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ABSTRACT
Content Delivery Networks (CDNs) are Internet-scale sys-
tems that deliver streaming and web content to users from
many geographically distributed edge data centers. Since
large CDNs can comprise hundreds of thousands of servers
deployed in thousands of global data centers, they can con-
sume a large amount of energy for their operations and thus
are responsible for large amounts of Green House Gas (GHG)
emissions. As these networks scale to cope with increased
demand for bandwidth-intensive content, their emissions
are expected to rise further, making sustainable design and
operation an important goal for the future. Since different
geographic regions vary in the carbon intensity and cost
of their electricity supply, in this paper, we consider spatial
shifting as a key technique to jointly optimize the carbon
emissions and energy costs of a CDN. We present two forms
of shifting: spatial load shifting, which operates within the
time scale of minutes, and VM capacity shifting, which oper-
ates at a coarse time scale of days or weeks. The proposed
techniques jointly reduce carbon and electricity costs while
considering the performance impact of increased request
latency from such optimizations. Using real-world traces
from a large CDN and carbon intensity and energy prices
data from electric grids in different regions, we show that
increasing the latency by 60ms can reduce carbon emissions
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by up to 35.5%, 78.6%, and 61.7% across the US, Europe, and
worldwide, respectively. In addition, we show that capacity
shifting can increase carbon savings by up to 61.2%. Finally,
we analyze the benefits of spatial shifting and show that it
increases carbon savings from added solar energy by 68%
and 130% in the US and Europe, respectively.
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1 INTRODUCTION
Modern Internet services have long relied on globally-
deployed distributed systems to serve their users. With the
emergence of global-scale commercial cloud providers and
ever-increasing demand from application providers, the de-
mand for cloud computing has grown significantly over the
past two decades [4]. At the same time, the rise of latency
and bandwidth-sensitive Internet services has given rise to
edge services that use computing and storage resources at
the “edge” of the Internet to deploy latency-sensitive and
bandwidth-sensitive content. Internet content delivery is an

https://orcid.org/0000-0003-0263-0121
https://orcid.org/0000-0001-5765-8194
https://orcid.org/0000-0003-1722-4927
https://orcid.org/0000-0003-0558-6875
https://orcid.org/0000-0002-5435-1901
https://doi.org/10.1145/3698038.3698516
https://doi.org/10.1145/3698038.3698516
https://doi.org/10.1145/3698038.3698516


SoCC ’24, November 20–22, 2024, Redmond, WA, USA Jorge Murillo. et al.

early example of an edge service that delivers various types
of content, such as video and web content, from a distributed
network of edge servers. Analogous to hyperscaler cloud
platforms with a global footprint, large content delivery net-
works (CDNs) use edge platforms comprising hundreds of
thousands of servers distributed across the globe. For ex-
ample, the Akamai CDN comprises approximately 350,000
servers in 134 countries and over 1,300 networks world-
wide [3]. A vast amount of Internet traffic runs through
CDNs, with the Akamai CDN serving hundreds of billions
of web requests per day in the year 2022 [47] and 56.7% of
the 10000 most popular sites use a CDN [25, 38].
Since data centers account for nearly 3% of global car-

bon emissions, with this figure set to rise significantly in
the coming decade, the sustainability of cloud platforms has
received significant attention in recent years. Major cloud
providers have announced aggressive goals to become zero
carbon by 2030 [23, 42, 43]. Also, researchers have proposed
numerous techniques, such as incorporating renewable en-
ergy [31, 33] and making operations carbon-aware to reduce
the carbon footprint of cloud platforms. Since global CDNs
rival large-scale cloud platforms in their size and scale, the
sustainability of CDNs is also important, but has seen less
attention. While some early work has emphasized reducing
the energy footprint of CDNs [18, 31, 33, 35], these optimiza-
tions were focused on reducing the energy and operational
cost of these platforms and did not emphasize the problem
of sustainability and the reduction of the carbon footprint
of CDNs. It is worth noting that optimizing a computing
system’s carbon footprint entails more than reducing its en-
ergy use. Doing so involves increasing the use of low-carbon,
or carbon-free, energy which in turn reduces the system’s
carbon emissions [5]. However, carbon optimization tech-
niques developed for cloud platforms do not directly apply to
edge platforms such as Internet-scale CDNs for the following
reasons.
First, many recent approaches for reducing operational

carbon emissions of the cloud target batch workloads,
such as machine learning training and scientific applica-
tions [16, 44, 50]. Since the carbon intensity of electricity
supply varies over time, such approaches initially focused
on exploiting these variations through temporal workload
shifting, where the batch workload demand is shifted from
high to low carbon periods to reduce carbon consumption
[19, 20, 50]. Temporal workload shifting is unsuitable for
CDNs since CDN workloads are latency-sensitive interactive
services that must be serviced in real-time. Second, some re-
cent approaches have focused on the spatial shifting of batch
workloads, such as machine learning training to greener
cloud regions [9, 46]. While shifting workloads to a distant
cloud region to reduce carbon emissions is suitable for many
cloud batch workloads with less stringent completion time

requirements, these methods do not directly apply to CDN
workloads since they have strict performance requirements
due to their latency-sensitive nature. Specifically, any carbon-
aware CDN optimization must be cognizant of any potential
response time degradation from sending interactive requests
to CDN edge server locations far from the end user. Third,
since CDNs are geographically distributed on a global scale,
they incur significantly different operating costs, in terms of
electricity costs, across regions. Hence, it is imperative that
any carbon-aware optimization not cause an inadvertent
increase in electricity costs, requiring techniques to consider
both carbon and energy costs.

The carbon-aware CDN optimizations presented in the pa-
per are motivated by two insights. First, the carbon intensity
of electricity exhibits spatial variations that can be exploited
by a CDN. This is because energy generation at different
locations uses different mixes of generation sources such as
solar, hydro, wind, and coal, yielding spatial differences in
the carbon intensity [10, 49]. Importantly, these variations
should be exploited while also considering spatial differences
in electricity prices. Second, CDNs have built-in spatial re-
dundancy to serve the same content to users from several
edge locations. A CDN’s global load balancer uses this spatial
flexibility to serve content to users from the closest suitable
edge location. These two insights motivate using spatial load-
shifting methods to reduce a CDN’s carbon footprint. For
example, if two nearby edge data centers cache the same
content, but one has a lower carbon electricity supply than
the other, then serving users requesting content from the
greener location will incur lower carbon consumption at the
possible expense of a slightly higher user latency. So long
as the latency increase is small, adding such spatial carbon
awareness into the CDNs load balancer remains promising.
In this paper, we present new carbon-aware spatial shift-

ing approaches to enhance the sustainability of a global CDN
platform. Our shifting approach utilizes the knowledge of
the demand, carbon intensity, and energy costs to shift CDN
workloads across edge data centers. Specifically, we design
optimization-based carbon- and cost-aware approaches to
shift both load and capacity to greener regions while min-
imizing the latency impact on end users. In doing so, our
work asks the following questions: To what extent can the
carbon emissions of an Internet-scale CDN be reduced with
carbon-aware spatial load shifting, and what is the possible
latency increase? How can such load shifting jointly optimize
carbon emissions and operational electricity costs? How can
a CDN redistribute its capacity to greener regions to enhance
the efficacy of spatial load shifting? Finally, what benefits can
the use of local renewable energy bring, and how much load
shifting extend their benefits?

To address the above questions, our paper presents CDN-
Shifter that leverages different types of spatial shifting to
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decarbonize large CDNs. In designing and evaluating CDN-
Shifter, we make the following contributions:
• We formulate the carbon-aware load shifting for CDNs
as an optimization problem to jointly optimize carbon
emissions and electricity costs. We design a carbon-aware
load balancer that leverages the optimization problem to
reduce carbon footprint and energy costs by spatially shift-
ing workloads.

• While load shifting operates at a time scale of minutes,
we present a second form of shifting—capacity shifting–
that operates at a coarser time scale of days or weeks
to move CDN capacity to green regions with constrained
capacity. Such carbon-aware capacity shifting can improve
the efficacy of load-shifting methods.

• We use the real-world traces from Akamai CDN compris-
ing more than 2,600 geographically distributed edge sites
and carbon and energy costs across the globe to analyze the
benefits and limitations of carbon- and cost-aware shifting
as well as methods to further increase such savings.

• Our evaluation results demonstrate that for a 60ms latency
increase, carbon-aware spatial load balancing achieves up
to 35.5%, 78.6%, and 61.7% carbon savings across the US, Eu-
rope, and worldwide, respectively. In addition, we demon-
strate how capacity shifting increases carbon savings by
up to 61.2%. Finally, we analyze the benefits of combining
spatial shifting with adding renewables and how it can
increase carbon savings from added solar energy by 68%
and 130% across the US and Europe, respectively.

2 BACKGROUND
In this section, we provide a background on content deliv-
ery networks, the carbon intensity of the grid’s electricity,
electricity prices, and temporal and spatial shifting.

2.1 Content Delivery Networks (CDNs)
Content delivery networks are large-scale edge systems that
use a network of edge data centers to deliver content such
as web pages and video and audio streams. Commercial
CDNs, such as the Akamai CDN, are characterized by having
a global deployment consisting of thousands of edge data
centers and hundreds of thousands of servers deployed in
those locations, and a massive replication of services across
these data centers. [34]. To ensure high levels of cover-
age, CDNs utilize a mixture of dedicated data centers, co-
located data centers, and virtual clusters in public and private
clouds [15]. For instance, CDN traces from Akamai, a ma-
jor CDN provider with more than 113k servers worldwide,
show that 50% of the edge sites have less than ten servers,
indicating the breadth of their deployment options.
CDNs use a two-level approach to service incoming re-

quests. First, each incoming request is mapped by a global

12:00
AM

12:00
PM

12:00
AM

12:00
PM

12:00
AM

12:00
PM

12:00
AM

0

100

200

300

400

C
ar

bo
n 

In
te

ns
ity

(g
C

O
2e

q/
kW

h)

New York Virginia Texas California

Figure 1: Carbon Intensity for four Electricity Grids in
the US between February 10-12.

load-balancing algorithm to an edge data center location.
Next, a local load balancer maps the request to a specific
server within that data center, which then services that re-
quest using cached content. In many cases, the global load
balancer is embedded into the Domain Name Service (DNS)’s
lookup process, where the DNS maps the request to the near-
est or the most suitable edge data center, thereby performing
global load balancing. A key consideration is the perfor-
mance (e.g., latency) seen by interactive requests, which
usually means that requests should be serviced from nearby
data centers to provide low-latency service.

Similar to large cloud platforms that consume a significant
amount of energy to power and cool their servers, the large
number of edge data centers and servers comprising a CDN
can consume significant amounts of energy. Thus, similar to
cloud providers, CDNs have considered approaches to mini-
mize the carbon footprint and cost by utilizing spatial flexi-
bility, as content delivery applications are mostly stateless.
The global load balancer can exploit this flexibility to redirect
requests to edge locations with the greenest/cheapest energy
supply rather than to the nearest edge location available.
In doing so, CDNs have the potential to reduce both their
operations’ carbon emissions and costs.
Because both the output of renewable energy sources

varies through time (mainly due to weather conditions), the
electric grid will choose to activate other power sources to
match demand, which also varies over time.

2.2 Carbon Intensity of Electricity
Carbon Intensity is a metric used to describe the amount
of greenhouse gasses an electric grid releases to the at-
mosphere per unit of energy used/generated, generally de-
scribed in units of grams of CO2 equivalent per kilowatt-hour
(gCO2eq/kWh). This metric is determined by the mixture
of power generation sources that an electric grid uses at a
specific time. These sources can include coal, gas, and nu-
clear plants, which release substantial amounts of CO2 into
the atmosphere, as well as renewable sources such as hydro
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Figure 2: Energy Prices for four Electricity Grids in the
US between February 10-12.

plants, wind turbines, and solar panels, which are essen-
tially carbon-free. The electric grid will choose to activate
different power sources at different points in time because
of two factors: the power output of renewable sources is
intermittent (as they are subject to weather conditions), and
user demand for electricity varies with time. This results in
the carbon intensity of the electricity from a single grid to
fluctuate over time. Electricity grids in different geograph-
ical regions deploy different kinds and numbers of power
plants and have different weather patterns, which results
in different regions having entirely different carbon inten-
sity profiles. Figure 1 depicts carbon intensity measured in
g·CO2eq/kWh in four electricity grids in the US. As shown,
carbon intensity highly differs across locations and times as
the energy sources change. For example, California’s carbon
intensity follows the notable diurnal duck curve [6] due to
its high dependency on solar energy. In contrast, New York
and Virginia highly depend on gas and, hence, have more
stable carbon intensity. In addition, the figure shows that
carbon intensity in California differs temporally by up to
2.3× and spatially by up to 2.5×.

2.3 Electricity Prices
Matching energy supply and demand throughout the day
ensures the stability of the electricity grid. To do so, elec-
tricity grids often match supply and demand by running
an energy market where consumers can purchase energy
in advance (e.g., Day-ahead markets) or in real-time mar-
kets [22, 41]. Electricity grid and providers utilize multiple
pricing models. For example, large-scale (e.g., utility com-
panies or data centers) consumers often obtain PPAs and
buy energy from day-ahead markets to ensure stable prices.
In addition, they often utilize real-time, also called spot en-
ergy market, to compensate for the deficiency or sell excess
energy. In contrast, small consumers often depend on their
local utility company, which sets a fixed or a time-of-use
electricity price. Temporal and spatial variations in supply

and demand result in energy price differences across states
and throughout the day. For instance, the high availability of
almost cost-free renewables often decreases the energy price.
Similarly, when demand is low, e.g., during the night, electric-
ity prices significantly drop. Figure 2 shows an example of
day-ahead energy prices in four electricity grids within the
US. As shown, prices vary differently across locations and
times. For instance, most grids exhibit lower prices at night
as demand is usually lower. In contrast, California, which
highly relies on solar energy, depicts an opposite behavior,
where energy prices are often higher at night due to the
lack of solar energy production. CDNs have exploited spatial
differences in electricity prices across regions to reduce their
operational costs by moving loads to locations with lower
electricity prices [33, 37]. However, such optimizations did
not consider carbon costs, which is the focus of our work.

2.4 Carbon-aware Load Shifting
To exploit variations in energy’s carbon intensity, cloud
computing platforms have employed temporal and spatial
load-shifting techniques to reduce total carbon emissions.
Temporal workload shifting exploits the time-varying na-
ture of a grid’s carbon intensity by delaying workloads to
times when carbon intensity is lower. Temporal workload
shifting is generally employed with batch jobs, as they have
more permissible completion times and are generally less
latency-sensitive than interactive workloads [19–21, 46, 50].
Of course, due to the interactive nature of CDN requests,
temporal shifting is not well suited for CDN workloads.
In contrast to temporal shifting, spatial shifting involves

taking advantage of geographical variations in carbon in-
tensity. For instance, a spatial workload shifting strategy
for batch workloads could involve relocating tasks to re-
mote cloud regions with access to green energy sources [46].
Moreover, spatial shifting can also be applied to interactive
workloads like web services and video streaming by mov-
ing them to regions with greener energy sources [9, 30, 45].
However, shifting workloads to farther away locations often
introduces latency overheads.
Our work considers spatial workload shifting in the con-

text of a CDN’s geographic load shifting. Specifically, we
consider the extent to which the load balancer can shift
work to data centers with greener and cheaper energy while
also being aware of performance considerations. Such perfor-
mance considerations can limit the geographic radius where
requests from a certain region can be moved. In addition, pre-
vious research on carbon-aware load shifting for cloud work-
loads has only considered carbon optimizations. In the CDN
case, additional considerations arise. For example, moving
the workload load to lower carbon-intensity regions might
increase total operational costs, as regions with low carbon
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Figure 3: Carbon Intensity (a), Electricity Prices (b), and CDN Capacity (c) illustrate the diversity across US states.

intensity may have higher energy costs. This raises a three-
way trade-off between carbon emission, electricity cost, and
request latency that has not been addressed previously.
To our knowledge, there is only one work that has con-

sidered such a three-way trade-off for CDNs [12] through a
data placement and load-shifting heuristic. However, their
work assumed fixed carbon intensity and costs per region,
whereas carbon intensity varies continuously over time in
practice. Further, this work did not consider the impact of
local renewables and other forms of shifting, such as capacity
shifting, to reduce emissions and costs further. In Section 3,
we further motivate and differentiate our work by consider-
ing the conflict between the availability of green and cheap
electricity as well as opportunities and challenges of reduc-
ing global carbon emissions using real-world, carbon, cost,
and CDN traces.

2.5 Carbon-aware Capacity Shifting
Today’s CDNs use diverse types of infrastructure, the ma-
jority of which is distributed among co-located data centers
and virtual clusters in public and private clouds. For exam-
ple, 5G networks and cloud-based CDNs often rely on fully
virtualized resources [2, 15]. In scenarios where CDN servers
are virtualized, additional carbon-aware optimizations be-
come feasible. For example, load shifting to green regions
will naturally increase the utilization in those regions. At
high utilization levels, additional load shifting becomes chal-
lenging due to capacity constraints at those edge locations.
However, in the case of virtualized architectures, it is possible
to quickly provision additional virtual machines (and stor-
age) at edge locations to temporarily increase the capacity
of edge locations in green regions. Doing so can enable addi-
tional load shifting to reduce carbon emissions in a cost and
latency-aware manner. Our work considers such capacity-
shifting optimization to augment our load-shifting approach.
We note that other efforts have considered the notion of
capacity in cloud platforms [2, 13, 24, 39], but these efforts
did not consider limitations on moving capacities and their
size.

3 DESIGNING SUSTAINABLE CONTENT
DELIVERY NETWORKS: MOTIVATION

The size of CDNs highlights the magnitude of their energy
consumption and emissions. In this section, we motivate
the opportunities and challenges in cost- and carbon-aware
spatial shifting. We do so using real-world carbon, cost, and
CDN traces. See Section 5.1 for more details about the traces
and data preprocessing.
Figures 3a, and 3b presents the spatial diversity of grid-

supplied energy in the US in June 2021. Figure 3a shows
the variations in average carbon intensity across the US.1
As shown, carbon intensity exhibits a high level of hetero-
geneity where the ratio between the state with the greenest
energy (Washington) and brownest energy (Utah) is 10.6×.
In addition, the coefficient of variation (𝜎/𝜇) in carbon inten-
sity across the US is 0.3. Figure 3b shows energy retail prices
across the US during June 2021 for industrial consumers. Sim-
ilarly, energy prices exhibit a high level of variation, where
the ratio between Texas and California states is 3× with a co-
efficient of variation across all states of 0.46. The diversity in
both carbon intensity and costs motivates the opportunities
for spatial shifting. For example, shifting to greener regions
can drastically reduce carbon emissions.
Although individually, energy’s carbon intensity and

pricesmake the case for spatial shifting to decrease total oper-
ational carbon emissions or costs. Naively shifting workloads
based on carbon intensity or energy prices alone may lead to
large penalties. For example, if we consider requests fromCal-
ifornia and Utah, a carbon-aware policy will prioritize CDNs
in California, as energy is greener but will increase total
operational costs. In contrast, a cost-aware policy will prior-
itize CDNs in Utah, as energy is much cheaper, which will
increase total carbon emissions. Thus, load-shifting decisions
must consider the trade-off between carbon emissions and
costs. We detail the breadth of such conflict in Section 5.4.3.

Moreover, typical CDN load balancers often focus on min-
imizing latency by scheduling requests to the nearest CDN.

1Carbon Intensity for Alaska and Hawaii were not available.
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In contrast, a carbon-aware load balancer will consider trad-
ing latency increases for carbon savings. Figure 4 shows
the relation between latency overheads, flexibility (number
of allowed destinations), and average savings. As shown,
higher latency overheads correlate with increased destina-
tions (shifting opportunities) and increased savings. For ex-
ample, a 50ms latency overhead may enable 45% and 35%
carbon emissions and cost savings, respectively. While the
allowed latency overheads are application-specific, we envi-
sion CDNs being more tolerant to latency overheads than
latency-critical applications such as AR and VR. Nonetheless,
load-shifting techniques must consider CDNs performance
requirements and the trade-offs between savings and perfor-
mance.

While Figure 4 shows an ideal scenario where destination
locations have no capacity constraints. CDNs, like other data
centers, have capacity constraints, and their capacity and
utilization levels dictate the scheduling flexibility. Figure 5
depicts the utilization distribution among all edge sites. The
results show that CDNs are typically underutilized, with a
mean utilization of 17%. The results also show that CDNs
peak utilization barely reaches the full capacity of the CDN,
with an average of 37%. These low utilization rates depict
the potential of spatial shifting, where the load is shifted to
decrease operational costs.

CDN-Shifter

Load Shifting

Demand Capacity/Utilization
Information Service

Users

CDNs

Weather/Energy costs

Capacity 
Shifting

Load 
Balancer

5mins 1-3 yrs

Resource 
Manager

Figure 6: CDN-Shifter Design.

Utilization rate only conveys part of the limitations of spa-
tial shifting, where actual available capacity is also crucial
for shifting. Figure 3(c) shows the capacity variations across
the US states. As shown, the figure shows a high degree of
variation across states. For example, California, Texas, and
Virginia hold 34% of the total capacity in the US. This concen-
trated capacity leads to missing many opportunities to shift
load. For example, compared to Virginia, North Carolina has
greener and cheaper energy but negligible capacity. Simi-
larly, Washington State has cheaper and greener energy than
California but a much smaller capacity. The trends in CDN
distributions and energy profiles across US states motivate
possible ways to reduce operational carbon emissions and
costs by redistributing the capacity (i.e., capacity shifting) in
the most impactful way.
In addition to opportunities for shifting loads and capac-

ity, renewable energy plays a crucial role in reducing opera-
tional emissions. For instance, CDN operators can introduce
renewable energy-based solutions in areas with brown en-
ergy sources. However, as demonstrated in previous stud-
ies [1, 7], the effectiveness of renewable energy diminishes
significantly. This is due to the intermittent nature of most
renewable energy sources. For example, integrating solar
energy can meet the demand only during daytime hours.
Therefore, operators must combine their efforts by adding
renewables with load-shifting techniques to reduce their
total carbon emissions. The key takeaways are:

(1) Diversity across geographical locations offers the poten-
tial to decrease operational carbon emissions and costs.

(2) Load shifting decisions must consider the three-way
trade-off between latency, carbon emissions, and cost
while adhering to capacity constraints.

(3) The unused capacity across edge data centers can be
redistributed to further decrease carbon emissions.

(4) Load shifting is essential to increase the efficacy of added
renewables.
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4 CDN-SHIFTER DESIGN AND POLICIES
In this section, we will outline the architecture of CDN-
Shifter. Next, we introduce an optimization approach for
carbon- and cost-aware spatial workload shifting, where we
move the CDN load from green to brown regions. Finally,
we present a capacity-shifting approach that relocates the
provisioned capacity across data centers.

4.1 System Architecture
Figure 6 shows the architecture of CDN-Shifter where users
are grouped based on location. CDN servers are typically
hosted in dedicated, co-located, and public data centers,
where content is replicated according to the expected de-
mand. The CDN global load balancer maps requests to the
nearest CDN where content is available. CDN-Shifter ex-
tends the global load balancer by integrating data from dif-
ferent sources in order to enhance its placement decisions
but does not interfere with the load balancer operations.
CDN-Shifter’s scheduling decisions are integrated into the
global load balancer, where users are mapped to edge data
centers. In addition, CDNs often rely on resource managers,
which are responsible for operating the underlying infras-
tructure. CDN-Shifter extends the resource manager by im-
plementing the resource provisioning decisions. CDN-Shifter
implements three key components:
Information Service: CDN data centers often use a variety
of energy sources, including the local electricity grid and
renewable sources such as solar farms. Our system, CDN-
Shifter, incorporates an Information Service that monitors
carbon emissions and energy prices. The Information Service
relies on weather forecasts to assess the availability of re-
newable energy and computes the expected excess demand,
which will be satisfied using the local grid. Additionally,
it tracks the real-time carbon emissions and energy prices
from the electricity grid (using services such as Electrici-
tyMaps [10] and real-time energy markets). Lastly, our In-
formation Service forecasts the demand, usage, and capacity
of CDNs to identify opportunities for load shifting.
Load-Shifting: The load-shifting policy operates at a fast
time scale of minutes. It determines how load, based on
users’ locations, is mapped to CDN locations at fine-grained
granularity (e.g., five minutes). One way to implement such
a policy is to iterate over locations where the content is
available and the expected latency is lower than the SLO
(Service-Level Objective) threshold and forward requests to
the CDN with the cheapest energy. However, such a greedy
approach ignores global reductions. In Section 4.2, we formal-
ize the load-shifting optimization problem to minimize total
operational carbon emissions and costs while respecting the
latency and capacity constraints.

Table 1: Load Shifting Parameters and Decision Vari-
ables.

Notation Description

𝑁 𝑁 = {0, 1, ..., 𝑛} is a Set of CDN data centers.
𝑑𝑖 𝑗𝑡 Latency between data centers 𝑖 and 𝑗 at time 𝑡 .
𝑁 𝛿
𝑖𝑡

𝑁 𝛿
𝑖𝑡
⊆ 𝑁 Set of data centers with latency 𝑑𝑖 𝑗𝑡 ≤ 𝛿 , including 𝑖 .

𝑙𝑖𝑡 Incoming Load to data center 𝑖 at time 𝑡 .
𝑐𝑖𝑡 Resource capacity of data center 𝑖 at time 𝑡 .

𝑃𝑈𝐸𝑖 Power Usage Efficiency at data center 𝑖 .
𝐸𝑖 Energy consumption per unit load at data center 𝑖 .
𝐶𝐼𝑖𝑡 Data center 𝑖 energy’s carbon intensity at time 𝑡 .
𝑃𝑖𝑡 Data center 𝑖 energy’s price at time 𝑡 .
𝛼 Carbon-Cost balance factor.
𝜆 Latency overhead factor.
𝐿𝑖 𝑗𝑡 Load shifted from data cente 𝑖 to data cente 𝑗 .

where 𝑖, 𝑗 ∈ 𝑁

Capacity-Shifting: The capacity shifting policy operates
at slower time scales of days or weeks. It determines how
capacity should be opportunistically provisioned at green
CDN locations to maximize the benefits of the above load
shifting policy. In Section 4.3, we formalize the capacity-
shifting optimization problem to minimize total operational
carbon emissions and costs while respecting capacity and
demand constraints.

4.2 Carbon-aware Load Shifting
Consider a CDN network with 𝑁 edge data cente with their
geographic locations. In each time slot (e.g., five minutes),
each CDN location receives some load and has a finite re-
source capacity. We consider time-varying resource capacity
to include server failures and upgrades. To optimize the total
operational carbon emissions, the CDN’s global load bal-
ancer must consider the energy’s carbon intensity and price
to determine how much load to move from one edge data
cente to another to minimize the total operational emissions
while serving the total workload. We model this problem as
a linear optimization problem that needs to be solved by the
global load balancer in each time slot. Table 1 describes the
used input parameters and decision variables.
The objective can be written as a minimization problem

where CDN-Shifter seeks to minimize the total operational
emissions and costs of the entire system at each time step 𝑡 .

Minimize
𝑁∑︁
𝑖=1

∑︁
𝑗∈𝑁𝛿

𝑖𝑡

𝐿𝑖 𝑗𝑡 × 𝒞𝑖 (1)

𝒞𝑖 = 𝐸𝑖 × 𝑃𝑈𝐸𝑖 × (𝛼 𝐶𝐼𝑖𝑡 + (1 − 𝛼) 𝑃𝑖𝑡 )

s.t. ∑︁
𝑖∈𝑁𝛿

𝑗𝑡

𝐿𝑖 𝑗𝑡 ≤ 𝑐 𝑗𝑡 , ∀𝑗, 𝑡 (2)



SoCC ’24, November 20–22, 2024, Redmond, WA, USA Jorge Murillo. et al.∑︁
𝑗∈𝑁𝛿

𝑖𝑡

𝐿𝑖 𝑗𝑡 = 𝑙𝑖𝑡 , ∀𝑖, 𝑡 (3)

𝐿𝑖 𝑗𝑡 ≥ 0, ∀𝑖, 𝑗, 𝑡 (4)

where 𝒞𝑖 is the operational carbon emissions and mon-
etary costs at data center 𝑖 . 𝐸𝑖 , 𝑃𝑈𝐸𝑖 denotes the servers’
and data center’ energy efficiency. Note that although our
model assumes energy consumption is linear to the load
across data centers, incorporating energy importionality is
straightforward. 𝛼 ∈ [0, 1] is the carbon-cost balance fac-
tor, where 𝛼 = 1, yields a carbon-aware load shifting policy,
while 𝛼 = 0 yields a cost-aware load shifting policy. Observe
that any performance constraint in terms of the maximum
latency that can be used to shift workload and limit the la-
tency increase is captured using 𝑁 𝛿

𝑖𝑡
, which is the feasible

set of nearby locations for each edge data center 𝑖 subject to
a specific latency constraint 𝛿 , where we assume that 𝑑𝑖 𝑗𝑡 is
time variable to account for daily latency variations. Equa-
tion 2 guarantees that the incoming load to a data center
does not exceed its resource capacity. Equation 3 is the load
conservation constraint, which ensures that the outgoing
load from a data center should equal the initial load from the
data center. This includes the load from a data center to itself
(i.e., the load that stays at a data center). Finally, Equation 4
states that the load transfers should be non-negative.
While the above formulation yields feasible solutions, it

suffers from one problem: there are multiple ways to set
the load transfers 𝐿𝑖 𝑗𝑡 to get the same optimal objective,
each of which will result in a different value for the overall
latency increase in the system. Although this problem can
be solved using a two-step lexico-graphic optimization. We
chose to directly augment the objective function with the
latency overhead using a latency overhead penalty factor 𝜆,
as follows:

Minimize
𝑁∑︁
𝑖=1

(
∑︁
𝑗∈𝑁𝛿

𝑖

𝐿𝑖 𝑗𝑡 × 𝒞𝑖︸           ︷︷           ︸
Operational Costs

+ 𝜆
∑︁
𝑗∈𝑁𝛿

𝑖

𝐿𝑖 𝑗𝑡 × 𝑑𝑖 𝑗︸              ︷︷              ︸
Latency Penalty

) (5)

Finally, we note that CDN-Shifter solves this optimization
problem every time step, where energy’s carbon intensity
and price, as well as total load and capacity, can be accurately
estimated.

4.3 Carbon-aware Capacity Shifting
CDNs are composed of physical and virtual resources, and
load shifting, as explained earlier, utilizes the current set
of edge clusters of a CDN network to jointly optimize its
carbon and electricity costs. However, carbon savings are
limited by latency constraints as well as capacity constraints
at the locations with the greenest energy sources. In the
presence of load shifting, some edge locations (e.g., with

Table 2: Capacity Shifting Parameters and Decision
Variables.

Notation Description

𝑁 𝑁 = {0, 1, ..., 𝑛} is a Set of CDN data centers.
𝑑𝑖 𝑗 Latency between data centers 𝑖 and 𝑗

𝑁 𝛿
𝑖

𝑁 𝛿
𝑖
⊆ 𝑁 Set of data centers with latency 𝑑𝑖 𝑗 ≤ 𝛿 , including 𝑖 .

𝑙𝑖 Average load at data center 𝑖 .
𝑙𝑚𝑎𝑥
𝑖 Peak load at data center 𝑖 .
𝑐𝑖 Resource capacity of data center 𝑖 .
𝜓𝑖 𝜓𝑖 ≥ 1 is the capacity expansion factor of data center 𝑖 .

𝑃𝑈𝐸𝑖 Power Usage Efficiency at data center 𝑖 .
𝐸𝑖 Energy consumption per unit load at data center 𝑖 .
𝐶𝐼𝑖 Average carbon intensity at data center 𝑖 .
𝑃𝑖 Average energy price at data center 𝑖 .
𝛼 Carbon-Cost balance factor.
𝜆 Latency overhead factor.
𝛾 Capacity shifting factor.
𝐿𝑖 𝑗 Load Shifted from data center 𝑖 to data center 𝑗 .
𝐶𝑖 𝑗 Moved Capacity from data center 𝑖 to data center 𝑗 .

where 𝑖, 𝑗 ∈ 𝑁

high carbon or energy costs) may experience low utiliza-
tion, while green edge locations may become highly utilized,
leaving them unable to accept additional load from other
locations. To address such issues, our work employs capacity
shifting where virtual machine capacity can be intelligently
provisioned in greener, highly utilized regions and depro-
visioned from under-utilized regions to lower overall costs.
Such dynamic provisioning has long been studied for web-
based cloud applications, but those techniques are designed
for a single location, while our approach performs cross-site
provisioning across CDN edge locations. We formulate this
problem as an optimization problem considering future car-
bon intensity and prices, users’ demand, and infrastructure
(e.g., buildings and power) capacity. Table 2 describes the
used input parameters and decision variables. Note that we
implement the capacity migrations based on expected de-
mand and operational costs. The objective can be written as
a minimization problem where CDN-Shifter optimizes the
expected operational costs for an upcoming time horizon.

Minimize
𝑁∑︁
𝑖=1

∑︁
𝑗∈𝑁𝛿

𝑖

𝐿𝑖 𝑗 × 𝒞𝑖 (6)

𝒞𝑖 = 𝐸𝑖 × 𝑃𝑈𝐸𝑖 × (𝛼 𝐶𝐼𝑖 + (1 − 𝛼) 𝑃𝑖 )
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s.t. ∑︁
𝑗∈𝑁𝛿

𝑖

𝐿 𝑗𝑖 ≤
∑︁
𝑗∈𝑁

𝐶 𝑗𝑖 , ∀𝑖 (7)

𝑙𝑚𝑎𝑥
𝑖 ≤

∑︁
𝑗∈𝑁

𝐶 𝑗𝑖 , ∀𝑖 (8)∑︁
𝑗∈𝑁

𝐿𝑖 𝑗 = 𝑙𝑖 , ∀𝑖 (9)∑︁
𝑗∈𝑁

𝐶𝑖 𝑗 = 𝑐𝑖 , ∀𝑖 (10)∑︁
𝑗∈𝑁

𝐶 𝑗𝑖 ≤ 𝜓𝑖 𝑐𝑖 , ∀𝑖 (11)

𝐿𝑖 𝑗 ,𝐶𝑖 𝑗 ≥ 0 (12)

Similar to the previous section, 𝒞𝑖 is the operational costs
to include carbon emissions and monetary costs at data cen-
ter 𝑖 , 𝐸𝑖 , 𝑃𝑈𝐸𝑖 are server’s and data center’s energy efficiency.
𝛼 ∈ [0, 1] is the carbon-cost balance factor, and 𝑁 𝛿

𝑖
is used

to enforce latency constraints 𝛿 . Equation 7 motivates ca-
pacity migration to serve the newly shifted load. Equation 8
ensures that each data center can still serve its peak demand
without load shifting. Equation 9 is the load conservation
constraint, where all load must be met. Equation 10 enforces
capacity conservation, where total resources are maintained.
Equation 11 guarantees that the new data center’s capac-
ity does not surpass the power and infrastructure capacity
limits, where 𝜓𝑖 ≥ 1 is the available headroom for expan-
sions at data center 𝑖 . Equation 12 states that the load and
capacity transfers should be non-negative. Finally, to ensure
latency minimization and avoid unnecessary capacity shifts,
we augment Equation 6 with the latency overhead using a la-
tency overhead penalty factor 𝜆 and shifting overhead using
a capacity shifting overhead penalty factor 𝛾 as follows2:

Minimize
𝑁∑︁
𝑖=1

(
∑︁
𝑗∈𝑁𝛿

𝑖

𝐿𝑖 𝑗 × 𝒞𝑖︸         ︷︷         ︸
Operational Costs

+ 𝜆
∑︁
𝑗∈𝑁𝛿

𝑖

𝐿𝑖 𝑗 × 𝑑𝑖 𝑗︸             ︷︷             ︸
Latency Penalty

+𝛾
∑︁

𝑗∈𝑁,𝑗≠𝑖

𝐶𝑖 𝑗︸        ︷︷        ︸
Shift Penalty

).

(13)

5 EVALUATION
In this section, we evaluate the potential of spatial load shift-
ing, capacity shifting, and adding solar energy in content
delivery networks (CDNs). In doing so, we answer the fol-
lowing questions:
(1) What is the potential for reducing operational carbon

emissions and costs through spatial load shifting?
(2) What is the breadth of the trade-off between carbon re-

ductions and operational costs?
2𝛾 can also be used as a shifting cost across data centers.

Table 3: The location, number of hosts, and the total
number of sites within that location.

Carbon Intensity Energy Price
Zone Hosts (#) Sites (#) (g·CO2eq/kWh) (¢/kWh)

North America 64.3k 1327 438.90 8.46
Central America 0.2k 29 245.23 27.36
South America 2k 121 169.03 47.93
Europe 31.9k 585 304.24 10.22
Asia 12.7k 486 521.50 11.76
Oceania 2k 114 447.86 16.75
Africa 0.3k 29 713.12 21.08

Worldwide 113k 2691

Table 4: Parameters for generating solar energy traces
using PVWatts tool [8].

Parameter Value Unit

DC System Size 1 kW
Azimuth 180 (the northern hemisphere) deg

0 (the southern hemisphere) deg
Tilt | latitude | deg
System Losses 14.08 %
Module Type Standard
Array Type Fixed (open rack)

(3) How can capacity shifting further reduce operational
emissions or costs?

(4) How does load shifting amplify the benefits of added
renewables?

Next, we outline our real-world datasets, experimental
setup, and evaluation metrics.

5.1 Real-world Datasets
Our evaluation setup uses real-world CDN, carbon intensity,
energy prices, and solar energy traces described below.

CDN Trace. We perform experiments using a month-long
content delivery network (CDN) dataset from the Akamai
CDN provider. The trace contains information about 113𝑘
servers geographically distributed across 2691 locations
worldwide. It provides the number of servers, capacity of
servers, and load information for all the sites at a five-minute
granularity. The meta information for each site includes the
site’s latitude, longitude, city, state, and country.

Carbon Intensity Trace. Weuse carbon intensity data from
ElectricityMaps [10]. The traces provide hourly average car-
bon intensity information, measured in grams of carbon
dioxide equivalent per kilowatt-hour (g·CO2eq/kWh), for
123 zones worldwide for 2021.
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Electricity Prices Trace. We aggregate the electricity price
data from multiple sources to include the US Department
of Energy [48] and Ember [11] for 2021. The traces pro-
vide monthly average electricity prices, measured in ¢/kWh,
across different states and countries.

Latency Traces. We utilize latency traces from WonderNet-
work [51] which provides round-trip latency between 250
location between July 19th and 20th, 2020.

Solar Trace. We gather solar energy dataset using the
PVWatts tool from NREL [8]. It consists of hourly solar en-
ergy generation data for a typical meteorological year based
on the selected location. We size an individual solar panel
for 1kW DC power ratings and scale it to estimate the output
of bigger solar panels. Table 4 lists the values of parameters
used for the PVWatts trace. We use the default values for all
the other parameters.

5.2 Experimental Setup
In our experiments, since different data sources’ granulari-
ties and lengths do not match, we implement the following
processing steps:
(1) We repeat the monthly CDN trace for each month to

construct a year-long trace, which enabled us to capture
the effects of seasonal variations in carbon intensity and
costs.

(2) We consolidate all data centers inside a region (e.g., a
state or a country) into a larger data center with the
sums of the loads and capacities of the composing data
centers and assign them the same carbon intensity and
cost. This allowed us to solve the linear program and
compute the savings much faster.

(3) We assume that the latency between the clients and their
original destinations in the Akamai trace has negligible
latency, which enables us to focus on the latency over-
heads from load shifting.

(4) We assume that data does not change for traces with
limited granularity. For example, in the US and Europe,
hourly carbon intensity traces are available. At the same
time, only monthly energy prices are available. Lastly,
we only had a single value for the entire year for some
locations in Africa and Asia.

(5) For regions with missing latency data, we use average
latency from regions with similar distances from [51].
We implement CDN-Shifter load shifting and capacity

shifting policies using Google OR-Tools [36] across different
settings. In our load-shifting experiments, we feed our pa-
rameters to the solver at a five-minute step. In contrast, we
use average quantities within all traces in capacity-shifting
experiments. We note that in all experiments, we use latency
overhead factor 𝜆 and capacity shifting factor 𝛾 of 0.1 and

0.01, respectively. Finally, we evaluate the effect of added
renewable energy based on total yearly consumption, where
we scale the DC system size to match the entire annual con-
sumption in the data center where it is installed.

5.3 Evaluation Metrics
We use three metrics to quantify the benefits and overheads
of load and capacity shifting.

Carbon Savings (%). The percentage reduction in opera-
tional carbon emissions after spatial load shifting compared
to the baseline of no workload migration. We note that nega-
tive carbon savings denote cases where emissions increased.

Cost Savings (%). The percentage reduction in operational
monetary costs after spatial load shifting compared to the
baseline of no workload migration. We note that negative
cost savings denote cases where monetary costs increased.

Latency Increase (ms). The increase in latency after spa-
tial load shifting compared to the baseline of no workload
migration.

5.4 Effect of Spatial Load Shifting
We start by evaluating the potential of spatial load-shifting
within the status quo of the content delivery network, i.e.,
without capacity shifting or adding renewable. The poten-
tial of spatial load shifting depends on three factors: The
availability of spare capacity in the network to migrate your
workload around, the variations in the carbon intensity and
energy prices of various geographically distributed CDN
sites, and the latency overheads that users can tolerate. We
start by evaluating carbon-aware or cost-aware load shifting
individually, and then we look at the trade-offs and methods
to co-optimize all operational costs.

5.4.1 Carbon-aware Load Shifting.
The diversity in carbon intensity across edge data cen-
ters demonstrates the potential of carbon savings by mov-
ing workload from high-carbon locations to low-carbon
ones. Figure 7 depicts the carbon savings and latency in-
creases when applying carbon-aware load shifting (by using
𝛼 = 1 in Equation 5) within the USA and Europe. We eval-
uate the carbon savings under different latency constraints
between 10ms and 100ms. We also add a scenario where the
load can be migrated anywhere by removing the latency con-
straints (i.e., 𝑁 𝛿

𝑖
= 𝑁 ). As shown, small increases in latency

limit yields significant carbon savings. For instance, a 30ms
limit yields 15.9%, 42.6%, and 29.1% savings across the US,
Europe, and worldwide, respectively.

Figure 7 also highlights the potential savings across the
US (see Figure 7a) and Europe (see Figure 7b), where carbon-
aware load shifting is able to produce more carbon savings
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Figure 7: Carbon savings (%) and latency increases (ms) in the (a) USA and (b) Europe using carbon-aware spatial
load shifting.
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Figure 8: Normalized load w.r.t. carbon-agnostic across
latency limits using carbon-aware load shifting in the
US.

in Europe, where maximum carbon savings are 35.5% and
78.6%, and 61.7% for US, Europe, and worldwide, respectively.
Moreover, the figure shows that carbon savings typically
plateau around a latency limit of 60ms, where further in-
creases in the latency limit do not yield further savings. This
occurs as all the greenest edge data centers with available
capacity have been filled.

Figure 8 illustrate how carbon-aware load shifting alters
demand in the US across different latency limits. The figure
shows four representative regions that represent different
load changes. With an increased latency limit, locations with
green energy sources receive more load, while locations with
brown regions receive less load. For example, Michigan, a re-
gion with an average carbon intensity of 562 g·CO2eq/kWh,
offloads its entire load to other locations starting at a latency
limit of 10ms. In contrast, New York receives up to 4.6×
its original load. Moreover, some states exhibit nonuniform
changes in assigned load. For instance, the total load in Ore-
gon’s CDNs decreases and then increases with increases in
the latency limit. This is because, with a small latency over-
head, Oregon offloads its load toWashington as it has greener
energy. Then, once the latency limit increases enough, data

1.0 1.5 2.0 2.5 3.0
Normalized Emissions of FORTE w.r.t. CDN-Shifter
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Figure 9: Comparing carbon emissions of CDN-Shifter
with FORTE [12].

centers in Oregon start receiving loads from other brown
locations. Finally, the graph highlights an example where the
capacity limits the load changes. For example, Washington,
the state with the greenest energy, only receives 3.6× its
maximum load. Later, we show how capacity shifting can
alleviate such limitations, further increasing carbon savings.

Finally, we evaluate CDN-Shifter’s ability to leverage real-
time carbon intensity variations across edge data centers to
minimize carbon emissions. Figure 9 compares the year long
performance of CDN-Shifter to FORTE [12], a state-of-the-
art policy that uses static carbon intensity values per region.
The figure shows that due to the use of static carbon intensity
values FORTE [12] emissions can emit 6% and 3% on average
and up to 2.8× and 1.5× more carbon than CDN-Shifter in
the worst case for US and Europe, respectively.
Key Takeaway: Carbon-aware spatial load shifting can result
in significant carbon savings of up to 15.9%, 42.6%, and 29.1%
for a latency limit of 30ms across the US, Europe, andworldwide,
respectively. A latency limit of 60ms yields 97.6% and 94.3%
of the maximum carbon savings across the US and Europe,
respectively.
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Figure 10: Cost savings (%) and latency increases (ms) in the (a) US and (b) Europe using cost-aware spatial load
shifting.
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Figure 11: The conflict between carbon-aware and cost-
aware shifting in the US and Europe with a latency
limit of 60ms.

5.4.2 Cost-aware Load Shifting.
In addition to carbon savings, spatial shifting can be ex-
ploited to reduce operational costs. Figure 10 show the cost
savings and latency increases when using cost-aware load
shifting (i.e., setting 𝛼 = 0 in Equation 5). Similar to the ear-
lier section, we evaluate cost savings under different latency
limits and add the scenario with unlimited latency. As ex-
pected, cost-aware load shifting derives substantial benefits.
For instance, a 30ms limit yields 6.1%, 27%, and 17.1% cost
savings across the US, Europe, and worldwide, respectively.
Moreover, cost savings do not increase after a latency limit of
60ms, achieving 27.1% and 34.4% within the US and Europe,
respectively.
Key Takeaway: Cost-aware spatial load shifting can result in
significant cost savings. A latency limit of 60ms yields 27.1%,
93.9%, and 17.1% cost savings across the US, Europe, and world-
wide, respectively.

5.4.3 Carbon- and Cost-aware Load Shifting.
In previous sections, we show how carbon- and cost-aware
load shifting can yield significant benefits. One issue with
focusing on a single metric (either carbon or cost) is that
locations with low carbon intensity may have high energy
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Figure 12: Effect of 𝛼 on carbon and cost savings in the
US, across different latency limits.
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Figure 13: Effect of 𝛼 on carbon and cost savings in
Europe, across different latency limits.

prices and vice-versa (see Figure 3). Figure 11 demonstrate
the breadth of the conflict whenwe focus on a singlemetric in
the US and Europe, with a 60ms latency. As shown, focusing
on a single metric hurts or squanders saving opportunities
in the other metric. For example, in Europe, carbon-aware
shifting increases operational costs by 16.4%. In addition,
although cost-aware scheduling does not increase carbon
emissions, it highly limits the possible savings. For example,
for a latency limit of 60ms, cost-aware scheduling reduces
carbon savings by 71% and 80% across the US and Europe.
To navigate the trade-off between operational emissions

and costs, we explore the effect of 𝛼 , the carbon-cost balance
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factor, in the load-shifting decisions in Equation 5. Figures 12
and 13 demonstrate the effect of 𝛼 in balancing the carbon
and cost savings across the US and Europe. As shown, 𝛼
values between 0.05 and 0.1 depict the balance point where
carbon and cost savings are similar. The reason for these
small values of 𝛼 is the difference in magnitude in energy’s
carbon intensity and costs (See Figure 1 and Figure 2). Fig-
ures 12a and 13a depict carbon and cost savings for a latency
limit of 30ms, where 𝛼 = 0.05 balances both savings and
achieves carbon and cost savings of 29.1% and 23.8% for the
US and 40.24% and 26.5% for Europe, respectively.- Finally,
it is worth noting that across latency limits, both the car-
bon and cost savings and the trade-offs between carbon and
cost matter, affecting the balance points. For instance, in
Europe, the balance points can lead to carbon and cost sav-
ings of ∼20% and ∼35% for latency limits of 30ms and 60ms,
respectively.
Key Takeaway: By carefully choosing 𝛼 , joint optimization
of carbon and cost for load shifting can yield good reductions
for both metrics. Specifically, for 𝛼 ranging from 0.05 to 0.1,
CDN-Shifter can achieve carbon and cost savings of 29.1% and
23.8% for the US and 40.24% and 26.5% for Europe, respectively.

5.5 Effect of Capacity Shifting
When comparing the possible carbon savings (Figure 4) and
actual carbon savings (Figure 7a) in the US, it’s evident that
actual savings for the same latency limits are much smaller.
For example, for a latency limit of 100ms, actual savings
are smaller by 56.6%. The reason for this is that although
some regions hold the potential to reduce carbon emissions,
actual load shifting is often bounded by the capacity limits
in locations where energy is cheap and green. In this section,
we evaluate the potential of capacity shifting in increasing
carbon and cost reductions.

Figure 14 shows the effect of carbon-aware capacity shift-
ing across the US (i.e., setting 𝛼 = 1 in Equation 13). The
figure compares the carbon savings of load shifting with
capacity and load shifting using an expansion factor𝜓 of 1.5,
i.e., capacity can increase by a maximum of 50%. As shown,
as the latency limit increases, the role of capacity shifting
becomes more apparent. For example, capacity shifting can
increment carbon savings by 18.4% and 26.4% for latency
limits of 30ms and 60ms, respectively. We note that similar
to load shifting, capacity shifting also exhibits diminishing
returns.
Table 5 shows how capacity is shifted between regions

and the final capacity in the US for the capacity shifting
experiment in Figure 14. The table lists examples of areas
that gained capacity, such as Washington and New York,
where their final capacity increased by 50%. The table also
shows examples of places that distributed some of its capacity.

10 20 30 40 50 60 70 80 90 100 INF
Latency Limit (ms)

0

10

20

30

40

50

C
ar

bo
n 

Sa
vi

ng
s (

%
)

Load Shifting Capacity Shifting + Load Shifting

Figure 14: Carbon-aware capacity shifting in the USA
using𝜓=1.5.

Table 5: Capacity shifting examples between sources
(rows) and destinations (columns) from Figure 14.∗

State California Colorado New York Washington

California 76.6% - 12.4% 9.2%
Colorado - 48.3% 51.6% -
New York - - 100% -

Washington - - - 100%

Final Capacity (%) 76.6% 48.3% 150% 150%
∗ Numbers do not match up as we omitted some sources and destinations.
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Figure 15: The effect of capacity expansion factor for
carbon savings in the US across latency limits.

For instance, California has given out 23.4% of its capacity
to regions such as New York and Washington. It is worth
noting that, although California has lower carbon intensity
than New York, it gave away some of its capacity as it was
over-provisioned, with a peak utilization of 30.5%.
To understand the full potential of capacity shifting, Fig-

ure 15 evaluates the effect of the capacity expansion factor in
the US, using latency limits of 30ms and 60ms. As shown, in-
crements in capacity expansions can increase carbon savings
by up to 61.2%. Capacity expansions yield diminishing re-
turns as locations start being short on the capacity they will
have to distribute. Moreover, results show that the latency
limit may reduce the benefits of spatial shifting, whereas
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Figure 16: Benefits of adding solar energy with and
without spatial shifting in the US and Europe.

the results show that expanding the capacity is only effec-
tive when the latency limit is high enough. Finally, we note
that cost-aware capacity shifting and capacity shifting in Eu-
rope exhibit similar performance but are omitted for space
limitations.
Key Takeaway: Capacity shifting overcomes the limitations
of load shifting by relocating excess capacity to regions with
low carbon and energy costs. In doing so, capacity shifting can
increase carbon savings by up to 61.2%.

5.6 Effect of adding Solar Energy
In the previous section, we considered scenarios where CDNs
are only subject to the grid’s carbon intensity. However,
cloud and CDN providers often use local renewables to re-
duce operational emissions and costs. In this section, we
evaluate the efficacy of adding renewables, specifically solar
energy, and how load shifting can amplify the benefits of
the added renewables. To model the use of locally available
solar energy at each data center during the load shifting op-
timization, we modified the CDN dataset as follows: at each
timeslot 𝑡 , for each data center, we calculated how much of
its compute capacity could be powered by the available local
solar energy. We call this capacity 𝐶𝑠𝑜𝑙𝑎𝑟 , while the remain-
ing capacity of the data center is 𝐶𝑔𝑟𝑖𝑑 . We then split the
data center into two “virtual” data centers with the exact
geographic location, with𝐶𝑠𝑜𝑙𝑎𝑟 and𝐶𝑔𝑟𝑖𝑑 as their respective
capacities. The virtual data center powered by solar power
has a carbon intensity and energy price of 0. In contrast, the
virtual data center powered by the grid has the same carbon
intensity and energy cost as the original data center. We also
split the load of the original data center into two “virtual”
data centers. Finally, we run the load-shifting optimization
model explained previously. This setup allows us to shift
load to data centers with more solar power than they need
to power their local load.

Figure 16 shows the carbon saving from solar energy with
and without carbon-aware spatial load shifting. We increase
the amount of solar power as a fraction of the annual energy

consumption, where we scale the deployed DC system to
cover the expected yearly demand. Overall, adding local solar
capacity without load shifting can reduce carbon emissions
by up to 40.4% and 37.3% across the US and Europe. However,
the benefits of added solar energy quickly reduce after 40%.
For instance, compared to matching 40% of the power con-
sumption with renewables, increasing the solar matching
to 100% only adds an extra 7.7% and 8.9% carbon savings
for the US and Europe, respectively. One reason for this is
that the added solar energy doesn’t reduce the emissions
of workloads running at night. Another reason is that with
increased provisioned solar, the possibility of having excess
energy than demand also increases.

One solution to increase the benefits of added renewables
is augmenting them with spatial shifting, which can sig-
nificantly increase carbon savings. For example, in the US,
the maximum carbon saving with added renewables can be
achieved or surpassed when combining a latency limit of
30ms and onlymatching 20% of the total energy consumption
by solar. The figure shows that when mixing renewable en-
ergy with solar energy, carbon savings can reach up to 67.9%
and 85.7% across the US and Europe, respectively. Finally,
we note that adding renewables has a similar effect on cost
savings, yet it doesn’t eliminate the carbon-cost trade-off.
Key Takeaway: Adding renewable energy falls short in reduc-
ing the carbon emissions of CDNs. However, load shifting can
proliferate the benefits of renewables by 68% and 130% across
the US and Europe.

5.7 Discussion
We have shown the benefits of CDN-Shifter in minimiz-
ing carbon emissions of global CDN networks. Next, we
highlight other benefits of the proposed methods and their
limitations.

Generalizbility of CDN-Shifter. Load and capacity shift-
ing are widely applicable to other interactive services. One
particular scenario that has gained a lot of attention recently
is serving AI models. Similar to CDN applications, AI re-
quests are primarily stateless and can be freely shifted. In
addition, their high computational costs and loose latency
requirements make them a perfect candidate for spatial load
shifting. Next, when discussing capacity shifting, we used an
abstract cloud model and focused on the benefits of transfer-
ring virtual resource capacity between locations to increase
the available capacity at locations with greener energy re-
sources. However, capacity shifting is generally applicable
to physical resources, and hyper-scale data centers could uti-
lize it to promote the usage of resources at locations where
energy is greener or cheaper. One way to implement this
is to extend the lifetime of old and error-prone servers by
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moving them to locations with greener energy and offering
them at discounted prices [27].

Limitations of CDN-Shifter. The use of spatial load shift-
ing can significantly reduce carbon emissions. However, our
approach has limitations. Firstly, we assumed that the re-
quired content is available at the new location. This assump-
tion is based on the extensive scale of CDN networks and
their ability to distribute popular content quickly, but we
did not explicitly consider the associated overheads. Sec-
ondly, we assumed that all requests are uniform and subject
to the same latency constraints. However, it is feasible to
enhance our model to accommodate different request types
and latency requirements, and we leave such evaluation to
future work. Thirdly, we only considered emissions and costs
from energy consumption by edge data centers. However,
data transmission has nonnegligible energy consumption
and costs. Lastly, we did not consider the cost of incorpo-
rating renewable energy sources and methods to optimize
this process, a complementary issue that has been studied
elsewhere [17, 18].

6 RELATEDWORK
Earlier work on load shifting have focused on either re-
ducing operational costs [14, 18, 28, 29, 33, 35, 37, 38], re-
ducing energy consumption [31, 32, 40], or carbon emis-
sions [14, 18, 28, 29]. For example, Mathew et al. [33] and
Goiri et al. [14] utilize the flexibility of delay-tolerant batch
workloads to execute them when renewable energy is avail-
able or when grid-supplied energy is cheaper. In contrast to
temporal shifting, which does not suit the latency require-
ments of interactive workloads, spatial load shifting has seen
more popularity in reducing operational costs and emissions.
For instance, Qureshi et al. [37] showed how the differences
in energy prices across states could be used to decrease total
operational costs. Moreover, several authors have explored
methods to reduce energy consumption and operational
costs. For instance, Mathew et al. [31] explored methods
to power down idle servers to save energy while adhering to
Service Level Availability (SLA) constraints. Lastly, several
authors have explored renewable energy’s role in reducing
carbon emissions in addition to cost and energy savings. For
instance, Liu et al. [29] have explored how renewable-aware
load shifting can reduce carbon emissions and operational
costs.
Previous work on renewable-aware load shifting often

assumes that grid-supplied energy is always brown or fixed.
However, more recent research has highlighted the diversity
in energy’s carbon intensity across locations and times [9, 19–
21, 30, 45, 46]. For example, Dodge et al. [9] have utilized
spatial load shifting to decrease carbon emissions of AI work-
loads while respecting SLA constraints. In contrast to earlier

work, we consider the three-way trade-off between load
shifting and implemented large-scale evaluations of spatial
load shifting to highlight the potential of such techniques.
Perhaps the most relevant work was done by Gao et al. [12],
where they highlighted the trade-off. However, they focused
on data placement and load shifting, and their evaluation
assumed fixed carbon intensity and costs. In contrast, we
evaluate the impact of real-time carbon intensity variations.
Additionally, we consider new methods to further reduce
emissions and costs, such as capacity shifting and adding
local renewables.

In addition to load shifting, previous research has consid-
ered the effect of resource planning decisions, where cloud
or CDN providers can select regions for their new resources
based on energy’s cost or carbon intensity [13, 24, 26, 39].
In contrast to previous research, we focus on scenarios that
do not require adding new resources by redistributing them.
Finally, in addition to load shifting, that magnifies the bene-
fits of the added renewables. Researchers have explored the
utilization of batteries to save excess energy and use it when
renewable energy is not available or insufficient [14, 35]. In
this work, we only consider load shifting. Mixing batteries
and load-shifting and evaluating how it affects the three-way
carbon, cost, and latency trade-off is left for future research.

7 CONCLUSIONS
In this paper, we studied the potential for using spatial work-
load shifting using geographic load and capacity shifting to
reduce the carbon emissions and energy costs of large-scale
CDNs. We formulate these problems as optimization prob-
lems, considering the three-way trade-off between carbon
emissions, cost, and latency while adhering to capacity con-
straints. We evaluate the proposed method using real-world
CDN workloads, carbon intensity, and energy prices from
various electricity grids. Our results show the potential of
load shifting in decarbonizing CDNs. Specifically, we show
that increasing the latency by 60ms can reduce carbon emis-
sions by up to 35.5%, 78.6%, and 61.7% across the US, Europe,
and worldwide, respectively. In addition, we show that ca-
pacity shifting can increase carbon savings by up to 61.2%.
Finally, we analyze the benefits of spatial shifting and show
that it increases carbon savings from added solar energy by
68% and 130% in the US and Europe, respectively.
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