size of the round-robin queue, allowing

for flexible control over the degree of concurrency. In the

following, we outline the corresponding actions performed

by the scheduler when the kernel notifies it with a thread

update message. Here, references to threads denote ghOSt

threads, which are managed by TailClipper or other ghOSt

schedulers.

When TailClipper is notified of the creation of a new

thread, it decides whether to insert it into the round-robin

queue or the min-heap. TailClipper first compares the new

thread’s GAT with the youngest thread’s GAT in the round-

robin queue. If the new thread has a younger GAT, TailClip-

per inserts it into the min-heap since the new thread has a

lower priority. Otherwise, TailClipper inserts the new thread

into the round-robin queue to prioritize it, as it has one of

the 𝑐 youngest GATs. After adding the new thread to the

round-robin queue, the scheduler may need to remove one

thread from the CPU-sharing pool to ensure only 𝑐 threads

are allocated CPU time. If the pool size is larger than 𝑐 , Tail-

Clipper checks whether the youngest thread in the pool is

in the round-robin queue or currently running. If it is in the

queue, the scheduler removes it from the queue and inserts

it back into the min-heap. On the other hand, if the thread is

running, the scheduler temporarily allows a violation of the

𝑐 constraint. It waits for the youngest thread to be preempted

in the next scheduling round and then inserts it back into

the min-heap.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

As discussed in previous sections, a running thread may be

preempted by threads in a higher-priority scheduling class

or during I/O operations. When TailClipper is notified by the

kernel about a thread preemption, it resets the time slice of

the thread and adds the preempted thread back to the round-

robin queue since the request has the 𝑐-th oldest GAT. In the

case that a thread completes processing, TailClipper pops

the next thread in the round-robin queue and assigns it to

the available CPU. Subsequently, the scheduler retrieves the

request with the oldest GAT from the min-heap and inserts

it into the round-robin queue to maintain the 𝑐 constraint.

Scheduling round Algorithm 1 outlines TailClipper’s

scheduling logic. In each scheduling round, TailClipper first

assigns threads from the round-robin queue to idle CPUs

(Lines 2–3). Then, it implements limited processor sharing

by checking whether the running threads’ time slices exceed

the preemption interval (Line 4). If a thread’s slice expires,

TailClipper preempts it, resets the slice, and moves it to the

back of the queue (Lines 5–8). Subsequently, it schedules a

thread from the queue to that CPU (Line 9). After evaluating

the time slices of all running threads, TailClipper ensures

the size of the round-robin queue remains within 𝑐 . If the

pool size exceeds 𝑐 , it removes the youngest thread from the

queue and inserts it into the min-heap (Lines 10-13). Con-

versely, if the pool size is below 𝑐 , TailClipper inserts the

thread with the smallest GAT from the min-heap into the

round-robin queue (Lines 14-17).

Workflow Figure 4 provides a walk-through example of re-

quest scheduling in a two-tier application, with the workflow

stages denoted by numbered bullet points. For simplicity, sup-

pose each tier has one worker CPU. In tier-1 (Figure 4a), the

application first decodes the GAT from the request header,

creates a ghOSt thread to process the request, and propa-

gates the GAT of the thread down to TailClipper 1 . Upon

receiving the notification of a new thread creation from the

kernel, TailClipper compares the new thread’s GAT to the

largest GAT in the round-robin queue to check if it was re-

ordered. If it has a larger GAT, indicating that it’s younger

than all threads in the round-robin queue, TailClipper inserts

it into the min-heap 2 . Meanwhile, TailClipper performs

limited processor sharing by sharing the CPU time slice

among threads in the round-robin queue. When a thread’s

time slice ends, TailClipper preempts it, resets the slice, and

moves it to the back of the queue 3 . Then, it assigns the

next thread in the queue to the CPU for processing 4 . Once

a thread (e.g., 𝑡3) completes its processing at tier-1, the appli-

cation sends the subsequent request together with its GAT

is passed to tier-2. Concurrently, TailClipper removes the

thread with the smallest GAT from the min-heap and adds

it to the round-robin queue 5 to maintain a queue size of

𝑐 . Once the request arrives at tier-2, the scheduler performs

a similar procedure to check the new thread’s GAT. If the

thread has been reordered, TailClipper directly inserts the

new thread into the round-robin queue 6 . It then removes

the youngest thread from the queue and inserts it into the

min-heap if the updated queue size exceeds 𝑐 7 .

5 EXPERIMENTAL EVALUATION
This section presents the results of our experimental evalua-

tion. We compare TailClipper to two state-of-the-art sched-

uling policies – Shinjuku and Linux’s Completely Fair Sched-

uler – using a real application, a production cluster workload,

and a parameterized synthetic workload. In all workloads,

we use P99 latency as one of the primary metrics to evaluate

the performance of these scheduling policies.

5.1 Experimental Setup
Scheduling policies In addition to TailClipper, we em-

ploy two scheduling policies provided by ghOSt [20] for our

experiments. Specifically, we use ghOSt-provided implemen-

tations of Shinjuku and CFS to ensure all scheduling policies

share the same system and hardware optimization features

provided by the framework (§4). We denote these policies as

Shinjuku-gh andCFS-gh to distinguish them from their native

kernel implementations. Shinjuku-gh [25] employs a round-

robin scheduler with a centralized queue for all worker cores.

Both TailClipper and Shinjuku-gh use a centralized model

where a dedicated CPU is responsible for communicating

with the kernel and making scheduling decisions. CFS-gh is

based on Linux’s default scheduler [37]. It guarantees a mini-

mum CPU time for each request before potential preemption

within a predefined interval. Different from TailClipper and

Shinjuku-gh, CFS-gh uses a decentralized model in which

each CPU is responsible for the scheduling decisions of its

own thread pool. For TailClipper and Shinjuku-gh, the sched-

uler’s preemption interval is set to 30 𝜇sec, consistent with

previous work [23, 25]. For CFS-gh, we use the default 1 ms

minimum run time and 10 ms guarantee interval provided

in the original ghOSt implementation. We configure Tail-

Clipper to allow 6 requests to share the CPUs (i.e., 𝑐 = 6) by

default.

Infrastructure Our setup comprises five machines: one

client machine that hosts the workload generator, one server

that hosts the distributed system entry point, and three

servers each hosting one microservice tier. Each machine has

two 16-core Intel Xeon 2.1GHz processors, 64GB of DRAM,

and runs Linux kernel version 5.11 with ghOSt kernel (v70)

patches applied [20]. We use an open loop workload gen-

erator that supports both trace replay as well as synthetic

request generation. The entry point maintains an “infinite”

admission queue and limits the number of requests within

the distributed application to 200 to prevent system satura-

tion [9]. Upon receiving a request, the entry point uses the

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

current timestamp as the request’s GAT and encodes this

arrival information into the request header. Subsequently,

the entry point forwards the request to the first microser-

vice tier. Each microservice tier decodes the GAT from the

request header and processes the request using one thread,

which is managed by the userspace scheduler designated at

runtime. After that, a component of TailClipper on behalf of

the application sets the GAT for the corresponding thread in

a shared memory region accessible to the kernel to propagate

this information down to the scheduler. Upon completion,

the microservice forwards the request together with its GAT

in the request header to the subsequent microservice tier

over TCP. Finally, the request is returned along the original

path to the workload generator (client), where its latency is

measured. Each microservice is allocated three worker cores

by default.

WorkloadsWe use a parameterized synthetic workload, a

production cluster workload, and a real application to com-

pare TailClipper against state-of-the-art scheduling policies.

The synthetic workload generates requests that require

processing by three microservices sequentially, a typical

depth in real-world applications [32]. At the time of request

generation, the workload generator sets the request’s pro-

cessing demand (service time) for each tier by sampling from

a target distribution. Specifically
2
, we use a light-tailed ex-

ponential distribution with a mean service time of 10 ms, a

heavy-tailed log-normal distribution with a mean of 10 ms

and a standard deviation of 100 ms, and a trimodal distri-

bution with three modes (5 ms, 50 ms, and 100 ms) with an

overall mean of 10 ms. Each request executes an idle loop to

emulate the service time specified in the request.

The production cluster workload consists of the publicly

available Alibaba microservices workload trace collected

from their production clusters in 2021 [32]. The trace pro-

vides detailed runtime metrics of microservice requests, such

as the series of microservice calls of a request (i.e., call chain

sequence) and the response time of each microservice call.

We replay two common call chains by setting the reported

response times as request processing demands at the work-

load generator. Each call chain exhibits distinct service time

distributions across the tiers as shown in Figures 7(a) and 7(c).

This workload trace allows us to study how each scheduling

policy performs under real-world scenarios.

5.2 Real-world Application Performance
To assess the performance of the schedulers in a real-world

application, we build an image processing application using

2
Light-tailed distributions exhibit probabilities with tails that decay at an

exponential rate, while heavy-tailed distributions are not bound by expo-

nential decay.

0 100 200 300 400 500
Service time (ms)

0

10

20

30

Pr
ob

ab
ili

ty
 (%

)

Tier 1: μ= 18.3, σ= 20.8
Tier 2: μ= 246.6, σ= 65.6

Figure 5: Service time distributions of the image pre-
processing microservice and the image classification
microservice.

the opencv_dnn module in OpenCV 4.9 [7]. This applica-

tion comprises two microservices: (i) an image preprocessing

microservice and (ii) an image classification microservice.

The image preprocessing microservice invokes the OpenCV

median blur() [8] to reduce the noise in a given im-

age, using its output as the input of the subsequent tier.

Subsequently, the image classification microservice predicts

the image class using the pre-trained GoogLeNet network

from the Caffe model zoo [24]. Here, tail latencies arise from

varying input complexities. For example, the content of the

images can affect the processing demand during the median

blur operation, leading to variations in preprocessing time.

We sequentially processed inputs through the application to

measure latency at each stage and show the magnitude of

their tail latencies in Figure 5.

Each client transmits a randomly selected image of 1 MB

from a Flicker dataset [35] to the application entry point via

TCP. The entry point timestamps the request with the local

time to generate the GAT, encodes it into the request header,

and forwards the request to the first tier. Upon receiving

a request, the first tier decodes the request’s GAT, spawns

a thread to preprocess the image, and assigns the thread’s

GAT accordingly. The scheduler of the microservice then

schedules the threads based on its scheduling logic (e.g., Tail-

Clipper, CFS-gh, etc.). Once processing is completed at the

first tier, the intermediate result, along with the request’s

GAT, is transmitted to the second tier, where image classifica-

tion takes place in a similar workflow. Finally, the predicted

image class is returned to the client along the original path.

Figure 6 compares Shinjuku-gh, CFS-gh, and TailClipper

under varying image processing request loads. Figure 6a

shows the P99 latency using the three scheduling policies

as a function of requests per second (RPS). Due to the high

variance in processing demand at the first stage, requests

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

2 4 6 8 10
Request rate (RPS)

0

1000

2000

3000

P9
9

La
te

nc
y

(m
s)

0 2 4 6 8 10
Request rate (RPS)

0

25

50

75

100

R
eq

ue
st

 R
eo

rd
er

in
g

%

CFS-gh Shinjuku-gh TailClipper

(a) (b)

Figure 6: Comparing scheduling policies with (a) P99
latency and (b) request reordering % using image pro-
cessing pipeline workload.

may arrive out of order at the second stage, leading to pro-

longed queueing delays. By effectively minimizing request

reordering across all RPS values as shown in Figure 6b, Tail-

Clipper consistently outperforms CFS-gh and Shinjuku-gh

under moderate and high loads. Specifically, under moderate

load (RPS = 4), TailClipper reduces the P99 latency by up to

29% compared to Shinjuku-gh and CFS-gh. When the system

is near saturation (RPS = 7), TailClipper also outperforms

Shinjuku-gh and CFS-gh, achieving up to 24% lower P99

latency.

Key Takeaway When subject to real workloads, TailClip-
per outperforms state-of-the-art schedulers under moderate
and high loads by effectively accounting for request reorder-
ing effects.

5.3 Comparing TailClipper with Baselines
We then study the performance of the three scheduling poli-

cies under an existing cluster workload by replaying the

Alibaba microservice traces. Figure 7 shows the service time

distributions of the call chains and compares the P99 latency

of all policies.

Figure 7a presents the service time distribution of each

tier in the first call chain, where the first tier (Tier-1) approx-

imately follows a normal distribution with a mean of 9 ms,

the second tier (Tier-2) has a mean of 5 ms and a standard

deviation of 4 ms, and the third tier’s (Tier-3) service times

lie within 0.5 to 1 ms. For this call chain sequence, request

reordering occurs in both Tier-1 and Tier-2 as the process-

ing demands in both tiers vary among requests, potentially

resulting in prolonged queueing delays for older requests

in Tier-2 and Tier-3. Figure 7b shows that as TailClipper

prioritizes older requests by employing the ORF policy, it

0 10 20 30 40
Service time (ms)

0

20

40

60

Pr
ob

ab
ili

ty
 (%

)

Tier-1: μ= 9.3, σ= 5.6
Tier-2: μ= 5.0, σ= 4.0
Tier-3: μ= 0.7, σ= 0.5

100 200 300 400 500 600
Request rate (RPS)

0

250

500

750

1000

P9
9

La
te

nc
y

(m
s)

CFS-gh Shinjuku-gh TailClipper

(a) (b)

0 10 20 30 40
Service time (ms)

0

20

40

60

Pr
ob

ab
ili

ty
 (%

)

Tier-1: μ= 2.1, σ= 1.9
Tier-2: μ= 10.5, σ= 22.8
Tier-3: μ= 0.9, σ= 0.4

100 200 300 400 500 600
Request rate (RPS)

0

250

500

750

1000

P9
9

La
te

nc
y

(m
s)

(c) (d)

Figure 7: Comparing scheduling policies with P99 la-
tency (right) using traces of Alibaba microservice call
chains with different service time distributions (left):
(a)-(b): Call chain 1; (c)-(d): Call chain 2;

yields a 52% reduction in the P99 latency when compared to

Shinjuku-gh under a moderate load of 300 RPS.

Figures 7c and 7d present the second call chain, charac-

terized by low processing demands for Tier-1 and Tier-3,

while Tier-2 follows a bimodal distribution with the two

modes peaking at 4 ms and 35 ms. Although request reorder-

ing may occur in Tier-2, TailClipper demonstrates a smaller

performance improvement over Shinjuku-gh compared to

the previous call chain. This is due to the small variability

in processing demands at Tier-1, resulting in unnoticeable

delays observed by reordered requests at Tier-2. In addition,

processing demands in Tier-3 are low, which prevents any

queue buildup. While older requests may undergo reordering

after being processed by Tier-2, the impact on queuing delay

in Tier-3 remains minimal. Consequently, latency reduction

due to prioritizing old requests has little impact on overall

latency, and TailClipper only brings a 9% improvement under

low load (RPS = 200) compared to Shinjuku-gh.

Key Takeaway The higher the amount of reordering, the
more pronounced the effects on the tail latency. Under a
cluster workload, TailClipper demonstrates superior perfor-
mance compared to Shinjuku-gh and CFS-gh by minimizing
request reorderings across application components.

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

5.4 Impact of Light and Heavy-tailed
Workloads

Next, we study the performance of schedulers using syn-

thetic workloads with a more diverse and controlled set of

scenarios. Figure 8 compares TailClipper against Shinjuku-

gh and CFS-gh using four service time distributions – fixed,

light-tailed, heavy-tailed, and trimodal workloads. To as-

sess how effectively each scheduling policy prioritizes older

requests to mitigate tail latency, we report the request re-

ordering percentage observed in these experiments. This

metric represents the fraction of requests whose completion

order deviates from an “ideal” completion order, which as-

sumes unlimited resources across all tiers such that requests

would immediately execute upon arrival without any queu-

ing delay. Figure 8 presents the P99 latency across different

request rates for each workload in the left column and their

corresponding request reordering percentages in the right

column.

Fixed workload Figure 8a shows latency results obtained

for the fixed distribution when requests execute for 10 ms

at each tier. Importantly, Figure 8b illustrates that, although

service times remain constant and theoretically should not

cause request reordering, non-deterministic factors in the

operating system, such as background tasks, preempt threads

executing requests, can lead to request reordering. As a result,

both Shinjuku-gh and CFS-gh exhibit high request reorder-

ing percentages, and the P99 latency exceeds 1s when the

request rate exceeds 450 RPS. On the other hand, despite such

non-determinism, TailClipper demonstrates a more stable

control of the tail compared to Shinjuku-gh and CFS-gh even

when the system is nearing saturation, surpassing the one-

second mark only when the RPS exceeds 600. The improved

performance is attributed to TailClipper’s effective mitiga-

tion of request reordering percentage, which only reaches

up to 25% across all request rates.

Light- and Heavy-tailed workloads Figures 8c and 8d

report results for a light-tailed exponential distribution work-

load, which incurs additional request reordering compared

to the fixed service time workload. At moderate load (RPS =

400), TailClipper improves upon Shinjuku-gh by up to 81% in

P99 latency. By suppressing request reordering (Figure 8d),

TailClipper can also achieve the lowest P99 latency under

high loads (RPS > 400). Figure 8e shows the tail latencies

for a heavy-tailed log-normal distribution workload, where

requests with greater processing demands are more com-

mon. Consequently, when older requests are reordered, their

queuing delays might be prolonged because preceding re-

quests could be longer. In such scenarios, the performance

improvements from using TailClipper intensify as it prior-

itizes older requests. As a result, TailClipper surpasses the

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

P9
9

La
te

nc
y

(m
s)

0 200 400 600
Request rate (RPS)

0

25

50

75

100

R
eq

ue
st

 R
eo

rd
er

in
g

%

CFS-gh Shinjuku-gh TailClipper

(a) Fixed latency. (b) Fixed reordering.

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

P9
9

La
te

nc
y

(m
s)

0 200 400 600
Request rate (RPS)

0

25

50

75

100

R
eq

ue
st

 R
eo

rd
er

in
g

%

(c) Exp latency. (d) Exp reordering.

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

P9
9

La
te

nc
y

(m
s)

0 200 400 600
Request rate (RPS)

0

25

50

75

100

R
eq

ue
st

 R
eo

rd
er

in
g

%

(e) Log-normal latency. (f) Log-normal reordering.

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

P9
9

La
te

nc
y

(m
s)

0 200 400 600
Request rate (RPS)

0

25

50

75

100

R
eq

ue
st

 R
eo

rd
er

in
g

%

(g) Trimodal latency. (h) Trimodal reordering.

Figure 8: Comparing scheduling policies with P99 la-
tency (left) and request reordering % (right) using syn-
thetic workloads with different service time distribu-
tions: (a)-(b), Fixed(10); (c)-(d): Exp(10); (e)-(f): Log-
normal(10,100); (g)-(h): Trimodal(90-5,9-50,1-100).

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

M
ea

n
La

te
nc

y
(m

s)

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

M
ea

n
La

te
nc

y
(m

s)

CFS-gh Shinjuku-gh TailClipper

(a) Fixed (b) Exp

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

M
ea

n
La

te
nc

y
(m

s)

0 200 400 600
Request rate (RPS)

0

250

500

750

1000

M
ea

n
La

te
nc

y
(m

s)

(c) Log-normal (d) Trimodal

Figure 9: Mean latencies under different service time
distributions: (a) Fixed(10), (b) Exp(10), (c) Log-
normal(10,100), and (d) Trimodal(90-5,9-50,1-100).

1s tail latency target only when the request rate exceeds 400

RPS, sustaining 1.6× more load than that of Shinjuku-gh.

Trimodal workload In a more complex setting, Figures

8g and 8h show results for a trimodal distribution workload

consisting of requests with three possible processing demand

distributions at each tier. Such a workload mimics scenarios

in which the microservice threads have to perform different

functionalities, such as local cache lookup, data transforma-

tion, and I/O operations. With a more distinct set of request

lengths, where 10% of the requests have medium (50 ms) and

high (100 ms) processing demands, reordered requests are

more likely to experience long queueing delays (Figure 8h).

By prioritizing older requests while preventing starvation

through LPS, Figure 8g shows TailClipper reduces the P99

latency by 76% compared to Shinjuku-gh under a 1s target.

Mean latency and throughput Figure 9 reports the mean

latency of the three scheduling policies under a workload

with exponentially distributed service time. Overall, we ob-

serve that TailClipper exhibits the lowest mean latency under

high loads (RPS > 350), whereas CFS-gh exhibits the high-

est mean latency. Specifically, for the Exp workload shown

in Figure 9b, at RPS = 250, TailClipper can achieve up to

11% lower mean latency than Shinjuku-gh. At RPS = 350,

Fixed Exp
Log-no

rmalTrimod
al

Service time distribution

0
100
200
300
400
500

Th
ro

ug
hp

ut

CFS-gh Shinjuku-gh TailClipper

Figure 10: Systems throughputs under the correspond-
ing distributions.

TailClipper reduces mean latency by up to 54% compared to

Shinjuku-gh. Figure 10 compares the throughput achieved

under each service time distribution with a request rate of

600 RPS. We observe that TailClipper exhibits the highest

throughput for all workloads tested, 29% more compared to

Shinjuku-gh and up to 2.2× more compared to CFS-gh.

The improvements in mean latency and throughput under

high loads can be attributed to TailClipper’s limited CPU

sharing strategy, which contrasts with the unlimited shar-

ing strategy in Shinjuku-gh. In TailClipper, only a limited

number of the oldest requests share CPU time at any given

moment, while in Shinjuku-gh, all requests share CPU time

uniformly. As a result, Shinjuku-gh is more susceptible to

performance degradation, as a higher number of threads shar-

ing the CPU can lead to more context switches, particularly

under high job loads. Conversely, TailClipper’s approach

of limiting the number of requests sharing the CPUs helps

mitigate this overhead, resulting in lower mean latency and

higher throughput under high loads.

Long request-dominated workload Figure 11 exam-

ines how scheduling policies perform under a long request-

dominated workload. We use a bimodal workload where

99% of requests have a service time of 100 ms, while the

remaining 1% have a service time of 10 ms. Figure 11a shows

that TailClipper can achieve up to a 17% decrease in tail

latency compared to Shinjuku-gh under a moderate load

(RPS = 20). One potential drawback of employing TailClip-

per is that when TailClipper prioritizes a subset of the long

requests, short requests can be temporarily delayed behind

long-running requests, which results in starvation. Figure

11b focuses on requests with the least 1% of total service

time (i.e., short requests) to study this effect. We find that

although TailClipper increases P99 latency for short requests

under moderate loads (RPS < 36), this does not affect overall

P99 latency, which is predominantly influenced by the long

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

16 32 48 64
Request rate (RPS)

0.0

0.4

0.8

1.2

1.6

2.0

O
ve

ra
ll

 P
99

 L
at

en
cy

 (s
)

16 32 48 64
Request rate (RPS)

0.0

0.4

0.8

1.2

1.6

2.0

Sh
or

te
st

 1
%

 re
qu

es
ts

 P
99

 L
at

en
cy

 (s
)

CFS-gh Shinjuku-gh TailClipper

(a) (b)

Figure 11: Comparing scheduling policies with (a) over-
all P99 latency and (b) the P99 latency of requests with
the smallest 1% total service time under a long requests-
dominated workload– Bimodal(99-100,1-10).

200 400 600
Request rate (RPS)

0

250

500

750

1000

P9
9

La
te

nc
y

(m
s)

3 6 8 12
c

0

200

400

600

Th
ro

ug
hp

ut

c = 3 c = 6 c = 8 c = 12

(a) (b)

Figure 12: Comparing variations of TailClipper with
(a) P99 latency and (b) throughput under a multimodal
workload– Trimodal(90-5,10-50,1-100).

requests dominating the workload. Under high loads (RPS

> 44), TailClipper outperforms Shinjuku-gh for both overall

and short request-only P99 latency.

Key Takeaway Request reordering occurs even under sim-
ple scenarios with constant loads. TailClipper consistently
reduces the P99 latency over state-of-the-art scheduling poli-
cies across a wide range of workloads.

5.5 Performance and Sensitivity Analysis
Effect of limited processing sharing Figure 12 varies

the limited processing sharing size 𝑐 for a Trimodal(90-
5,10-50,1-100) workload. In Figure 12a, we observe that with

three different request lengths, setting 𝑐 to a value between

the number of cores and twice that number (4 to 8) can be

a rough rule of thumb, where 𝑐 = 8 results in the largest

throughput (Figure 12b). With a small value of 𝑐 , TailClipper

essentially operates as a global-FCFS scheduler, which can

potentially lead to request starvation and increase the tail

latency. Conversely, a large value of 𝑐 shifts TailClipper to-

ward a PS scheduler, where more requests share CPU time,

leading to prolonged queuing delays as older requests are

less prioritized. Exploring the optimal selection of 𝑐 for dif-

ferent workloads and hardware configurations is the subject

of future work.

Effect of min-heap size Figure 13a evaluates the schedul-
ing overhead associated with TailClipper. Specifically, we

analyze two key operations in TailClipper’s ORF schedul-

ing: Push() and Pop() of its min-heap. We initialize the

min-heap with varying sizes and study how its size impacts

the mean latency of each operation. For Push(), a random
item is inserted into the min-heap. Our measurements indi-

cate that for both operations, the overhead of Push() and

Pop() range from 0.4 to 0.6 microseconds and are minimal

compared to the workload service time. Furthermore, the

overheads only increase marginally with the min-heap size

even for large heaps of up to 1000 requests. It is also im-

portant to note that a native kernel implementation could

further minimize the overhead of the scheduling operations,

as will be discussed in Section 6.

Effect of number of tiers Figure 13b shows the perfor-

mance of the scheduling policies as the number of tiers varies

using an Exp(10) workload with low load (RPS = 100). The

result indicates that for all scheduling policies, the tail la-

tency of requests scales linearly with the increasing number

of tiers as the total service times of requests increase. Note

that the performance margin between TailClipper and the

other two scheduling policies increases with an increasing

number of tiers. This phenomenon can be attributed to the

higher probability of request reordering due to the presence

of more tiers and the variability in service times at each tier.

As a result, TailClipper outperforms the other policies by

leveraging global arrival times, leading to improved perfor-

mance.

Effect of number of cores Figure 13c assesses the scala-
bility of the scheduling policies in relation to the number

of worker CPUs. We observe that TailClipper and Shinjuku-

gh achieve linear scalability up to 3 cores, while CFS-gh

scales linearly. This is because for centralized schedulers,

the performance on additional cores is limited by the mes-

sage communication bottleneck between the dispatcher CPU

and the worker CPUs. We note that this messaging bottle-

neck largely stems from our choice of the userspace ghOSt

scheduling framework to implement TailClipper and can be

alleviated in two ways. First, the issue can be resolved by

incorporating additional dispatcher CPUs as shown in Figure

13c and also demonstrated in [25]. Second, any userspace

scheduler generally incurs greater scheduling overhead than

kernel schedulers, and a native in-kernel implementation

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

200 400 600 800 1000
Heap size

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

La
te

nc
y

(µ
s)

Push() Pop()

(a)

1 2 3 4 5 6 7 8 9 10
Components

0
50

100
150
200
250
300
350

P9
9

La
te

nc
y

(m
s)

2 4 6 8
Worker cores

0

300

600

900

1200

Th
ro

ug
hp

ut

CFS-gh
TailClipper

Shinjuku-gh
2 Dispatchers

(b) (c)

Figure 13: (a) Overhead measurements of TailClipper’s
two key scheduling operations. (b) Comparing sched-
uling policies with varying microservices tiers under
a request rate of 100 RPS using Exp(10) workload. (c)
Scheduling policies’ throughput as we scale the num-
ber of worker cores.

of TailClipper can improve scalability by using kernel data

structures and avoiding explicit message passing.

Key Takeaway Applications using TailClipper can scale
seamlessly with additional microservice tiers, higher loads,
and increased worker cores. In addition, TailClipper’s con-
figurable parameter enables performance fine-tuning in
different workloads.

6 DISCUSSION
Threading model TailClipper does not make assumptions

about the threading models used by applications. Beyond

the worker thread pool and thread-per-request models pre-

viously mentioned, TailClipper also supports applications

using other threading models, such as coroutines, where a

single thread handles multiple requests. Coroutines share the

same thread asynchronously, aiming to improve concurrency

throughput, especially with blocking I/O code. In such cases,

when context-switching from one coroutine to another, the

TailClipper application’s scheduler would call the ghOSt

API to update the ghOSt thread’s GAT to match the GAT

of the request currently being processed by the coroutine.

It is important to note that different threading models have

different target objectives. While thread-per-request offers

flexible parallelism and intuitive design patterns, coroutines

target computations with decomposable, pipelined tasks that

depend on each other. Although they may offer a lightweight

mechanism to optimize concurrency, some of these corou-

tine tasks may block and suspend while waiting, for example

due to database or other I/O operations, causing request re-

ordering. Using GAT, TailClipper can mitigate the effects of

request reordering regardless of the threading model used.

Native implementation TailClipper is currently imple-

mented as a userspace scheduler, and our evaluation with

millisecond-scale workloads demonstrates that the overhead

of ghOSt userspace scheduling does not compromise its su-

perior performance. However, in scenarios where the server

experiences a high volume of requests operating at a mi-

crosecond scale, the frequent communication overhead be-

tween the userspace scheduler and the kernel may impact

system performance. In such cases, a native in-kernel imple-

mentation of TailClipper may be preferred over our proof-

of-concept implementation. For example, we can use the

Linux external scheduler extension sched_ext to imple-

ment TailClipper’s ORF scheduler in a BPF program that

runs in kernel space. In this setup, a TailClipper userspace

component extracts the GAT from the request header and

propagates it down to the ORF scheduler using BPF maps.

These maps function as an efficient shared data structure

between TailClipper’s userspace component and the kernel-

space ORF scheduler. The ORF scheduler can then leverage

the GAT information in BPFmaps to schedule threads accord-

ingly. This native implementation will eliminate the need

for the kernel to notify the userspace scheduler of thread

updates, significantly reducing message overhead compared

to our proof-of-concept userspace implementation. Further-

more, it decreases the number of system calls required to

enforce scheduling decisions.

Application-level cluster schedulers Cluster computing

frameworks, such as Spark [51] and Apollo [6], are com-

monly deployed to optimize resource management and job

scheduling in distributed environments. TailClipper is de-

signed as a CPU scheduler and, as such, can interoperate with

these higher-level framework schedulers that already work

with the existing Linux scheduler. The current implementa-

tion of TailClipper uses ghOSt, which requires software to

be recompiled to link to the ghOSt library. However, if an

in-kernel implementation is used, recompilation is unneces-

sary. In both cases, TailClipper needs to run at the system

entry point for timestamping requests. When a high-level

framework scheduler enforces a specific job scheduling order,

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

TailClipper’s ability to address reordering is constrained by

those higher-level policies. Nonetheless, it can still provide

tail latency improvements at the job’s request level.

Microservices with KVS and Databases In web applica-

tions, microservices often utilize key-value stores (KVS) or

database systems for efficient data management. To integrate

TailClipper, these microservices can utilize ghOSt threads

to handle I/O operations, as demonstrated in [23]. However,

reordering may occur if a thread is blocked while waiting for

an I/O operation to complete, which can negatively impact

overall application performance. In such scenarios, TailClip-

per can mitigate the effects of such reordering.

7 RELATEDWORK
Kernel-bypass techniques have been commonly employed

to minimize operating system overheads and address tail

latency issues [1, 26, 38–40, 50]. While these approaches

have demonstrated effectiveness in reducing tail response

times, some studies have highlighted potential negative

impacts on collocated applications [36]. Replication tech-

niques [11, 19, 42, 46, 49], novel system softwares [1, 16, 39],

and new architectures [10, 22] have also been proposed to

reduce tail latencies. In particular, Shinjuku [25] is a single-

address space operating system that implements preemp-

tive scheduling at the microsecond scale to minimize tail

latencies and increase system throughput. Shenango [36] is

a system that reallocates cores across applications at fine

time scales. Arachne [40] implements a user-level scheduler

of threads with applications determining the appropriate

core allocation scheme based on load. RobinHood [3] dy-

namically reallocates cache resources to meet applications’

needs. Brownout [14] aims to minimize the tail by adjusting

the amount of work done by a request. Although these ap-

proaches have demonstrated effectiveness in reducing tail

latency, they are primarily designed for single systems and

do not explore the optimization potential for distributed re-

quest processing. TailClipper differs from the existing work

in that it employs a holistic approach that schedules requests

across application components, leveraging global arrival in-

formation to mitigate the effects of distributed processing.

In the literature, various percentiles have been used to

quantify tail response time reduction, such as P95 [14, 27, 30],

P99 [11, 21, 28] or P99.9 [12] percentiles. In contrast, Tail-

Clipper does not specifically aim at reducing a particular

percentile response time and focuses on optimizing the exe-

cution order of requests to minimize tail latency. TailClipper

can also seamlessly integrate with solutions addressing other

sources of performance variability, such as garbage collec-

tion, wake-up from low-energy states, and interference from

co-located workloads.

8 CONCLUSIONS
Minimizing tail latency has become a critical priority for en-

hancing the efficiency of online web services and distributed

applications. However, traditional approaches that optimize

latency independently at individual components overlook

distributed processing effects, such as request reordering,

which can lead to increased end-to-end tail latency. To ad-

dress these challenges, this paper introduced TailClipper,

a novel distributed scheduler designed to optimize request

scheduling globally across the system rather than locally

on individual components. TailClipper combines two query-

ing theoretical results to deliver robust latency performance

across various workloads. Our evaluations using cloud work-

load traces and a real-world application revealed that Tail-

Clipper can achieve tail latency reductions of up to 81%,

while also improving mean latency and throughput under

high loads compared to state-of-the-art scheduling policies.

ACKNOWLEDGMENTS
We thank our shepherd Sameh Elnikety and the reviewers for

their valuable comments. This research is supported by NSF

grants 2211302, 2211888, 2213636, 2105494, 23091241, the

Army Research Laboratory under Cooperative Agreement

W911NF-17-2-0196 (IoBT CRA), and VMWare. Ali-Eldin is

supported by SSF future research leaders grant.

REFERENCES
[1] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel

Grossman, Christos Kozyrakis, and Edouard Bugnion. 2017. The IX

Operating System: Combining Low Latency, High Throughput, and

Efficiency in a Protected Dataplane. ACM Transactions on Computer
Systems (TOCS) 34, 4 (2017), 11. https://doi.org/10.1145/2997641

[2] Mike Belshe. 2010. More Bandwidth Doesn’t Matter (Much). https:

//bit.ly/3RUykxs.

[3] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and

Mor Harchol-Balter. 2018. RobinHood: Tail Latency Aware Caching–

Dynamic Reallocation from Cache-Rich to Cache-Poor. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). 195–212. https://doi.org/10.5555/3291168.3291183

[4] Peter Bodík, Ishai Menache, Joseph (Seffi) Naor, and Jonathan

Yaniv. 2014. Brief Announcement: Deadline-Aware Scheduling of

Big-Data Processing Jobs. In SPAA. https://www.microsoft.com/en-

us/research/publication/brief-announcement-deadline-aware-

scheduling-of-big-data-processing-jobs/

[5] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.

1998. Queueing networks and Markov chains: modeling and performance
evaluation with computer science applications. Wiley-Interscience,

USA.

[6] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-

ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: scalable and

coordinated scheduling for cloud-scale computing. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementa-
tion (Broomfield, CO) (OSDI’14). USENIX Association, USA, 285–300.

[7] Gary Bradski, Adrian Kaehler, et al. 2000. OpenCV. Dr. Dobb’s journal
of software tools 3, 2 (2000).

https://doi.org/10.1145/2997641
https://bit.ly/3RUykxs
https://bit.ly/3RUykxs
https://doi.org/10.5555/3291168.3291183
https://www.microsoft.com/en-us/research/publication/brief-announcement-deadline-aware-scheduling-of-big-data-processing-jobs/
https://www.microsoft.com/en-us/research/publication/brief-announcement-deadline-aware-scheduling-of-big-data-processing-jobs/
https://www.microsoft.com/en-us/research/publication/brief-announcement-deadline-aware-scheduling-of-big-data-processing-jobs/

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

[8] Gary Bradski, Adrian Kaehler, et al. 2024. OpenCV - Smoothing Images.

https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html.

[9] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy

Zhu. 2021. Metastable Failures in Distributed Systems. In Proceedings
of the Workshop on Hot Topics in Operating Systems. 221–227. https:

//doi.org/10.1145/3458336.3465286

[10] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,

Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,

Puneet Kaur, Joo-Young Kim, et al. 2016. A Cloud-Scale Acceleration

Architecture. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Press, 7. https://doi.org/10.1109/MICRO.

2016.7783710

[11] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013). https://doi.org/10.1145/2408776.2408794

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s

Highly Available Key-value Store. SIGOPS Oper. Syst. Rev. 41, 6 (Oct.
2007). https://doi.org/10.1145/1323293.1294281

[13] Aldric Degorre and Oded Maler. 2008. On scheduling policies for

streams of structured jobs. In International Conference on Formal Mod-
eling and Analysis of Timed Systems. Springer, 141–154.

[14] David Desmeurs, Cristian Klein, Alessandro Vittorio Papadopoulos,

and Johan Tordsson. 2015. Event-Driven Application Brownout: Recon-

ciling High Utilization and Low Tail Response Times. In Cloud and Au-
tonomic Computing (ICCAC). https://doi.org/10.1109/ICCAC.2015.25

[15] Ahmed Eleliemy and Florina M Ciorba. 2021. A Resourceful Co-

ordination Approach for Multilevel Scheduling. arXiv preprint
arXiv:2103.05809 (2021).

[16] D. R. Engler, M. F. Kaashoek, and J. O’Toole. 1995. Exokernel: an

operating system architecture for application-level resource manage-

ment. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (Copper Mountain, Colorado, USA) (SOSP ’95). As-
sociation for Computing Machinery, New York, NY, USA, 251–266.

https://doi.org/10.1145/224056.224076

[17] Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux
journal 2004, 124 (2004), 5.

[18] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.

2020. Caladan: Mitigating Interference at Microsecond Timescales. In

Proceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation. 281–297. https://doi.org/10.5555/3488766.3488782

[19] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-

Balter, Esa Hyytiä, and Alan Scheller-Wolf. 2016. Queueing with

Redundant Requests: Exact Analysis. Queueing Systems 83, 3 (2016).
https://doi.org/10.1007/s11134-016-9485-y

[20] Google. [n. d.]. GhOSt: Fast & Flexible User-Space Delegation of Linux

Scheduling. https://github.com/google/ghost-userspace https://

github.com/google/ghost-userspace.

[21] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo

Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many: Incremental

Parallelism for Reducing Tail Latency in Interactive Services. In Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM. https://doi.org/10.1145/2694344.2694384

[22] Md E Haque, Yuxiong He, Sameh Elnikety, Thu D Nguyen, Ricardo

Bianchini, and Kathryn SMcKinley. 2017. Exploiting Heterogeneity for

Tail Latency and Energy Efficiency. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 625–

638. https://doi.org/10.1145/3123939.3123956

[23] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,

Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner,

and Christos Kozyrakis. 2021. GhOSt: Fast & Flexible User-Space

Delegation of Linux Scheduling. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles (Virtual Event, Germany)

(SOSP ’21). Association for Computing Machinery, New York, NY, USA,

588–604. https://doi.org/10.1145/3477132.3483542

[24] Yangqing Jia and Evan Shelhamer. 2024. Caffe Model Zoo. http:

//caffe.berkeleyvision.org/model_zoo.

[25] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,

David Mazieres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive

Scheduling for 𝜇second-scale Tail Latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 345–360.
https://doi.org/10.5555/3323234.3323264

[26] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker,

and Amin Vahdat. 2012. Chronos: Predictable Low Latency for Data

Center Applications. In Proceedings of the Third ACM Symposium on
Cloud Computing. ACM, 9. https://doi.org/10.1145/2391229.2391238

[27] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache

Sharing with Strict QoS for Latency-Critical Workloads. In ACM SIG-
PLAN Notices, Vol. 49. ACM, 729–742. https://doi.org/10.1145/2644865.

2541944

[28] Jinhan Kim, Sameh Elnikety, Yuxiong He, Seung-won Hwang, and

Shaolei Ren. 2013. QACO: Exploiting Partial Execution in Web Servers.

In Cloud and Autonomic Computing Conference (CAC). ACM, Article

12. https://doi.org/10.1145/2494621.2494636

[29] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils

Pohlmann. 2013. Online Controlled Experiments at Large Scale. In

Proceedings of the 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 1168–1176. https://doi.org/10.1145/

2487575.2488217

[30] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling High

Server Utilization and Sub-millisecond Quality-of-service. In Euro-
pean Conference on Computer Systems (EuroSys). ACM, Article 4.

https://doi.org/10.1145/2592798.2592821

[31] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.

2014. Tales of the Tail: Hardware, OS, and Application-level Sources of

Tail Latency. In Symposium on Cloud Computing (SoCC). ACM, Article

9. https://doi.org/10.1145/2670979.2670988

[32] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping

Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing

Microservice Dependency and Performance: Alibaba Trace Analysis.

In Proceedings of the ACM Symposium on Cloud Computing. 412–426.
https://doi.org/10.1145/3472883.3487003 https://github.com/alibaba/

clusterdata.

[33] Marissa Mayer. 2006. What Google Knows. Proceedings of the Third
Annual Web 2 (2006).

[34] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. 2010. Tail-Robust

Scheduling via Limited Processor Sharing. Performance Evaluation 67,

11 (2010), 978–995. https://doi.org/10.1016/j.peva.2010.08.012

[35] Samuel S. Ogden, Xiangnan Kong, and Tian Guo. 2021. PieSlicer: Dy-

namically Improving Response Time for Cloud-based CNN Inference.

In 12th ACM/SPEC International Conference on Performance Engineering.
Association for Computing Machinery (ACM).

[36] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for

Latency-Sensitive Datacenter Workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 361–378.
https://doi.org/10.5555/3323234.3323265

[37] Chandandeep Pabla. 2009. Completely Fair Scheduler. Linux Magazine
184 (2009).

[38] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind

Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2016. Arrakis:

The Operating System is the Control Plane. ACM Transactions on
Computer Systems (TOCS) 33, 4 (2016), 11. https://doi.org/doi/10.1145/

2812806

https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1109/ICCAC.2015.25
https://doi.org/10.1145/224056.224076
https://doi.org/10.5555/3488766.3488782
https://doi.org/10.1007/s11134-016-9485-y
https://github.com/google/ghost-userspace
https://github.com/google/ghost-userspace
https://github.com/google/ghost-userspace
https://doi.org/10.1145/2694344.2694384
https://doi.org/10.1145/3123939.3123956
https://doi.org/10.1145/3477132.3483542
http://caffe.berkeleyvision.org/model_zoo
http://caffe.berkeleyvision.org/model_zoo
https://doi.org/10.5555/3323234.3323264
https://doi.org/10.1145/2391229.2391238
https://doi.org/10.1145/2644865.2541944
https://doi.org/10.1145/2644865.2541944
https://doi.org/10.1145/2494621.2494636
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/2592798.2592821
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/3472883.3487003
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://doi.org/10.1016/j.peva.2010.08.012
https://doi.org/10.5555/3323234.3323265
https://doi.org/doi/10.1145/2812806
https://doi.org/doi/10.1145/2812806

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

[39] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:

Achieving Low Tail Latency for Microsecond-scale Networked Tasks.

In Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 325–341. https://doi.org/10.1145/3132747.3132780

[40] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-

hout. 2018. Arachne: Core-Aware ThreadManagement. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). 145–160. https://doi.org/10.5555/3291168.3291180

[41] Ziv Scully, Lucas van Kreveld, Onno Boxma, Jan-Pieter Dorsman, and

Adam Wierman. 2020. Characterizing Policies with Optimal Response

Time Tails under Heavy-Tailed Job Sizes. In Abstracts of the 2020 SIG-
METRICS/Performance Joint International Conference on Measurement
and Modeling of Computer Systems (Boston, MA, USA) (SIGMETRICS
’20). Association for Computing Machinery, New York, NY, USA, 35–36.

https://doi.org/10.1145/3393691.3394179

[42] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015.

C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica

Selection. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). 513–527. https://doi.org/10.5555/2789770.

2789806

[43] Don Towsley and François Baccelli. 1991. Comparisons of Service

Disciplines in a Tandem Queueing Network with Real Time Con-

straints. Operations Research Letters 10, 1 (1991), 49–55. https:

//doi.org/10.1016/0167-6377(91)90086-5

[44] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, and Pawan

Goyal. 2005. Dynamic provisioning of multi-tier internet applications.

In Second International Conference on Autonomic Computing (ICAC’05).
IEEE, 217–228.

[45] Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and TN Vi-

jaykumar. 2015. Timetrader: Exploiting Latency Tail to Save Dat-

acenter Energy for Online Search. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture. ACM, 585–597. https:

//doi.org/10.1145/2830772.2830779

[46] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine

Sherry, Sylvia Ratnasamy, and Scott Shenker. 2013. Low Latency

via Redundancy. In Proceedings of the ninth ACM conference on Emerg-
ing networking experiments and technologies. ACM, 283–294. https:

//doi.org/10.1145/2535372.2535392

[47] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Chien-

An Cho, Yuji Nomura, and Calton Pu. 2014. Lightning in the Cloud:

A Study of Very Short Bottlenecks on n-Tier Web Application Per-

formance. In Proceedings of USENIX Conference on Timely Results in
Operating Systems. https://doi.org/10.13140/2.1.1479.0402

[48] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.

2011. Better never than late: meeting deadlines in datacenter networks.

In Proceedings of the ACM SIGCOMM2011 Conference (Toronto, Ontario,
Canada) (SIGCOMM ’11). Association for Computing Machinery, New

York, NY, USA, 50–61. https://doi.org/10.1145/2018436.2018443

[49] Zhe Wu, Curtis Yu, and Harsha V Madhyastha. 2015. CosTLO: Cost-

Effective Redundancy for Lower Latency Variance on Cloud Storage

Services. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). 543–557. https://doi.org/10.5555/2789770.

2789808

[50] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert.

2016. StackMap: Low-Latency Networking with the OS Stack and

Dedicated NICs. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16). 43–56.

[51] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: cluster computing with working

sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing (Boston, MA) (HotCloud’10). USENIX Association, USA,

10.

[52] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek

Parwal, Timothy Sherwood, and Milind Chabbi. 2022. CRISP: Criti-

cal Path Analysis of Large-Scale Microservice Architectures. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). USENIX
Association, 655–672. https://www.usenix.org/conference/atc22/

presentation/zhang-zhizhou

https://doi.org/10.1145/3132747.3132780
https://doi.org/10.5555/3291168.3291180
https://doi.org/10.1145/3393691.3394179
https://doi.org/10.5555/2789770.2789806
https://doi.org/10.5555/2789770.2789806
https://doi.org/10.1016/0167-6377(91)90086-5
https://doi.org/10.1016/0167-6377(91)90086-5
https://doi.org/10.1145/2830772.2830779
https://doi.org/10.1145/2830772.2830779
https://doi.org/10.1145/2535372.2535392
https://doi.org/10.1145/2535372.2535392
https://doi.org/10.13140/2.1.1479.0402
https://doi.org/10.1145/2018436.2018443
https://doi.org/10.5555/2789770.2789808
https://doi.org/10.5555/2789770.2789808
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou

	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Web Applications
	2.2 Tail Latency Reduction
	2.3 Request Reordering
	2.4 Queuing Theory Foundations

	3 TailClipper Design
	3.1 Global Arrival Time Timestamping
	3.2 Oldest Request First (ORF) Scheduling

	4 TailClipper Implementation
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Real-world Application Performance
	5.3 Comparing TailClipper with Baselines
	5.4 Impact of Light and Heavy-tailed Workloads
	5.5 Performance and Sensitivity Analysis

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

