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Abstract

Numerous edge applications that rely on video analytics demand
precise, low-latency processing of multiple video streams from
cameras. When these cameras are mobile, such as when mounted
on a car or a robot, the processing load on the shared edge GPU
can vary considerably. Provisioning the edge with GPUs for the
worst-case load can be expensive and, for many applications, not
feasible.

In this paper, we introduce RAVAS, a Real-time Adaptive stream
Video Analytics System that enables efficient edge GPU sharing
for processing streams from various mobile cameras. RAVAS uses
Q-Learning to choose between a set of Deep Neural Network (DNN)
models with varying accuracy and processing requirements based
on the current GPU utilization and workload. RAVAS employs an
innovative resource allocation strategy to mitigate interference
during concurrent GPU execution. Compared to state-of-the-art
approaches, our results show that RAVAS incurs 57% less compute
overhead, achieves 41% improvement in latency, and 43% savings
in total GPU usage for a single video stream. Processing multiple
concurrent video streams results in up to 99% and 40% reductions
in latency and overall GPU usage, respectively, while meeting the
accuracy constraints.
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1 Introduction

Millions of video cameras are deployed worldwide for diverse appli-
cations, ranging from urban mobility to factory automation. Real-
time video analytics is central to these applications. DNNs models,
such as Yolo [1], ResNet [2], and EfficientNet [3], are widely used
for object detection and classification, with an increasing focus on
edge deployment [4-6]. Edge video analytics allows the analysis
to be done with less—or no—data transmission to remote clouds
while also increasing the privacy of computations.

Running video analytics at the edge presents challenges regard-
ing GPU deployment constraints compared to large-scale cloud
data centers. Edge GPUs span a range of computational power and
capabilities, from devices like NVIDIA Jetson Nanos [7] to high-
performance GPUs like the A100s [8]. A single-edge server can
process from one video stream to tens of streams, depending on
the GPU capacity and the running application. Therefore, many
edge GPUs need to multiplex the processing of video feeds from
multiple cameras to ensure efficiency.

Multiplexing carries additional challenges for many edge appli-
cations where the number of video streams can vary due to mobility.
Two examples of such applications are intelligent traffic systems,
where vehicles offload video processing to the edge, and edge-
robotics and drone-based applications, where mobile robots/drones
offload video processing from on-device cameras to the edge for pro-
cessing. Generally, for many applications, video workload can vary
because of mobility, and hence, the number of streams that need
processing on an edge GPU can change with time as the number
of cameras close to the edge GPUs change, e.g., with moving edge
robots or autonomous vehicles with cameras [9]. Another source
of variability in the workloads comes from applications where
on-camera or cross-video filtration techniques are used [10, 11],
varying the number of frames sent to the edge-GPU for processing.
Hence, the total number of frames that require processing on the
GPU at any given time can vary drastically.

Motivation. Existing approaches in video analytics often prioritize
either application-level aspects to meet Quality-of-Service (QoS) re-
quirements or system-level techniques to optimize resource utiliza-
tion [6, 12-14]. However, these approaches overlook the complex
interplay between application requirements, system constraints,
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and the specific challenges posed by concurrent video feeds on the
same GPU server.

Solely focusing on application-level needs can result in excessive
resource allocation, leading to resource inefficiency [15]. Moreover,
concurrent processing of multiple video feeds on the same GPU
server can introduce inference interference, causing performance
degradation [16]. Conversely, an exclusive emphasis on system-
level resource management may not adequately address the unique
demands of concurrent video feeds. The dynamic nature of video
workloads, coupled with the varying capabilities of GPUs, necessi-
tates a more comprehensive approach.

To overcome these challenges, an integrated approach that con-
siders both application-level requirements and system-level con-
straints is required, considering the impact of concurrent video
feeds on the same GPU server. Combining adaptive model selection
for DNN-based video processing, efficient resource allocation, and
strategies to mitigate inference interference, we can optimize GPU
utilization, maintain accuracy, and minimize latency for concurrent
video analytics on GPU-enabled edge servers.

The solution aims to select a model for each stream video feed to
meet certain accuracy where the accuracy of the inference is what
we measure and care about. On the other side, there are multiple
video feeds that need to be fit and processed concurrently on the
same GPU resource together. In this case, the resource allocator
comes into play. If all models selected for feeds can be served and
fit on the resource, the resource allocator mechanism is straight-
forward and allocates what they asked. Otherwise, the resource
allocator may be unable to fit models selected for the resource
sometimes. In this case, the resource allocator employs a dependent
mechanism to revise the decision made for individual stream video
feeds based on the constrained resource capacity.

The model selection focuses on the accuracy of models to choose
the lightest model that provides certain accuracy. At the same time,
resource allocation cares more about how it fits multiple concurrent
workloads on a single GPU resource.

Model selection is input-dependent, and the decision is made
based on the situation of a camera. By keeping model selection
separate from resource allocation, Ravas enables the system to adapt
more effectively to changing conditions. The resource allocation
execution does not have to consider all possible and dependent
model selections for all cameras together to make a dependent
decision. In contrast, most of the time, the models independently
selected for each camera can be fit on the GPU, and there is no
need to make extensive decision-making. At the same time, it is
a bottleneck to make the system scalable and make the decision-
making process heavier.

A dependent model selection fails to work in such a situation
where the action would be a list of models selected for all cameras,
and considering the feedback of such model must demonstrate the
state of all cameras. Such problem modeling with Reinforcement
Learning (RL) would not be feasible with many states and actions.
Our contribution. In this paper, we introduce RAVAS, a real-time
adaptive stream video analytics system that enables a higher level
of multiplexing on edge GPUs with variable video workloads on
the edge. This work aims to enable efficient optimization of object
detection in an edge environment by also considering the overhead
costs of re-configuration. RAVAS deploys a number of DNN infer-
ence models on edge GPUs, selecting the best model with the lowest
resource requirement and inference time that fulfills the accuracy
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requirement of an application while adapting to variations in video
workloads. Our main contributions to this work are:

e We propose an optimization algorithm based on RL to au-
tomatically determine a configuration that optimizes GPU
resource usage and enhances the performance of an edge-
based video analytics system.

e We present a resource allocation strategy to mitigate infer-
ence interference when concurrently executing video feeds
on the same GPU.

o We evaluate our system with concurrent videos on multiple
different GPUs with varying capabilities and show the effi-
cacy in the system when other State-of-the-Art techniques
fail.

2 Background

Edge Computing. Edge computing aims to provide applications
with lower latency compared to the back-end clouds by utilizing
a set of small and distributed computing resources near the end
users. Video analytics applications are especially suited to run on
edge resources as they decrease the bandwidth and latency with-
out transferring large amounts of video data across the Internet
to remote cloud data centers. Instead, data can be processed at
nearby edge resources. The main downside of offloading compu-
tations to the edge is the constrained resources available, unlike
large-scale cloud environment [17]. This calls for an efficient edge
resource management that addresses the edge capacity limitation
and application performance requirements.

Configuration Management for Video Analytics on Edge.
Many existing techniques in the literature focus on optimizing
the limited edge compute capacity by adjusting computation pa-
rameters such as input resolution and DNN model to achieve the
lightest configuration that meets their constraints. Using a lighter
model reduces the computational demands, whereas models with
more network layers or higher input resolutions provide higher ac-
curacy at the cost of increased computational complexity. Therefore,
it is crucial to carefully select the appropriate model that minimizes
resource usage while still meeting accuracy requirements. It should
be noted that the accuracy of each model depends significantly
on the content of the inferencing frame. Thus, lighter models can
achieve high accuracy for frames with clear and sharp content.

Furthermore, maximizing concurrency on the constrained GPU
compute capacity at the edge is essential to enhance GPU utiliza-
tion. GPU multiplexing allows the sharing of the GPU among mul-
tiple applications to achieve concurrency [18]. Spatial multiplexing
is a technique that divides the GPU among different models, en-
abling them to execute simultaneously. However, this approach can
introduce application interference and potentially reduce overall
throughput [19]. To mitigate interference and prevent GPU oversub-
scription, controlled spatial sharing allocates a specific percentage
of the GPU compute capacity (i.e., GPU%) to each application, en-
suring a particular number of GPU streaming multiprocessors (SMs)
are allocated [18].

In the literature, extensive research has been conducted on se-
lecting optimal DNN configurations for inference to meet the per-
formance requirements of various applications [6, 20-22]. Addition-
ally, efforts have been made to enhance GPU utilization through
techniques like GPU multiplexing [18, 23]. RAVAS selects the most
optimized model that satisfies latency and accuracy constraints in



this context. Furthermore, it incorporates an interference-aware
resource allocator to utilize the GPU compute capacity effectively.
Why RAVAS? In our survey of the field, we found two main short-
comings. First, the problem with variable frame-load on edge GPUs
has been mostly overlooked. While some existing solutions can
handle this problem [6], as we show later in our evaluations, many
of these solutions have a substantial overhead. Existing work does
not consider the overhead of their solution and its effect on other
co-located processes in the edge servers. RAVAS uses a lightweight
RL-based model selection algorithm that selects the best object
detection model out of a set of limited object detection models to
meet the accuracy constraint with minimum compute requirements,
allowing for much higher levels of concurrency on an Edge GPU.
In building the actual system, we designed RAVAS to be modu-
lar, scalable, and compatible with multiple network transportation
protocols, camera models, and video encoding/decoding formats.

In our evaluations, we compare RAVAS to both video analyt-
ics systems, including AWStream [13] and OTIF [12], and model
selection baselines, which encompass Chameleon [6], BLEU [24],
and LW [25]. AWStream [13], is a stream processing system that
optimizes the trade-off between accuracy and bandwidth consump-
tion for wide-area network streaming analytics. It combines offline
and online training to create an accurate model that captures the
relationship between application accuracy and bandwidth consump-
tion, adapting to network conditions. OTIF [12], is another relevant
system that focuses on tuning machine learning pipelines. It in-
troduces an object detection and tracking architecture with five
tunable parameters, enabling a balance between speed and accuracy
specific to a given video dataset. Our evaluations show how the
above two shortcomings severely affect the performance of these
three systems. Chameleon [6] focuses on fast object detection and
employs a profiling window to identify the best configuration. This
configuration consists of a selected inference model, frames-per-
second rate, and frame resolution, with the objective of meeting
accuracy requirements while minimizing compute demands within
a predefined interval. BLEU [24] iteratively builds a model from a
set of DNNs based on accuracy or a hybrid approach. It starts with
the most optimal DNN, adds those with the best improvement in
the chosen metric, and terminates when accuracy improvement
falls below a specified threshold, ensuring a balance between accu-
racy and runtime efficiency. This approach adaptively selects DNN
models, making it suitable for real-world applications. LW [25]
employs profiling and adaptation to enhance model selection and
configuration, minimizing accuracy degradation and improving
resource utilization—a pivotal baseline in our research.

3 Problem Statement

We define a model library consisting of a set of pre-selected infer-
ence models. The indexes of the models range from 1 (representing
the lightest model) to g (representing the heaviest model), with the
g'" index corresponding to the most accurate model. The computa-
tional requirements of the models vary, with g being the model that
demands the most resources. The set of video feeds is represented
as v € V, where the video feed v undergoes dynamic variations
in the number of frames requiring processing over time due to
camera-specific frame filtration techniques.

The frame captured from video feed v at time ¢, denoted as f;°,
undergoes processing by a single assigned model instance. The
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model instance analyzes the frame and generates a set of detected
objects as output. Each output object consists of an object class, a
bounding box representing the location of the object within the
frame, and a confidence score indicating the probability of the
presence of the object presence within the bounding box.

Since the inputs are live video feeds, measuring real-time ac-
curacy is not feasible. To assess the accuracy of selected models,
we adopt the approach employed in prior studies [6, 14, 22, 26] by
considering the output of the most accurate model, referred to as
the base model (g), as the reference. The accuracy measurement
involves calculating the relative difference between the output of
the selected model for a given frame f; and the output of the base
model for the same frame. The detected objects from the base model
serve as the ground-truth objects for this comparison.

We employ the Intersection over Union (IoU) measure to evalu-
ate the similarity between the detected objects of the selected and
base models. This measure calculates the overlap of their bounding
boxes, comparing the intersection area to the union area. It quanti-
tatively assesses the similarity between objects. To be classified as
a true positive, a detected object must satisfy two conditions: (1) a
significant overlap with a ground-truth object and (2) a confidence
score surpassing a predefined threshold. False positives occur when
detected objects fail to meet both conditions, while false negatives
arise when ground-truth objects have no corresponding detected
objects meeting the specified criteria. Each ground-truth object is
associated with a unique detected object.

We employ the widely used F1-score for accuracy assessment,
which computes the harmonic mean of precision and recall. Pre-
cision measures the ratio of correctly detected objects to the total
number of detected objects, while recall measures the ratio of cor-
rectly detected objects to the total number of ground-truth objects.
The equation provided calculates the accuracy (c?) of the processing
frame f?.

precision(f,?) X recall(f)
precision(f,?) + recall(f)

0 _
cp =2 X

1)

To tackle the objective of maximizing overall throughput on
the edge server while achieving a predefined accuracy target (c;z,)
and satisfying the latency requirement of processing each frame
within 100 ms, we frame the problem as a constrained optimization
problem:

max throughput,
¢} >cip, Yo € V&EET
latency(f’) <100, Yo € V&teT

s.t.

4 RAVAS Design

In this section, we introduce the modules in the RAVAS design and
discuss our RL-based inference model selection and interference
resource allocation algorithms. Ravas aims to select the most suit-
able model while meeting latency and accuracy requirements. We
propose an independent model selection strategy and an interdepen-
dent resource allocation strategy using spatial multiplexing of GPU
compute capacity among DNN models. Based on independent selec-
tions, models are assigned to camera groups with similar temporal
characteristics. This approach prevents interference and optimizes
system performance. Independent model selection is characterized
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Figure 1. RAVAS framework architecture.

by speed and scalability. It enables rapid adaptation to the unique
characteristics of each video feed, ensuring the prompt selection of
the most suitable model. This efficiency is paramount in real-time
applications where latency and accuracy are critical.

It is essential to clarify the role of RL model selection to sug-
gest a model that achieves a predefined level of accuracy based on
historical feed activity. However, it is not employed to solve the
resource allocation problem, as integrating both model selection
and resource allocation tasks into a single RL problem introduces a
high degree of complexity. We emphasize on this in Section 4.3.

Given these considerations, we propose a two-fold strategy: inde-
pendent model selection tailored to each feed and an interdependent
resource allocation mechanism. This integrated resource allocation
approach assigns models to individual feeds based on the sugges-
tions made by their RL model selection agents and also allocates
resources to the models. This strategy balances efficiency, scalabil-
ity, and practicality, making it ideal for real-time applications with
GPU resource constraints.

4.1 RAVAS System Architecture

In this section, we introduce the overall RAVAS system architec-
ture. Figure 1 depicts all main modules of our framework, namely,
the Profiler, the Streamer, the Inference, the Monitoring, and the
Manager modules.

The RAVAS profiler captures the maximum throughput by al-
locating different GPU% to individual DNN models using GPU
spatial multiplexing. It quantifies the rate at which each model
processes video frames per second while ensuring a predefined
latency constraint.

The Streamer module enables connectivity with video feed sources
and relays frames to run inference models on the edge server. It
also receives and stores the analytics output and application-level
metrics.

The Inference module is responsible for executing inference mod-
els on a GPU-enabled server. It concurrently processes incoming
frames from stream video feeds using multiple inference models.
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It returns the inference model output to the Streamer module for
each frame.

The RAVAS Monitoring module collects infrastructure-level met-
rics (e.g., GPU utilization, power usage) and application-level met-
rics (e.g., latency) from Streamer instances. It stores telemetry in-
formation and maintains a historical record of decisions and their
impact.

The Manager module in RAVAS encompasses model selection
and resource allocation components. An independent model selec-
tion algorithm is employed to choose the most lightweight model
that meets the required accuracy constraint for the frames cap-
tured by each camera. The resource allocation component employs
dependent decision-making to select the most suitable model for
processing frames from each camera, aiming to avoid GPU over-
subscription and inference interference. Additionally, it allocates
appropriate computing capacity for individual inference models
using GPU spatial multiplexing.

4.2 RAVAS Profiler

The RAVAS profiler extracts throughput measurements for varying
GPU percentages using spatial multiplexing. These measurements
are crucial for the resource allocator, facilitating efficient resource
allocation in the system. The profiler enables informed decision-
making in resource allocation by assessing the overall throughput
achieved by different models under diverse GPU percentage con-
figurations. This data-driven approach optimizes GPU resource
utilization while meeting performance objectives. Figure 2 visually
presents the output of the RAVAS profiler, illustrating the achieved
throughput for different GPU percentages. This information serves
as an essential input for effective resource allocation strategies.

400
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g 300 small
L) —&— standard
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Figure 2. Profiler output depicting overall throughput meeting
latency requirements for individual models at different GPU% using
GPU spatial multiplexing.

4.3 Model Selection using RL

In this section, we propose an RL-based technique to suggest a
model for individual video feeds while meeting a predefined ac-
curacy constraint. RL systems include agents interacting with an
environment to make decisions and take actions to achieve specific
goals or maximize cumulative rewards. RL agents fundamentally
work based on a strategy in pursuit of a goal called a policy. A
policy represents a set of actions an agent employs to maximize its
reward. Generally, there are two different RL methods: off-policy
and on-policy methods. The agent directly learns and updates by
following its current policy and action to make updates in the
on-policy method. In contrast, the off-policy method diverges by



allowing the agent to learn from experiences gathered using a dif-
ferent policy from its current policy. In this paper, we propose a
Q-learning technique as an off-policy RL method, illustrated in
Figure 3.

Ravas advocates for adopting the off-policy Q-learning RL method
in this context for model selection, offering several compelling ar-
guments. Firstly, the urgency of making immediate decisions in
model selection aligns seamlessly with the capability of off-policy
RL strategies to immediately select actions based on estimated val-
ues without rigidly adhering to the current policy. This approach
permits the immediate selection of a model by utilizing the action
with the highest estimated Q-value, regardless of the current policy.
Secondly, off-policy methods are known for their adaptability and
work well in situations that require quick adjustments to changing
environments or varying model accuracy. In contrast, on-policy
RL strategies offer stability and may exhibit slower adaptation due
to their policy-centric exploration. Furthermore, the exploration
strategies of on-policy RL, often involving random actions, can
result in the exploration of sub-optimal models even when superior
alternatives are evident. It potentially leads to inefficiencies and
resource misallocations. These considerations collectively under-
score the suitability of off-policy RL for the model selection without
excessive concern for future actions and rewards.

Q-learning agent interacts with the environment by continu-
ously learning action and state spaces. Q-learning is off-policy
learning, meaning its behavior policy differs from its target policy.

The behavior policy defines how the agent must interact with
the environment. The target policy learns to take the best possible
actions according to the different states of the environment. We
consider an independent Q-learning agent for individual video
feeds to select the best model based on the content. The agent
for video feed v takes an action aj that refers to the index of the
selected model for processing incoming frames from video feed v
at time ¢. Table 1 showcases the complete set of models utilized in
this paper, encompassing nano (n), small (s), standard (d), large
(1), and x-1arge (xl). Since there is one unique model to select for
each action, the number of actions in the action space equals the
number of models. Action af, when applied to the environment,
will result in a new state sfﬂ, based on the feedback kfﬂ received
from the environment. The feedback is determined based on the
accuracy of the selected model (refer to Equation (1)).

For feedback, we define four different categories: very bad,
bad, ideal, and excellent. Each category describes how good or
bad the latest action aj was in the environment concerning the
accuracy. Table 2 describes the rules for determining the feedback
category k;4+1. The feedback category is determined according to
the received accuracy (i.e., cf), the accuracy constraint (i.e., ¢;p,),
and the type of the selected model. If a? # g, the feedback category
received ranges from very bad to excellent. If the model g (i.e.,
the heaviest model) is used, the feedback category is excellent if
and only if ¢} > ¢;p,; otherwise, the category is ideal.

The feedback determines the next state and the reward based on
the last action.

A state space S is defined as a finite set of all possible states
for the environment. The state transits from state s to state s7,
according to the selected model for video feed v at time ¢ and the
received feedback from the environment at time ¢ + 1. For instance,
sy, =d very bad’ describes that action af leads to the selection
of the standard model for video feed v and the feedback k7, ; was
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Model GPU GPU Accuracy | latency
Mem.(%) | Util(%) (mAP) (ms)
nano 2.14 1.3 0.344 7.05
small 3.21 2.1 0.387 7.37
standard 6.42 7.13 0.591 9.51
large 7.49 11.21 0.7 10.95
x-large 10.7 15.65 0.736 14.23

Table 1. The average output of results of processing frames by dif-
ferent models on a Tesla V100 GPU accelerator: nano (yolov4-tiny-
288), small (yolov4-tiny-416), standard (yolov4-288), large (yolov4-
416), x-large (yolov4-608).

Action (Model)

1 Environment

Get Target Behavior
Feedback Policy Policy
Agent 1
State [Accuracy)
Figure 3. RL-based model selection.
[ [ 0 __
kiir a; #9g a, ==
excellent cf >+ 1 ¢} >yt .1
ideal Chr — 1< ¢] < cppp + .1 ¢ <cppr+.1
bad Cthr/2 S ¢ <cppr— 1 nan
very bad c? < cipr/2 nan

Table 2. Determining feedback according to the relative accuracy
of the selected model at time slot ¢.

very bad. Since selecting action a? would lead to receiving one of
the four feedback categories, we have 4 X g possible states, where g
is the number of actions/models in the system.

Initially, the agent seeks to implicitly find a policy for model
selection with the highest possible return by trial and error. The
behavior policy is used to explore and generate actions based on the
state of the environment. The agent has to make a balance between
exploration and exploitation in decision-making. The behavior
policy uses a two-dimensional matrix called Q table to store total
reward values for all possible state-action pairs. Target policy learns
to take the best possible actions by updating the policy (i.e., values
in the Q table) through an action-value function to reach the optimal
policy.

Algorithm 1 explains the proposed Q-learning based model se-
lection solution. RAVAS function is the main function of Algorithm
1 (lines 1-14). It first initializes the Q table (line 2). At the begin-
ning of each time slot, behaviorPolicy function selects model a?
for video feed v (line 4). The first frame at the beginning of each
time slot is captured, denoted by f? from the video feed v (line
5). The Inference function receives a frame and a model as input
and returns all objects detected within the frame as the output of
processing the frame by the specified model. Lines 6-9 process the
f{ frame by the base model g if the selected model is not the best;
otherwise, it processes the frame by the second best model (i.e.
g — 1) as the base model. Line 10 processes the f; frame by the



selected model af. The getFeedback function returns the feedback
of using the selected model within the current time slot (line 11),
and the getReward function calculates the immediate reward based
on the feedback category (line 12). The targetPolicy function is
used to update the Q table for the selected <state,action> pair (line
13). Finally, the agent transitions to the new state s;,_;, which is
determined by the action taken in the last time slot and the received
feedback category (line 14).

In the Q table, zeros are saved as initial values for all state-action
pairs that are meaningful transition policies. Otherwise, —inf is
considered as the default value for the state-action pairs that are not
meaningful transition policies, and the RL agent should never use
them. Figure 5 shows part of the initial values of the defined Q table.
As an illustration, let us assume that the agent takes the action af
for video feed v. Later, if the agent receives very bad as feedback,
it should not take any action that leads to selecting the same or
lighter model for the next time slot. If the agent receives bad as
feedback, it should not take any action that leads to the selection of
lighter models, but the same model may still be selected. If the agent
receives ideal as feedback, the agent must continue to use the last
model for the next time slot and avoid using heavier models to
minimize latency and GPU usage. Otherwise, if the agent receives
excellent as feedback, it should not take any action that leads
to the selection of heavier models, but the same model still has a
chance to be selected.

The selected model a? processes all frames within time slot
t. The last frame must also be processed by an additional model
considered as the base model to measure the accuracy of the selected
model. For the last frame within each time slot, ¢, the getFeedback
function (lines 15-19) is used to calculate the relative accuracy of the
selected model in comparison to the best model g, which its result
is considered as the ground-truth. The accuracy performance of
the selected model is measured using the F-Score function, which
evaluates the relative accuracy of a list of detected objects by a
model in comparison to the ground truth (refer to Equation (1)). If
aj # g, the relative accuracy describes how good or bad this model
is compared to the ground truth (i.e., the output of the model g
for the f;” frame) (line 19). Otherwise, the selected model is model
g, and the relative accuracy describes how good or bad model g
is compared to the second heaviest model g — 1 (line 17). Line 20
calculates and returns the feedback category k7., based on the
relative accuracy of the last frame, the accuracy threshold, and the
type of used model (refer to the rules in Table 2).

The behaviorPolicy function selects and returns model af to
process all the frames of video fed v within time slot t. The agent
uses e-Greedy strategy to make exploration-versus-exploitation
decisions with a uniform probability. The function works based on
€ constraint that describes the probability of exploration () versus
the probability of exploitation (1 — €) where 0 < € < 1. For the
exploitation, the agent takes the action with maximum value in the
Q table given the current state according to the behavior policy (line
26). The agent defines two strategies for the exploration, each for the
training and testing phases. During the training phase, it randomly
takes an action from the action space (line 24). However, a complete
random exploration after the training phase decreases accuracy
because it does not consider any temporal features when taking
an action. To handle this, we propose a rank-based probabilistic
exploration strategy (line 29). Given the current state, it assigns a
normalized weight in the 0-1 for each action.
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feedback (k?, | reward (r)
very bad —0.1
bad -0.05
ideal +0.1
excellent 0.0

Table 3. Immediate rewards according to the received feedback
category from the environment.

The targetPolicy function updates the values for state-action
pairs in the Q table and is given as follows:

Qv[sf, a?] =Q [5?, a?]"'
Ix (r+y max Quls%y alyy] - Qolst.all)  (3)
t+1

where [,r, and y represent the learning rate, immediate reward af-
ter completion of the current action, and the discount factor to
make a trade-off between immediate and future rewards, respec-
tively. Equation (3) sums the old value with temporal difference
(TD) error where TD is the result of subtracting the new Q value
(i.e. maxgo (Qols7,1>a7,1])) from the old Qy value (i.e. Qp[s7, a7])
for a given state-action pair. The new value is calculated based
on the immediate and the future rewards. maxgo (Qolsf - a7, )]
indicates the maximum estimation of the future reward after transi-
tion to state s7 ; by choosing action af, ;. The immediate reward is
determined based on feedback from the environment and calculated
according to Table 3.

4.4 Interference-Aware Resource Allocation

The resource allocation algorithm optimizes system performance
by efficiently assigning models to video feeds and allocating com-
puting resources. However, limited GPU computing capacity on
the edge server may prevent assigning all selected models to every
video feed. To address this, the resource allocator employs a depen-
dent decision-making approach based on the models suggested by
individual model selection agents for all video feeds, GPU compute
capacity, and a heuristic prioritization strategy for video feeds. It
also utilizes GPU spatial multiplexing to ensure the efficient utiliza-
tion of just enough compute capacity on the GPU for individual
models, thereby avoiding GPU oversubscription.

Algorithm 2 outlines the resource allocator algorithm designed
to optimize resource allocation in the system. It operates on the
models aj and their previous versions a;_, for all video feeds in
the set V.

Initially, the resource allocation algorithm considers utilizing
models suggested by the RL model selection agents of individual
video feeds. If the total GPU% allocated to all models exceeds the
GPU compute capacity, the system downgrades models for some
video feeds recommended initially to use heavier models. The re-
source allocator decides to assign lighter-weight models compared
to the initial recommended models to video feeds with higher ex-
perienced accuracy. This process repeats in a loop until the GPU
compute capacity is no longer oversubscribed (lines 2 to 4). Follow-
ing the frame rate update, the algorithm updates the spatial GPU
allocation for all models (line 5).

The algorithm sorts the models in ascending order of accuracy
to prioritize models with lower accuracy (line 6). The algorithm
then iterates over the sorted video feeds and checks if the current
model af can be upgraded to a heavier model. At the same time,



Algorithm 1 Q-learning based model selection

1: function RAVAS(v,Q-table,training)
2:  Initialize state s;.

3. for each time slot t € T do

4 aj « behaviorPolicy(s{ false)

5: f? « the first received frame from o.
6 if a} # g then

7 ground-truth < Inference(g,f?)
8 else

9 ground-truth « Inference(g

— 1)f;21)

10: detected«— Inference(a?.f)

11: k{,, < getFeedback(a?,ground-truth,detected)
12: r «getReward(k},,) by Table 3.

13: Calculate targetPolicy(Qy,r) by Eq. (3).

14: sp,, < getState(a?, k7, ;)

15: function GETFEEDBACK(ay,ground-truth,detected)
16 if af == g then

17: accuracy«— F-Score(ground-truth,detected)

18:  else

19: accuracy«— F-Score(detected,ground-truth)

20: return feedback category of the accuracy by Table 2.
21: function BEHAVIORPOLICY(S;,training)

22:  if training == true then

23: With e probability:

24: a; « arandom action.

25: Otherwise:

26: aj « action with the best reward.

27: else

28: With e probability:

29: a; « arandom action by normalized weight.
30: Otherwise:

31 aj « action with the best reward.

32 return specified model for action aj.

the GPU is not oversubscribed for video feed v. If this condition
is satisfied, the algorithm selects a heavier model. It updates the
spatial GPU% and the frame rate for individual models according
to this upgrade so that it does not lead to GPU oversubscription
(line 7). Finally, the algorithm returns the final selected models for
each video feed, and the respective GPU% allocated to each model.

Algorithm 2 Interdependent Resource Allocation

1: function RESOURCEALLOCATOR( af,a] Vo €V )
/* utilize lighter models if needed to fit in the GPU */
2. while models oversubscribe the GPU capacity do

3 choose v € V with maximum accuracy, where ay is heavier
than ay_,
4 downgrade ay to a lighter model for feed v

5: update spatial GPU% allocation for models

/* utilize heavier models if the GPU capacity allows */
6. for each v € sort(V,increasing accuracy) do
7: upgrade aj to a heavier model if GPU% allows

8: return models for video feeds and GPU% for models

Figure 4 demonstrates the RAVAS resource allocator with an
illustrative example. The figure shows five input stream video feeds
labeled as feed 1 to feed 5. In Figure 4a, initial resource allocation
and model selection for each video feed are shown. The first two
feeds use the x-1arge model, utilizing 50% of the spatial compute
capacity of a V100 GPU.

Figure 4b showcases the accuracy output of the models used at
time slot t and the models selected by independent RL agents for the
next time slot. However, concurrent processing of incoming frames
from the video feeds using the newly selected models on a shared
edge server with a V100 GPU results in GPU oversubscription and
service-level agreement violations.

To tackle this issue, the RAVAS resource allocator employs a
prioritization mechanism for video feeds, taking into account their
output accuracy. Specifically, the feed with the highest level of accu-
racy is given the highest priority when allocating a lighter-weight

33

(a) Before resource allocation (time slot ¢ — 1)
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Figure 4. Illustrative example of resource allocation in action.

model, surpassing its initially recommended model as determined
by the RL model selection agent. This choice is based on the under-
standing that a lighter model stands a better chance of meeting the
accuracy requirement for this particular feed, owing to its history of
delivering superior accuracy with the previous (i.e., lighter) model.

Figure 4c shows that the resource allocator assigns the selected
model by RL agents to video feeds 3 and 4 since there is available
capacity. However, it cannot assign the x-large model to video
feed 4 without oversubscription due to limited computing capac-
ity. Instead, it allows an upgrade to a heavier model (i.e. large),
although not the exact one chosen by the RL agent.
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5 Evaluation

Implementation Details. We built the RAVAS framework on a Ku-
bernetes cluster v1.22.2. The framework is implemented in Python
along with a set of scripts in Bash with a total size of around
3000 LoC. We containerized all the modules of the framework in
Docker. We also provided the framework deployment for Kuber-
netes in various YAML files. Object detection models execute on
TensorRt 8.0.1 framework [27, 28]. The connection between video
feeds and the Ravas components is implemented using FFMPEG
[29] that supports a wide range of protocols, muxers, demuxers,
and filters. The monitoring module of the RAVAS framework uses
Prometheus [30] as a standard, scalable cloud-native solution to col-
lect application- and infrastructure-level metrics. All infrastructure-
level GPU metrics are monitored using GPU node exporter [31]. A
custom pod-monitor is implemented in Python as a custom Kuber-
netes resource [32, 33] to scrape application-level metrics from all
Streamer modules, with a 1s time interval. The Optimizer queries
metrics through Prometheus HTTP API [34] and Prometheus Query
Language (PromQL) [35].

5.1 Experimental Setup

Hardware Setup. We used six physical machines to run the Streamer
modules with 2.0 GHz CPU, 8 GB of physical memory, and 20 GB
HDD. Each Streamer module is run in a separate physical machine
to facilitate isolation. We also used an additional physical machine
with a GPU as the edge server. The machine has 8X 2.0 GHz CPU
cores, 16 GB of physical memory, 100 GB HDD, and 1X GPU acceler-
ator. We experiment with four different types of GPU accelerators
as edge servers, namely: Nvidia K80 with 12 GB GPU memory,
Nvidia Tesla P4 with 8 GB GPU memory, Nvidia Tesla T4 with 16
GB GPU memory, and Nvidia V100 with 16 GB GPU memory.
Configurations. The frame rate for all video feeds is 10 frames
per second. The optimization time interval is 500 ms. We chose
this interval since it is long enough to observe the effects of the
re-configuration and short enough to adapt more quickly to the
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dynamic execution requirement of the application. Different con-
straint values for Cyee, Cioy, and Cepp, fin the problem are 0.8, 0.5,
and 0.7 respectively. The values for parameters y and [ in the target
policy are set to 0.99 and 1.0 respectively. Also, we set § as random
exploration probability in the testing phase equal to 0.01. We use
the five algorithms in Table 1 in our experiments, with yolov4-608
being the base algorithm.

Dataset. In our evaluations, we conduct experiments using videos
from the VIRAT dataset release 2.0 as the content for the streamed
video feeds. We use all long ground videos of the VIRAT dataset,
which are captured from surveillance cameras[36]. These videos
have large spatial and temporal differences in their content, allow-
ing us to make experiments under varying content. In our experi-
ment, each Streamer module receives 10 frames per second from
one of these videos. The first ten percent of frames of each video is
used to train the Q table for RAVAS algorithm.

Comparison Scenarios and Baselines. We evaluate the perfor-
mance of RAVAS in three different experiment scenarios. In the
first two scenarios, we examine the performance of the proposed
algorithm in processing the frames of a video feed and multiple
concurrent video feeds on the edge server, respectively. In the last
scenario, we evaluate the performance of RAVAS with different edge
GPUs. We use two different sets of baselines to make a fair compar-
ison in the evaluations: (1) baselines specifically focusing on model
selection: Chameleon [6], BLEU [24], and LW [25]; (2) baselines
focusing on video analytics systems: AWStream [13], and OTIF [12].
All model selection baselines are specifically used for evaluation in
the first experiment. Additionally, some model selection and video
analytics baselines are used to evaluate all experiments.

5.2 Evaluation with a Single Video Feed

Our first experiment aims to evaluate the performance of the RAVAS
without considering the effects of concurrent processing of video
feeds on the edge. To do so, only a single Streamer module receives
frames from one video feed. We repeat the experiments for all
videos in the VIRAT dataset. To show RAVAS in operation, Figure
6 shows the fraction of frames processed using each model from
all the videos by both RAVAS and Chameleon. The fraction of
frames processed by the heaviest model is 10% lower using RAVAS
compared to Chameleon.

In Figure 7, we assess the performance of RL-based model se-
lection compared to baseline selection models. To show how the
selection of lighter models affects performance, figures 7-a and 7-b
illustrate fractions of frames with accuracy constraints higher or
equal to 0.7 and 0.8, respectively, on the x-axis as well as total frame
processing latency in ms on the y-axis. Each point represents the
average result of processing all frames of one of the ten video feeds
in the data set. The figures reveal that the inference time (latency
in ms) when employing the RAVAS model selection algorithm is
nearly 50% better than Chameleon, with no significant difference
in accuracy. Also, Ravas demonstrates significant improvement in
both latency and accuracy compared to BLEU and LW. Additionally,
Figure 7-c presents the average precision, recall, and F1-Score for all
video feeds, comparing RAVAS with the three baseline models. The
figure illustrates that Chameleon outperforms all other baselines in
precision while it ranks as the worst-performing algorithm in terms
of latency. Both RAVAS and Chameleon yield higher F1 scores and
better overall accuracy. The primary reason for the low recall in
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the GPU overhead of the model selection algorithm and the solid
blue line represents total GPU utilization of the model selection
over time.

BLEU lies in its propensity to produce considerably more false-
negative errors due to the omission of processing entire segments
of incoming frames.

There are two reasons for RAVAS to have better latency perfor-
mance. First, there is a lower fraction of heavier models used by
RAVAS for processing frames, as illustrated in Figure 6. Second and
foremost is the lower overhead of RAVAS in measuring the accuracy
of individual models and in selecting a model according to the tem-
poral effects of the environment (as discussed in Section 3). Figure
8 illustrates the total GPU utilization and the GPU usage overhead
over time for RAVAS versus Chameleon to show the overheads
of the different approaches. Figure 8-a shows that Chameleon has
higher GPU utilization overhead peaks, resulting in sharp peaks
in total GPU utilization. In contrast, Figure 8-b illustrates that the
overhead of RAVAS caused smaller peaks, and as a result, the total
GPU utilization is lower and smoother over time. Chameleon can
use up to 48% of the GPU in processing a single video feed, while
the RAVAS uses the GPU up to 26% at peak.

We also look at the average power and GPU utilization for the
four baselines, including model selection and video analytics sys-
tems, along with the heaviest model (denoted as Golden) using the
Nvidia toolkit. Figures 9 and 10 illustrate the average GPU power
consumption and GPU utilization for all the videos for a single
video feed. According to these two Figures, The Golden algorithm
has no overhead on the GPU for model selection because it always
uses a single model to process all incoming frames. Hence, it does
not do model selection and evaluation. However, this algorithm
requires more computational power than RAVAS and the other
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Figure 9. GPU power consumption of individual frames in all
videos in the dataset for single video processing experiments.
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Figure 10. GPU utilization of individual frames in all videos in the
dataset for single video processing experiments.

baseline algorithms since it always uses the heaviest model to pro-
cess the frames. As a result, it uses higher total GPU utilization and
power usage compared to other algorithms. The main difference in
the GPU utilization of the proposed RAVAS and the four baselines
lies in the overhead GPU utilization and power usage. RAVAS algo-
rithm results in a significant improvement in total GPU usage by
43.4%.

Finally, to give more insights into the performance of RAVAS,
Figure 12 illustrates the cumulative distribution function (CDF) for
the fraction of frames processed with different latency values and
accuracy thresholds. Figure 12-a shows that RAVAS processes a
higher fraction of frames with lower latency than baseline algo-
rithms. For example, 90% of the frames processed by RAVAS had a
latency within 40 ms, while Golden, Chameleon, AW Stream, and
OTIF algorithms were respectively able to process only 63%, 70%,
74%, and 76% of the frames within the same period. Similar to Figure
7, Figure 12-b shows no substantial difference in the fraction of
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frames processed with different accuracy constraints between the
proposed and the baseline algorithms.

Key takeaways: RAVAS reduces GPU overhead and achieves lower
latency with its lightweight interference-aware model selection
approach compared to baselines.

5.3 Evaluation with Concurrent Video Feeds

In this experiment, we evaluate the effect of concurrent frame pro-
cessing of multiple video feeds multiplexed on the same GPU on the
performance of RAVAS. In this scenario, there are multiple Streamer
modules; each receives frames from a specific video feed and trans-
mits them to a unique model instance on the edge server. There are
multiple model instances on the edge server to perform concurrent
frame processing. We performed different experiments with one to
six concurrent video feeds. Figure 11 shows the GPU utilization of
the edge server while it processes the frames of concurrent video
feeds. If the number of concurrent video feeds increases, the total
amount of computation on the GPU increases, and as a result, the
GPU utilization increases. As described previously, the maximum
GPU utilization is affected by the overhead of the model selection
algorithm and total computation to process concurrent frames. The
maximum GPU utilization with concurrent video feeds in the base-
line systems is significantly higher than RAVAS. Given that the
computational overheads of Chameleon, AWStream, and OTIF are
more than RAVAS (refer to Figure 10). The three baselines pose
higher total GPU utilization with higher and more aggressive com-
putation fluctuations over time than RAVAS. Although the Golden
algorithm does not lead to computational overheads due to model
selection, its heavy computation to process the incoming frames
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significantly increases GPU utilization. In contrast, RAVAS causes
a smoother increase in GPU utilization compared to baseline algo-
rithms in concurrent video feed processing. For example, the GPU
is fully utilized in all baselines when there are six concurrent video
feeds, while RAVAS uses up to 60% of the GPU compute capacity.
Figures 13 and 14 illustrate the average frame processing latency
and GPU power consumption for different numbers of concurrent
video feeds, respectively. These figures show that the latency and
the GPU power consumption are correlated with the GPU utiliza-
tion. The increase in concurrent video feeds leads to increased
latency and GPU power consumption for the baselines compared to
RAVAS. Specifically, there is a considerable increase in latency for
all baseline algorithms when there are six concurrent video feeds
because the GPU is highly or fully utilized most of the time.
Key takeaways. RAVAS enables higher concurrency for stream
video feeds with smoother GPU utilization, effectively mitigates
interferences, and ensures end-to-end latency guarantees.



5.4 Impact of Different GPU models

In our final set of experiments, we wanted to evaluate how RAVAS
and the different baselines perform with different GPU accelerators
to understand performance variation across GPU architectures. We
use the four GPUs described earlier with different computing ca-
pacities and power consumption levels. The edge server runs only
one of the four GPU accelerators in each experiment. Before run-
ning our experiments, we profiled the four GPUs for the maximum
number of feeds it can support. The experiments were performed
with the maximum number of concurrent video feeds that a GPU
accelerator is capable of processing: 1 video feed for Nvidia K80; 2
concurrent video feeds for Tesla P4; and six concurrent video feeds
for Tesla T4 and Nvidia V100 GPU accelerators.

Figures 15 and 16 show the total GPU utilization and the av-
erage latency of the edge server with the different GPU models
resepctively. Golden, Chameleon, and OTIF over-utilized K80, Tesla
P4, and Tesla T4 accelerators. Also, AWStream over-utilized K80
and Tesla P4 accelerators. On the contrary, RAVAS performed sig-
nificantly better in GPU utilization and did not over-utilize any
GPU models. To better understand what happens when the GPUs
are over-utilized, we plot the fraction of frames processed by each
framework in Figure 17-b. None of the baselines is capable of sup-
porting the processing of the video stream on the K80, with frame
drop rates above 90%. On the contrary, RAVAS can process around
80% of the frames. Figure 17-a also shows the accuracy of the
processed frames of the four frameworks. Note that even though
Chameleon shows higher accuracy, it dropped more than 90% of
the frames.

Figure 16 shows the frame processing latency for different algo-
rithms on different GPU models. The figure shows that the average
frame processing latency of all baseline algorithms has increased
drastically due to the GPU over-utilization. For example, the aver-
age frame processing latency for Golden and Chameleon algorithms
is 75,700 ms and 3, 880 ms, respectively, while the frame processing
latency of RAVAS algorithm is around 70 ms on Nvidia K80 GPU.

Figure 18 illustrates the fraction of violated frames in meeting
the deadline for completing the frame processing, which is particu-
larly beneficial for real-time applications. For this experiment, we
consider a frame as violated if its processing takes longer than the
deadline, as shown in the x-axis. We consider different values for
the deadline from 80 to 1000 ms to see the performance of different
algorithms on various latency constraints and GPU accelerators. As
shown in the figure, RAVAS achieves an outstanding performance
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Figure 15. Average GPU utilization on different types of GPUs: (a)
Nvidia K80 with one video feed; (b) Tesla P4 with two concurrent
Stream video feeds; (c) Tesla T4 with six concurrent stream video
feeds; and (d) Nvidia V100 with six concurrent stream video feeds.
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Figure 17. (a) Average accuracy metrics on K80 GPU; (b) Fraction
of frames succeeded processing within 100 ms on K80 GPU.

where it secured the processing of most of the frames within the
deadline compared to the baseline algorithms. For example, Golden,
AWStream, Chameleon, and OTIF resulted in 100%, 98.4%, 95.9%,
and 82.8% latency violation, respectively, when the deadline is 200
ms while RAVAS resulted only in a 0.3% latency violation. The pro-
posed algorithm has no violation for a deadline higher or equal to
200 ms. This is attributed to the efficient usage of the GPU by the
RAVAS algorithm.

Key takeaways. RAVAS avoids GPU over-utilization and ensures
end-to-end latency within latency deadlines across different GPU
models.
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Figure 18. Fraction of violated frames on (a) Nvidia K80, (b) Nvidia
Tesla P4, (c) Nvidia Tesla T4, (d) Nvidia Tesla V100 GPUs with
different latency contraint treshold values.

6 Related Work

Edge video analytics applications are projected to be the most
prominent use-case for edge computing [4]. Model configuration
techniques for wide-area video network analytics have been sug-
gested as a possible way to manage the resource usage, bandwidth,



and performance tradeoffs in these systems. Different efforts have
been made to reduce computing resources for video analytics.
Model Selection. Some recent works aim to choose the best config-
urations for the object detection model and frame input resolution
as the main knobs that impact both resource usage level and predic-
tion accuracy[6]. Zhang et al. [37] design a profiling-based video
analytics system to maximize resource usage over quality. It profiles
a large number of initial queries for each video. It then estimates
resource quality and approximates the best configuration to opti-
mize accuracy and resource usage. Nigade et al. [38] introduce an
adaptation mechanism by considering service-level objectives for
timely edge analytics. A naive feedback control makes adaptation
decisions. Zhang et al. [39] introduce a rule-based model selection
algorithm to select the best DNN model from a set of light to heavy
DNN models for fluctuating workloads. Their algorithm decided to
choose lighter models in the presence of load spikes. Kim et at. [25]
introduce LW as a lightweight online profiling and configuration
adaptation to dynamically optimize resource-accuracy trade-offs
for multiple video streams on GPU-enabled edge servers with lim-
ited resources. LW enhances the model selection process through
lightweight online profiling and adaptation, ultimately minimizing
accuracy degradation while improving resource utilization within
their system. Marco et al. [24] present a dynamic DNN model selec-
tion approach that balances accuracy and inference time based on
input characteristics. Their model selection method, BLEW, lever-
ages machine learning for swift model choice, enhancing execution
optimization on embedded devices.

Infernce Serving Systems. Crankshaw et al. [40] design a general-
purpose prediction serving system, Clipper, that supports customiz-
ing model selection policies in a containerized environment so
that applications use isolated compute resources. Clipper also sup-
ports adaptive batching to maximize throughput and prediction
caching to reduce latency. Ran et al. [41] design a framework for
video analytics on front-end devices (i.e., smartphones), edge, and
cloud resources. The framework uses only one convolutional neural
network for object detection. The authors propose an offloading
strategy that decides where to compute based on the estimation of
the network condition while considering the application’s require-
ments. Romero et al. [42] design an automated model-less system
to provide inference-as-a-service. Their main contribution is to pro-
vide an inference system that does not require developers to specify
various performance and accuracy requirements. Developers only
submit their tasks and their application requirements. Then, the
system automatically deploys a specific object detection model on
a specific compute resource (e.g., CPUs and GPUs) and the scaling
configurations to process the developer tasks.

7 Conclusion

The paper presents RAVAS as a lightweight, scalable, real-time
edge video analytics framework with an RL-based model selection
technique. The RAVAS framework handles the communication be-
tween video feed sources and object detection model instances,
monitors, analyzes, and makes online optimized decisions. The pro-
posed ML-based optimization algorithm automatically determines
a configuration that optimizes GPU resource usage while consider-
ing the performance requirement of an edge-based video analytic
application. Our experimental evaluation in a real environment
demonstrates that RAVAS outperforms the baseline approaches in
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processing latency, GPU utilization, and power consumption while
meeting the desired accuracy threshold. The experiments were
made using various GPUs in an edge server for individual and con-
current videos to evaluate the performance of the proposed RAVAS
framework under various conditions. Our analysis using a diverse
data set shows that RAVAS incurs 57% less compute overhead and
achieves 41.29% improvement in latency and 43.4% savings in to-
tal GPU usage for a single video feed and up to 99% and 40.0%
reduction in latency and total GPU usage respectively for multiple
concurrent video feeds while still meeting accuracy constraints.
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