
RAVAS: Interference-Aware Model Selection and Resource
Allocation for Live Edge Video Analytics

Ali Rahmanian
Umeå University

Umeå, Sweden

ali.rahmanian@umu.se

Ahmed Ali-Eldin
Chalmers University of Technology

Gothenburg, Sweden

ahmed.hassan@chalmers.se

Selome Kostentinos Tesfatsion
Ericsson Research

Stockholm, Sweden

selome.kostentinos.tesfatsion@ericsson.com

Björn Skubic
Ericsson Research

Stockholm, Sweden

bjorn.skubic@ericsson.com

Harald Gustafsson
Ericsson Research, Ericsson AB

Lund, Sweden

harald.gustafsson@ericsson.com

Prashant Shenoy
University of Massachusetts

Massachusetts, USA

shenoy@cs.umass.edu

Erik Elmroth
Umeå University

Umeå, Sweden

elmroth@cs.umu.se

Abstract

Numerous edge applications that rely on video analytics demand

precise, low-latency processing of multiple video streams from

cameras. When these cameras are mobile, such as when mounted

on a car or a robot, the processing load on the shared edge GPU

can vary considerably. Provisioning the edge with GPUs for the

worst-case load can be expensive and, for many applications, not

feasible.

In this paper, we introduce RAVAS, a Real-time Adaptive stream

Video Analytics System that enables efficient edge GPU sharing

for processing streams from various mobile cameras. RAVAS uses

Q-Learning to choose between a set of Deep Neural Network (DNN)

models with varying accuracy and processing requirements based

on the current GPU utilization and workload. RAVAS employs an

innovative resource allocation strategy to mitigate interference

during concurrent GPU execution. Compared to state-of-the-art

approaches, our results show that RAVAS incurs 57% less compute

overhead, achieves 41% improvement in latency, and 43% savings

in total GPU usage for a single video stream. Processing multiple

concurrent video streams results in up to 99% and 40% reductions

in latency and overall GPU usage, respectively, while meeting the

accuracy constraints.

Keywords: Edge Video Analytics, Model Selection, Resource Allo-

cation, Interference-aware GPU Multiplexing

ACM Reference Format:

Ali Rahmanian, Ahmed Ali-Eldin, Selome Kostentinos Tesfatsion, Björn

Skubic, Harald Gustafsson, Prashant Shenoy, and Erik Elmroth. 2023. RAVAS:

Interference-Aware Model Selection and Resource Allocation for Live Edge

Video Analytics. In The Eighth ACM/IEEE Symposium on Edge Computing

(SEC ’23), December 6–9, 2023, Wilmington, DE, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3583740.3628443

SEC ’23, December 6–9, 2023, Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0123-8/23/12.
https://doi.org/10.1145/3583740.3628443

1 Introduction

Millions of video cameras are deployed worldwide for diverse appli-

cations, ranging from urban mobility to factory automation. Real-

time video analytics is central to these applications. DNNs models,

such as Yolo [1], ResNet [2], and EfficientNet [3], are widely used

for object detection and classification, with an increasing focus on

edge deployment [4–6]. Edge video analytics allows the analysis

to be done with less—or no—data transmission to remote clouds

while also increasing the privacy of computations.

Running video analytics at the edge presents challenges regard-

ing GPU deployment constraints compared to large-scale cloud

data centers. Edge GPUs span a range of computational power and

capabilities, from devices like NVIDIA Jetson Nanos [7] to high-

performance GPUs like the A100s [8]. A single-edge server can

process from one video stream to tens of streams, depending on

the GPU capacity and the running application. Therefore, many

edge GPUs need to multiplex the processing of video feeds from

multiple cameras to ensure efficiency.

Multiplexing carries additional challenges for many edge appli-

cations where the number of video streams can vary due to mobility.

Two examples of such applications are intelligent traffic systems,

where vehicles offload video processing to the edge, and edge-

robotics and drone-based applications, where mobile robots/drones

offload video processing from on-device cameras to the edge for pro-

cessing. Generally, for many applications, video workload can vary

because of mobility, and hence, the number of streams that need

processing on an edge GPU can change with time as the number

of cameras close to the edge GPUs change, e.g., with moving edge

robots or autonomous vehicles with cameras [9]. Another source

of variability in the workloads comes from applications where

on-camera or cross-video filtration techniques are used [10, 11],

varying the number of frames sent to the edge-GPU for processing.

Hence, the total number of frames that require processing on the

GPU at any given time can vary drastically.

Motivation. Existing approaches in video analytics often prioritize

either application-level aspects to meet Quality-of-Service (QoS) re-

quirements or system-level techniques to optimize resource utiliza-

tion [6, 12–14]. However, these approaches overlook the complex

interplay between application requirements, system constraints,

27

2023 IEEE/ACM Symposium on Edge Computing (SEC)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583740.3628443&domain=pdf&date_stamp=2024-08-07

and the specific challenges posed by concurrent video feeds on the

same GPU server.

Solely focusing on application-level needs can result in excessive

resource allocation, leading to resource inefficiency [15]. Moreover,

concurrent processing of multiple video feeds on the same GPU

server can introduce inference interference, causing performance

degradation [16]. Conversely, an exclusive emphasis on system-

level resource management may not adequately address the unique

demands of concurrent video feeds. The dynamic nature of video

workloads, coupled with the varying capabilities of GPUs, necessi-

tates a more comprehensive approach.

To overcome these challenges, an integrated approach that con-

siders both application-level requirements and system-level con-

straints is required, considering the impact of concurrent video

feeds on the same GPU server. Combining adaptive model selection

for DNN-based video processing, efficient resource allocation, and

strategies to mitigate inference interference, we can optimize GPU

utilization, maintain accuracy, and minimize latency for concurrent

video analytics on GPU-enabled edge servers.

The solution aims to select a model for each stream video feed to

meet certain accuracy where the accuracy of the inference is what

we measure and care about. On the other side, there are multiple

video feeds that need to be fit and processed concurrently on the

same GPU resource together. In this case, the resource allocator

comes into play. If all models selected for feeds can be served and

fit on the resource, the resource allocator mechanism is straight-

forward and allocates what they asked. Otherwise, the resource

allocator may be unable to fit models selected for the resource

sometimes. In this case, the resource allocator employs a dependent

mechanism to revise the decision made for individual stream video

feeds based on the constrained resource capacity.

The model selection focuses on the accuracy of models to choose

the lightest model that provides certain accuracy. At the same time,

resource allocation cares more about how it fits multiple concurrent

workloads on a single GPU resource.

Model selection is input-dependent, and the decision is made

based on the situation of a camera. By keeping model selection

separate from resource allocation, Ravas enables the system to adapt

more effectively to changing conditions. The resource allocation

execution does not have to consider all possible and dependent

model selections for all cameras together to make a dependent

decision. In contrast, most of the time, the models independently

selected for each camera can be fit on the GPU, and there is no

need to make extensive decision-making. At the same time, it is

a bottleneck to make the system scalable and make the decision-

making process heavier.

A dependent model selection fails to work in such a situation

where the action would be a list of models selected for all cameras,

and considering the feedback of such model must demonstrate the

state of all cameras. Such problem modeling with Reinforcement

Learning (RL) would not be feasible with many states and actions.

Our contribution. In this paper, we introduce RAVAS, a real-time

adaptive stream video analytics system that enables a higher level

of multiplexing on edge GPUs with variable video workloads on

the edge. This work aims to enable efficient optimization of object

detection in an edge environment by also considering the overhead

costs of re-configuration. RAVAS deploys a number of DNN infer-

ence models on edge GPUs, selecting the best model with the lowest

resource requirement and inference time that fulfills the accuracy

requirement of an application while adapting to variations in video

workloads. Our main contributions to this work are:

• We propose an optimization algorithm based on RL to au-

tomatically determine a configuration that optimizes GPU

resource usage and enhances the performance of an edge-

based video analytics system.

• We present a resource allocation strategy to mitigate infer-

ence interference when concurrently executing video feeds

on the same GPU.

• We evaluate our system with concurrent videos on multiple

different GPUs with varying capabilities and show the effi-

cacy in the system when other State-of-the-Art techniques

fail.

2 Background

Edge Computing. Edge computing aims to provide applications

with lower latency compared to the back-end clouds by utilizing

a set of small and distributed computing resources near the end

users. Video analytics applications are especially suited to run on

edge resources as they decrease the bandwidth and latency with-

out transferring large amounts of video data across the Internet

to remote cloud data centers. Instead, data can be processed at

nearby edge resources. The main downside of offloading compu-

tations to the edge is the constrained resources available, unlike

large-scale cloud environment [17]. This calls for an efficient edge

resource management that addresses the edge capacity limitation

and application performance requirements.

Configuration Management for Video Analytics on Edge.

Many existing techniques in the literature focus on optimizing

the limited edge compute capacity by adjusting computation pa-

rameters such as input resolution and DNN model to achieve the

lightest configuration that meets their constraints. Using a lighter

model reduces the computational demands, whereas models with

more network layers or higher input resolutions provide higher ac-

curacy at the cost of increased computational complexity. Therefore,

it is crucial to carefully select the appropriate model that minimizes

resource usage while still meeting accuracy requirements. It should

be noted that the accuracy of each model depends significantly

on the content of the inferencing frame. Thus, lighter models can

achieve high accuracy for frames with clear and sharp content.

Furthermore, maximizing concurrency on the constrained GPU

compute capacity at the edge is essential to enhance GPU utiliza-

tion. GPU multiplexing allows the sharing of the GPU among mul-

tiple applications to achieve concurrency [18]. Spatial multiplexing

is a technique that divides the GPU among different models, en-

abling them to execute simultaneously. However, this approach can

introduce application interference and potentially reduce overall

throughput [19]. Tomitigate interference and prevent GPU oversub-

scription, controlled spatial sharing allocates a specific percentage

of the GPU compute capacity (i.e., GPU%) to each application, en-

suring a particular number of GPU streamingmultiprocessors (SMs)

are allocated [18].

In the literature, extensive research has been conducted on se-

lecting optimal DNN configurations for inference to meet the per-

formance requirements of various applications [6, 20–22]. Addition-

ally, efforts have been made to enhance GPU utilization through

techniques like GPU multiplexing [18, 23]. RAVAS selects the most

optimized model that satisfies latency and accuracy constraints in

28

this context. Furthermore, it incorporates an interference-aware

resource allocator to utilize the GPU compute capacity effectively.

Why RAVAS? In our survey of the field, we found two main short-

comings. First, the problem with variable frame-load on edge GPUs

has been mostly overlooked. While some existing solutions can

handle this problem [6], as we show later in our evaluations, many

of these solutions have a substantial overhead. Existing work does

not consider the overhead of their solution and its effect on other

co-located processes in the edge servers. RAVAS uses a lightweight

RL-based model selection algorithm that selects the best object

detection model out of a set of limited object detection models to

meet the accuracy constraint with minimum compute requirements,

allowing for much higher levels of concurrency on an Edge GPU.

In building the actual system, we designed RAVAS to be modu-

lar, scalable, and compatible with multiple network transportation

protocols, camera models, and video encoding/decoding formats.

In our evaluations, we compare RAVAS to both video analyt-

ics systems, including AWStream [13] and OTIF [12], and model

selection baselines, which encompass Chameleon [6], BLEU [24],

and LW [25]. AWStream [13], is a stream processing system that

optimizes the trade-off between accuracy and bandwidth consump-

tion for wide-area network streaming analytics. It combines offline

and online training to create an accurate model that captures the

relationship between application accuracy and bandwidth consump-

tion, adapting to network conditions. OTIF [12], is another relevant

system that focuses on tuning machine learning pipelines. It in-

troduces an object detection and tracking architecture with five

tunable parameters, enabling a balance between speed and accuracy

specific to a given video dataset. Our evaluations show how the

above two shortcomings severely affect the performance of these

three systems. Chameleon [6] focuses on fast object detection and

employs a profiling window to identify the best configuration. This

configuration consists of a selected inference model, frames-per-

second rate, and frame resolution, with the objective of meeting

accuracy requirements while minimizing compute demands within

a predefined interval. BLEU [24] iteratively builds a model from a

set of DNNs based on accuracy or a hybrid approach. It starts with

the most optimal DNN, adds those with the best improvement in

the chosen metric, and terminates when accuracy improvement

falls below a specified threshold, ensuring a balance between accu-

racy and runtime efficiency. This approach adaptively selects DNN

models, making it suitable for real-world applications. LW [25]

employs profiling and adaptation to enhance model selection and

configuration, minimizing accuracy degradation and improving

resource utilization—a pivotal baseline in our research.

3 Problem Statement

We define a model library consisting of a set of pre-selected infer-

ence models. The indexes of the models range from 1 (representing

the lightest model) to 𝑔 (representing the heaviest model), with the

𝑔𝑡ℎ index corresponding to the most accurate model. The computa-

tional requirements of the models vary, with 𝑔 being the model that

demands the most resources. The set of video feeds is represented

as 𝑣 ∈ 𝑉 , where the video feed 𝑣 undergoes dynamic variations

in the number of frames requiring processing over time due to

camera-specific frame filtration techniques.

The frame captured from video feed 𝑣 at time 𝑡 , denoted as 𝑓 𝑣𝑡 ,
undergoes processing by a single assigned model instance. The

model instance analyzes the frame and generates a set of detected

objects as output. Each output object consists of an object class, a

bounding box representing the location of the object within the

frame, and a confidence score indicating the probability of the

presence of the object presence within the bounding box.

Since the inputs are live video feeds, measuring real-time ac-

curacy is not feasible. To assess the accuracy of selected models,

we adopt the approach employed in prior studies [6, 14, 22, 26] by

considering the output of the most accurate model, referred to as

the base model (𝑔), as the reference. The accuracy measurement

involves calculating the relative difference between the output of

the selected model for a given frame 𝑓 𝑣𝑡 and the output of the base

model for the same frame. The detected objects from the base model

serve as the ground-truth objects for this comparison.

We employ the Intersection over Union (IoU) measure to evalu-

ate the similarity between the detected objects of the selected and

base models. This measure calculates the overlap of their bounding

boxes, comparing the intersection area to the union area. It quanti-

tatively assesses the similarity between objects. To be classified as

a true positive, a detected object must satisfy two conditions: (1) a

significant overlap with a ground-truth object and (2) a confidence

score surpassing a predefined threshold. False positives occur when

detected objects fail to meet both conditions, while false negatives

arise when ground-truth objects have no corresponding detected

objects meeting the specified criteria. Each ground-truth object is

associated with a unique detected object.

We employ the widely used F1-score for accuracy assessment,

which computes the harmonic mean of precision and recall. Pre-

cision measures the ratio of correctly detected objects to the total

number of detected objects, while recall measures the ratio of cor-

rectly detected objects to the total number of ground-truth objects.

The equation provided calculates the accuracy (𝑐𝑣𝑡) of the processing
frame 𝑓 𝑣𝑡 .

𝑐𝑣𝑡 = 2 ×
precision(𝑓 𝑣𝑡) × recall(𝑓 𝑣𝑡)

precision(𝑓 𝑣𝑡) + recall(𝑓 𝑣𝑡)
(1)

To tackle the objective of maximizing overall throughput on

the edge server while achieving a predefined accuracy target (𝑐𝑡ℎ𝑟)
and satisfying the latency requirement of processing each frame

within 100 ms, we frame the problem as a constrained optimization

problem:

max 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡,

𝑠 .𝑡 . 𝑐𝑣𝑡 ≥ 𝑐𝑡ℎ𝑟 , ∀ 𝑣 ∈ 𝑉 & 𝑡 ∈ 𝑇

latency(𝑓 𝑣𝑡) ≤ 100, ∀ 𝑣 ∈ 𝑉 & 𝑡 ∈ 𝑇

(2)

4 RAVAS Design

In this section, we introduce the modules in the RAVAS design and

discuss our RL-based inference model selection and interference

resource allocation algorithms. Ravas aims to select the most suit-

able model while meeting latency and accuracy requirements. We

propose an independent model selection strategy and an interdepen-

dent resource allocation strategy using spatial multiplexing of GPU

compute capacity among DNNmodels. Based on independent selec-

tions, models are assigned to camera groups with similar temporal

characteristics. This approach prevents interference and optimizes

system performance. Independent model selection is characterized

29

Figure 1. RAVAS framework architecture.

by speed and scalability. It enables rapid adaptation to the unique

characteristics of each video feed, ensuring the prompt selection of

the most suitable model. This efficiency is paramount in real-time

applications where latency and accuracy are critical.

It is essential to clarify the role of RL model selection to sug-

gest a model that achieves a predefined level of accuracy based on

historical feed activity. However, it is not employed to solve the

resource allocation problem, as integrating both model selection

and resource allocation tasks into a single RL problem introduces a

high degree of complexity. We emphasize on this in Section 4.3.

Given these considerations, we propose a two-fold strategy: inde-

pendentmodel selection tailored to each feed and an interdependent

resource allocation mechanism. This integrated resource allocation

approach assigns models to individual feeds based on the sugges-

tions made by their RL model selection agents and also allocates

resources to the models. This strategy balances efficiency, scalabil-

ity, and practicality, making it ideal for real-time applications with

GPU resource constraints.

4.1 RAVAS System Architecture

In this section, we introduce the overall RAVAS system architec-

ture. Figure 1 depicts all main modules of our framework, namely,

the Profiler, the Streamer, the Inference, the Monitoring, and the

Manager modules.

The RAVAS profiler captures the maximum throughput by al-

locating different GPU% to individual DNN models using GPU

spatial multiplexing. It quantifies the rate at which each model

processes video frames per second while ensuring a predefined

latency constraint.

The Streamermodule enables connectivitywith video feed sources

and relays frames to run inference models on the edge server. It

also receives and stores the analytics output and application-level

metrics.

The Inference module is responsible for executing inference mod-

els on a GPU-enabled server. It concurrently processes incoming

frames from stream video feeds using multiple inference models.

It returns the inference model output to the Streamer module for

each frame.

The RAVAS Monitoring module collects infrastructure-level met-

rics (e.g., GPU utilization, power usage) and application-level met-

rics (e.g., latency) from Streamer instances. It stores telemetry in-

formation and maintains a historical record of decisions and their

impact.

The Manager module in RAVAS encompasses model selection

and resource allocation components. An independent model selec-

tion algorithm is employed to choose the most lightweight model

that meets the required accuracy constraint for the frames cap-

tured by each camera. The resource allocation component employs

dependent decision-making to select the most suitable model for

processing frames from each camera, aiming to avoid GPU over-

subscription and inference interference. Additionally, it allocates

appropriate computing capacity for individual inference models

using GPU spatial multiplexing.

4.2 RAVAS Profiler

The RAVAS profiler extracts throughput measurements for varying

GPU percentages using spatial multiplexing. These measurements

are crucial for the resource allocator, facilitating efficient resource

allocation in the system. The profiler enables informed decision-

making in resource allocation by assessing the overall throughput

achieved by different models under diverse GPU percentage con-

figurations. This data-driven approach optimizes GPU resource

utilization while meeting performance objectives. Figure 2 visually

presents the output of the RAVAS profiler, illustrating the achieved

throughput for different GPU percentages. This information serves

as an essential input for effective resource allocation strategies.

0

100

200

300

400

GPU%

T
h
ro
u
g
h
p
u
t
(f
p
s)

nano

small

standard

large

x-large

Figure 2. Profiler output depicting overall throughput meeting

latency requirements for individual models at different GPU% using

GPU spatial multiplexing.

4.3 Model Selection using RL

In this section, we propose an RL-based technique to suggest a

model for individual video feeds while meeting a predefined ac-

curacy constraint. RL systems include agents interacting with an

environment to make decisions and take actions to achieve specific

goals or maximize cumulative rewards. RL agents fundamentally

work based on a strategy in pursuit of a goal called a policy. A

policy represents a set of actions an agent employs to maximize its

reward. Generally, there are two different RL methods: off-policy

and on-policy methods. The agent directly learns and updates by

following its current policy and action to make updates in the

on-policy method. In contrast, the off-policy method diverges by

30

allowing the agent to learn from experiences gathered using a dif-

ferent policy from its current policy. In this paper, we propose a

𝑄-learning technique as an off-policy RL method, illustrated in

Figure 3.

Ravas advocates for adopting the off-policyQ-learning RLmethod

in this context for model selection, offering several compelling ar-

guments. Firstly, the urgency of making immediate decisions in

model selection aligns seamlessly with the capability of off-policy

RL strategies to immediately select actions based on estimated val-

ues without rigidly adhering to the current policy. This approach

permits the immediate selection of a model by utilizing the action

with the highest estimated Q-value, regardless of the current policy.

Secondly, off-policy methods are known for their adaptability and

work well in situations that require quick adjustments to changing

environments or varying model accuracy. In contrast, on-policy

RL strategies offer stability and may exhibit slower adaptation due

to their policy-centric exploration. Furthermore, the exploration

strategies of on-policy RL, often involving random actions, can

result in the exploration of sub-optimal models even when superior

alternatives are evident. It potentially leads to inefficiencies and

resource misallocations. These considerations collectively under-

score the suitability of off-policy RL for the model selection without

excessive concern for future actions and rewards.

𝑄-learning agent interacts with the environment by continu-

ously learning action and state spaces. 𝑄-learning is off-policy

learning, meaning its behavior policy differs from its target policy.

The behavior policy defines how the agent must interact with

the environment. The target policy learns to take the best possible

actions according to the different states of the environment. We

consider an independent 𝑄-learning agent for individual video

feeds to select the best model based on the content. The agent

for video feed 𝑣 takes an action 𝑎𝑣𝑡 that refers to the index of the

selected model for processing incoming frames from video feed 𝑣
at time 𝑡 . Table 1 showcases the complete set of models utilized in

this paper, encompassing nano (n), small (s), standard (d), large
(l), and x-large (xl). Since there is one unique model to select for

each action, the number of actions in the action space equals the

number of models. Action 𝑎𝑣𝑡 , when applied to the environment,

will result in a new state 𝑠𝑣𝑡+1, based on the feedback 𝑘𝑣𝑡+1 received
from the environment. The feedback is determined based on the

accuracy of the selected model (refer to Equation (1)).

For feedback, we define four different categories: very bad,
bad, ideal, and excellent. Each category describes how good or

bad the latest action 𝑎𝑣𝑡 was in the environment concerning the

accuracy. Table 2 describes the rules for determining the feedback

category 𝑘𝑡+1. The feedback category is determined according to

the received accuracy (i.e., 𝑐𝑣𝑡), the accuracy constraint (i.e., 𝑐𝑡ℎ𝑟),
and the type of the selected model. If 𝑎𝑣𝑡 ≠ 𝑔, the feedback category

received ranges from very bad to excellent. If the model 𝑔 (i.e.,

the heaviest model) is used, the feedback category is excellent if

and only if 𝑐𝑣𝑡 ≥ 𝑐𝑡ℎ𝑟 ; otherwise, the category is ideal.
The feedback determines the next state and the reward based on

the last action.

A state space 𝑆 is defined as a finite set of all possible states

for the environment. The state transits from state 𝑠𝑣𝑡 to state 𝑠𝑣𝑡+1
according to the selected model for video feed 𝑣 at time 𝑡 and the

received feedback from the environment at time 𝑡 + 1. For instance,

𝑠𝑣𝑡+1 =‘d very bad’ describes that action 𝑎𝑣𝑡 leads to the selection

of the standard model for video feed 𝑣 and the feedback 𝑘𝑣𝑡+1 was

Model GPU

Mem.(%)

GPU

Util.(%)

Accuracy

(mAP)

latency

(ms)

nano 2.14 1.3 0.344 7.05

small 3.21 2.1 0.387 7.37

standard 6.42 7.13 0.591 9.51

large 7.49 11.21 0.7 10.95

x-large 10.7 15.65 0.736 14.23

Table 1. The average output of results of processing frames by dif-

ferent models on a Tesla V100 GPU accelerator: nano (yolov4-tiny-

288), small (yolov4-tiny-416), standard (yolov4-288), large (yolov4-

416), x-large (yolov4-608).

Figure 3. RL-based model selection.

𝑘𝑣𝑡+1 𝑎𝑣𝑡 ≠ 𝑔 𝑎𝑣𝑡 == 𝑔
excellent 𝑐𝑣𝑡 > 𝑐𝑡ℎ𝑟 + .1 𝑐𝑣𝑡 ≥ 𝑐𝑡ℎ𝑟 + .1

ideal 𝑐𝑡ℎ𝑟 − .1 ≤ 𝑐𝑣𝑡 ≤ 𝑐𝑡ℎ𝑟 + .1 𝑐𝑣𝑡 < 𝑐𝑡ℎ𝑟 + .1
bad 𝑐𝑡ℎ𝑟 /2 ≤ 𝑐𝑣𝑡 < 𝑐𝑡ℎ𝑟 − .1 𝑛𝑎𝑛

very bad 𝑐𝑣𝑡 < 𝑐𝑡ℎ𝑟 /2 𝑛𝑎𝑛

Table 2. Determining feedback according to the relative accuracy

of the selected model at time slot 𝑡 .

very bad. Since selecting action 𝑎𝑣𝑡 would lead to receiving one of

the four feedback categories, we have 4×𝑔 possible states, where 𝑔
is the number of actions/models in the system.

Initially, the agent seeks to implicitly find a policy for model

selection with the highest possible return by trial and error. The

behavior policy is used to explore and generate actions based on the

state of the environment. The agent has to make a balance between

exploration and exploitation in decision-making. The behavior

policy uses a two-dimensional matrix called 𝑄 table to store total

reward values for all possible state-action pairs. Target policy learns

to take the best possible actions by updating the policy (i.e., values

in the𝑄 table) through an action-value function to reach the optimal

policy.

Algorithm 1 explains the proposed 𝑄-learning based model se-

lection solution. RAVAS function is the main function of Algorithm

1 (lines 1-14). It first initializes the 𝑄 table (line 2). At the begin-

ning of each time slot, behaviorPolicy function selects model 𝑎𝑣𝑡
for video feed 𝑣 (line 4). The first frame at the beginning of each

time slot is captured, denoted by 𝑓 𝑣𝑡 from the video feed 𝑣 (line

5). The Inference function receives a frame and a model as input

and returns all objects detected within the frame as the output of

processing the frame by the specified model. Lines 6-9 process the

𝑓 𝑣𝑡 frame by the base model 𝑔 if the selected model is not the best;

otherwise, it processes the frame by the second best model (i.e.

𝑔 − 1) as the base model. Line 10 processes the 𝑓 𝑣𝑡 frame by the

31

selected model 𝑎𝑣𝑡 . The getFeedback function returns the feedback

of using the selected model within the current time slot (line 11),

and the getReward function calculates the immediate reward based

on the feedback category (line 12). The targetPolicy function is

used to update the𝑄 table for the selected <state,action> pair (line

13). Finally, the agent transitions to the new state 𝑠𝑣𝑡+1, which is

determined by the action taken in the last time slot and the received

feedback category (line 14).

In the𝑄 table, zeros are saved as initial values for all state-action

pairs that are meaningful transition policies. Otherwise, − inf is

considered as the default value for the state-action pairs that are not

meaningful transition policies, and the RL agent should never use

them. Figure 5 shows part of the initial values of the defined Q table.

As an illustration, let us assume that the agent takes the action 𝑎𝑣𝑡
for video feed 𝑣 . Later, if the agent receives very bad as feedback,

it should not take any action that leads to selecting the same or

lighter model for the next time slot. If the agent receives bad as

feedback, it should not take any action that leads to the selection of

lighter models, but the samemodel may still be selected. If the agent

receives ideal as feedback, the agent must continue to use the last

model for the next time slot and avoid using heavier models to

minimize latency and GPU usage. Otherwise, if the agent receives

excellent as feedback, it should not take any action that leads

to the selection of heavier models, but the same model still has a

chance to be selected.

The selected model 𝑎𝑣𝑡 processes all frames within time slot

𝑡 . The last frame must also be processed by an additional model

considered as the basemodel tomeasure the accuracy of the selected

model. For the last frame within each time slot, 𝑡 , the getFeedback
function (lines 15-19) is used to calculate the relative accuracy of the

selected model in comparison to the best model 𝑔, which its result

is considered as the ground-truth. The accuracy performance of

the selected model is measured using the F-Score function, which

evaluates the relative accuracy of a list of detected objects by a

model in comparison to the ground truth (refer to Equation (1)). If

𝑎𝑣𝑡 ≠ 𝑔, the relative accuracy describes how good or bad this model

is compared to the ground truth (i.e., the output of the model 𝑔
for the 𝑓 𝑣𝑡 frame) (line 19). Otherwise, the selected model is model

𝑔, and the relative accuracy describes how good or bad model 𝑔
is compared to the second heaviest model 𝑔 − 1 (line 17). Line 20

calculates and returns the feedback category 𝑘𝑣𝑡+1 based on the

relative accuracy of the last frame, the accuracy threshold, and the

type of used model (refer to the rules in Table 2).

The behaviorPolicy function selects and returns model 𝑎𝑣𝑡 to
process all the frames of video fed 𝑣 within time slot 𝑡 . The agent
uses 𝜖-Greedy strategy to make exploration-versus-exploitation

decisions with a uniform probability. The function works based on

𝜖 constraint that describes the probability of exploration (𝜖) versus
the probability of exploitation (1 − 𝜖) where 0 ≤ 𝜖 ≤ 1. For the

exploitation, the agent takes the action with maximum value in the

𝑄 table given the current state according to the behavior policy (line

26). The agent defines two strategies for the exploration, each for the

training and testing phases. During the training phase, it randomly

takes an action from the action space (line 24). However, a complete

random exploration after the training phase decreases accuracy

because it does not consider any temporal features when taking

an action. To handle this, we propose a rank-based probabilistic

exploration strategy (line 29). Given the current state, it assigns a

normalized weight in the 0–1 for each action.

feedback (𝑘𝑣𝑡+1) reward (𝑟)
very bad −0.1

bad −0.05
ideal +0.1

excellent 0.0

Table 3. Immediate rewards according to the received feedback

category from the environment.

The targetPolicy function updates the values for state-action

pairs in the 𝑄 table and is given as follows:

𝑄𝑣 [𝑠
𝑣
𝑡 , 𝑎

𝑣
𝑡] = 𝑄𝑣 [𝑠

𝑣
𝑡 , 𝑎

𝑣
𝑡]+

𝑙 ×
(
𝑟 + 𝛾 max

𝑎𝑣𝑡+1
𝑄𝑣 [𝑠

𝑣
𝑡+1, 𝑎

𝑣
𝑡+1] −𝑄𝑣 [𝑠

𝑣
𝑡 , 𝑎

𝑣
𝑡]

)
(3)

where 𝑙 ,𝑟 , and 𝛾 represent the learning rate, immediate reward af-

ter completion of the current action, and the discount factor to

make a trade-off between immediate and future rewards, respec-

tively. Equation (3) sums the old value with temporal difference

(TD) error where TD is the result of subtracting the new 𝑄 value

(i.e. max𝑎𝑣𝑡+1 (𝑄𝑣 [𝑠
𝑣
𝑡+1, 𝑎

𝑣
𝑡+1])) from the old 𝑄𝑣 value (i.e. 𝑄𝑣 [𝑠

𝑣
𝑡 , 𝑎

𝑣
𝑡])

for a given state-action pair. The new value is calculated based

on the immediate and the future rewards. max𝑎𝑣𝑡+1 (𝑄𝑣 [𝑠
𝑣
𝑡+1, 𝑎

𝑣
𝑡+1)]

indicates the maximum estimation of the future reward after transi-

tion to state 𝑠𝑣𝑡+1 by choosing action 𝑎𝑣𝑡+1. The immediate reward is

determined based on feedback from the environment and calculated

according to Table 3.

4.4 Interference-Aware Resource Allocation

The resource allocation algorithm optimizes system performance

by efficiently assigning models to video feeds and allocating com-

puting resources. However, limited GPU computing capacity on

the edge server may prevent assigning all selected models to every

video feed. To address this, the resource allocator employs a depen-

dent decision-making approach based on the models suggested by

individual model selection agents for all video feeds, GPU compute

capacity, and a heuristic prioritization strategy for video feeds. It

also utilizes GPU spatial multiplexing to ensure the efficient utiliza-

tion of just enough compute capacity on the GPU for individual

models, thereby avoiding GPU oversubscription.

Algorithm 2 outlines the resource allocator algorithm designed

to optimize resource allocation in the system. It operates on the

models 𝑎𝑣𝑡 and their previous versions 𝑎𝑣𝑡−1 for all video feeds in

the set 𝑉 .

Initially, the resource allocation algorithm considers utilizing

models suggested by the RL model selection agents of individual

video feeds. If the total GPU% allocated to all models exceeds the

GPU compute capacity, the system downgrades models for some

video feeds recommended initially to use heavier models. The re-

source allocator decides to assign lighter-weight models compared

to the initial recommended models to video feeds with higher ex-

perienced accuracy. This process repeats in a loop until the GPU

compute capacity is no longer oversubscribed (lines 2 to 4). Follow-

ing the frame rate update, the algorithm updates the spatial GPU

allocation for all models (line 5).

The algorithm sorts the models in ascending order of accuracy

to prioritize models with lower accuracy (line 6). The algorithm

then iterates over the sorted video feeds and checks if the current

model 𝑎𝑣𝑡 can be upgraded to a heavier model. At the same time,

32

Algorithm 1 Q-learning based model selection

1: function RAVAS(𝑣 ,Q-table,training)
2: Initialize state 𝑠𝑡 .
3: for each time slot 𝑡 ∈ 𝑇 do

4: 𝑎𝑣𝑡 ← behaviorPolicy(𝑠𝑣𝑡 ,false)
5: 𝑓 𝑣𝑡 ← the first received frame from 𝑣 .
6: if 𝑎𝑣𝑡 ≠ 𝑔 then

7: ground-truth← Inference(𝑔,𝑓 𝑣𝑡)
8: else

9: ground-truth← Inference(𝑔 − 1,𝑓 𝑣𝑡)

10: detected← Inference(𝑎𝑣𝑡 ,𝑓
𝑣
𝑡)

11: 𝑘𝑣𝑡+1 ← getFeedback(𝑎𝑣𝑡 ,ground-truth,detected)
12: 𝑟 ←getReward(𝑘𝑣𝑡+1) by Table 3.

13: Calculate targetPolicy(𝑄𝑣, 𝑟) by Eq. (3).

14: 𝑠𝑣𝑡+1 ← getState(𝑎𝑣𝑡 , 𝑘
𝑣
𝑡+1)

15: function getFeedback(𝑎𝑣𝑡 ,ground-truth,detected)
16: if 𝑎𝑣𝑡 == 𝑔 then

17: accuracy← F-Score(ground-truth,detected)
18: else

19: accuracy← F-Score(detected,ground-truth)

20: return feedback category of the accuracy by Table 2.

21: function behaviorPolicy(𝑠𝑡 ,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
22: if 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 == 𝑡𝑟𝑢𝑒 then
23: With 𝜖 probability:

24: 𝑎𝑣𝑡 ← a random action.

25: Otherwise:

26: 𝑎𝑣𝑡 ← action with the best reward.

27: else

28: With 𝜖 probability:

29: 𝑎𝑣𝑡 ← a random action by normalized weight.

30: Otherwise:

31: 𝑎𝑣𝑡 ← action with the best reward.

32: return specified model for action 𝑎𝑣𝑡 .

the GPU is not oversubscribed for video feed 𝑣 . If this condition
is satisfied, the algorithm selects a heavier model. It updates the

spatial GPU% and the frame rate for individual models according

to this upgrade so that it does not lead to GPU oversubscription

(line 7). Finally, the algorithm returns the final selected models for

each video feed, and the respective GPU% allocated to each model.

Algorithm 2 Interdependent Resource Allocation

1: function ResourceAllocator(𝑎𝑣𝑡 , 𝑎
𝑣
𝑡−1 ∀𝑣 ∈ 𝑉)

/* utilize lighter models if needed to fit in the GPU */

2: while models oversubscribe the GPU capacity do

3: choose 𝑣 ∈ 𝑉 with maximum accuracy, where 𝑎𝑣𝑡 is heavier

than 𝑎𝑣𝑡−1
4: downgrade 𝑎𝑣𝑡 to a lighter model for feed 𝑣
5: update spatial GPU% allocation for models

/* utilize heavier models if the GPU capacity allows */

6: for each 𝑣 ∈ sort(𝑉 , increasing accuracy) do

7: upgrade 𝑎𝑣𝑡 to a heavier model if GPU% allows

8: return models for video feeds and GPU% for models

Figure 4 demonstrates the RAVAS resource allocator with an

illustrative example. The figure shows five input stream video feeds

labeled as feed 1 to feed 5. In Figure 4a, initial resource allocation

and model selection for each video feed are shown. The first two

feeds use the x-large model, utilizing 50% of the spatial compute

capacity of a V100 GPU.

Figure 4b showcases the accuracy output of the models used at

time slot 𝑡 and the models selected by independent RL agents for the

next time slot. However, concurrent processing of incoming frames

from the video feeds using the newly selected models on a shared

edge server with a V100 GPU results in GPU oversubscription and

service-level agreement violations.

To tackle this issue, the RAVAS resource allocator employs a

prioritization mechanism for video feeds, taking into account their

output accuracy. Specifically, the feed with the highest level of accu-

racy is given the highest priority when allocating a lighter-weight

(a) Before resource allocation (time slot 𝑡 − 1)

(b) Accuracy output and selected model (time slot 𝑡)

Stream Feed1 Feed2 Feed3 Feed4 Feed5

𝑐𝑣𝑡−1 0.98 0.97 0.63 0.60 0.69

𝑎𝑣𝑡 large large standard x-large x-large

(c) After resource allocation (time slot 𝑡 + 1)

Figure 4. Illustrative example of resource allocation in action.

model, surpassing its initially recommended model as determined

by the RL model selection agent. This choice is based on the under-

standing that a lighter model stands a better chance of meeting the

accuracy requirement for this particular feed, owing to its history of

delivering superior accuracy with the previous (i.e., lighter) model.

Figure 4c shows that the resource allocator assigns the selected

model by RL agents to video feeds 3 and 4 since there is available

capacity. However, it cannot assign the x-large model to video

feed 4 without oversubscription due to limited computing capac-

ity. Instead, it allows an upgrade to a heavier model (i.e. large),
although not the exact one chosen by the RL agent.

33

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

...

𝑑 very bad − inf − inf − inf 0 0

𝑑 bad − inf − inf 0 0 0

𝑑 ideal − inf − inf 0 − inf − inf

𝑑 excellent 0 0 0 − inf − inf

...

Figure 5. A demonstration of Q-table with initial values only for

the third model

Lig
hte

st
Lig

ht
No

rm
He

avy

He
avi

est

0

20

40

F
ra
ct
io
n
o
f
fr
am

es Chameleon RAVAS

Figure 6. Fraction of individual model usage for processing frames

for RAVAS and baseline algorithms.

5 Evaluation

Implementation Details.We built the RAVAS framework on a Ku-

bernetes cluster v1.22.2. The framework is implemented in Python

along with a set of scripts in Bash with a total size of around

3000 LoC. We containerized all the modules of the framework in

Docker. We also provided the framework deployment for Kuber-

netes in various YAML files. Object detection models execute on

TensorRt 8.0.1 framework [27, 28]. The connection between video

feeds and the Ravas components is implemented using FFMPEG

[29] that supports a wide range of protocols, muxers, demuxers,

and filters. The monitoring module of the RAVAS framework uses

Prometheus [30] as a standard, scalable cloud-native solution to col-

lect application- and infrastructure-level metrics. All infrastructure-

level GPU metrics are monitored using GPU node exporter [31]. A

custom pod-monitor is implemented in Python as a custom Kuber-

netes resource [32, 33] to scrape application-level metrics from all

Streamer modules, with a 1s time interval. The Optimizer queries

metrics through Prometheus HTTPAPI [34] and Prometheus Query

Language (PromQL) [35].

5.1 Experimental Setup

Hardware Setup.Weused six physicalmachines to run the Streamer

modules with 2.0 GHz CPU, 8 GB of physical memory, and 20 GB

HDD. Each Streamer module is run in a separate physical machine

to facilitate isolation. We also used an additional physical machine

with a GPU as the edge server. The machine has 8X 2.0 GHz CPU
cores, 16 GB of physical memory, 100 GBHDD, and 1𝑋 GPU acceler-

ator. We experiment with four different types of GPU accelerators

as edge servers, namely: Nvidia K80 with 12 GB GPU memory,

Nvidia Tesla P4 with 8 GB GPU memory, Nvidia Tesla T4 with 16

GB GPU memory, and Nvidia V100 with 16 GB GPU memory.

Configurations. The frame rate for all video feeds is 10 frames

per second. The optimization time interval is 500 ms. We chose

this interval since it is long enough to observe the effects of the

re-configuration and short enough to adapt more quickly to the

dynamic execution requirement of the application. Different con-

straint values for 𝐶𝑎𝑐𝑐 , 𝐶𝑖𝑜𝑢 , and 𝐶𝑐𝑜𝑛𝑓 in the problem are 0.8, 0.5,
and 0.7 respectively. The values for parameters 𝛾 and 𝑙 in the target

policy are set to 0.99 and 1.0 respectively. Also, we set 𝛽 as random

exploration probability in the testing phase equal to 0.01. We use

the five algorithms in Table 1 in our experiments, with yolov4-608

being the base algorithm.

Dataset. In our evaluations, we conduct experiments using videos

from the VIRAT dataset release 2.0 as the content for the streamed

video feeds. We use all long ground videos of the VIRAT dataset,

which are captured from surveillance cameras[36]. These videos

have large spatial and temporal differences in their content, allow-

ing us to make experiments under varying content. In our experi-

ment, each Streamer module receives 10 frames per second from

one of these videos. The first ten percent of frames of each video is

used to train the 𝑄 table for RAVAS algorithm.

Comparison Scenarios and Baselines.We evaluate the perfor-

mance of RAVAS in three different experiment scenarios. In the

first two scenarios, we examine the performance of the proposed

algorithm in processing the frames of a video feed and multiple

concurrent video feeds on the edge server, respectively. In the last

scenario, we evaluate the performance of RAVASwith different edge

GPUs. We use two different sets of baselines to make a fair compar-

ison in the evaluations: (1) baselines specifically focusing on model

selection: Chameleon [6], BLEU [24], and LW [25]; (2) baselines

focusing on video analytics systems: AWStream [13], and OTIF [12].

All model selection baselines are specifically used for evaluation in

the first experiment. Additionally, some model selection and video

analytics baselines are used to evaluate all experiments.

5.2 Evaluation with a Single Video Feed

Our first experiment aims to evaluate the performance of the RAVAS

without considering the effects of concurrent processing of video

feeds on the edge. To do so, only a single Streamer module receives

frames from one video feed. We repeat the experiments for all

videos in the VIRAT dataset. To show RAVAS in operation, Figure

6 shows the fraction of frames processed using each model from

all the videos by both RAVAS and Chameleon. The fraction of

frames processed by the heaviest model is 10% lower using RAVAS

compared to Chameleon.

In Figure 7, we assess the performance of RL-based model se-

lection compared to baseline selection models. To show how the

selection of lighter models affects performance, figures 7-a and 7-b

illustrate fractions of frames with accuracy constraints higher or

equal to 0.7 and 0.8, respectively, on the x-axis as well as total frame

processing latency in𝑚𝑠 on the y-axis. Each point represents the

average result of processing all frames of one of the ten video feeds

in the data set. The figures reveal that the inference time (latency

in𝑚𝑠) when employing the RAVAS model selection algorithm is

nearly 50% better than Chameleon, with no significant difference

in accuracy. Also, Ravas demonstrates significant improvement in

both latency and accuracy compared to BLEU and LW. Additionally,

Figure 7-c presents the average precision, recall, and F1-Score for all

video feeds, comparing RAVAS with the three baseline models. The

figure illustrates that Chameleon outperforms all other baselines in

precision while it ranks as the worst-performing algorithm in terms

of latency. Both RAVAS and Chameleon yield higher F1 scores and

better overall accuracy. The primary reason for the low recall in

34

(a) 𝐶𝑎𝑐𝑐 = 0.7

0.4 0.6 0.8 1

20

30

40

50

Fraction of frames

L
at
en
cy

(𝑚
𝑠)

BLEU Chameleon

LW RAVAS

(b) 𝐶𝑎𝑐𝑐 = 0.8

0.4 0.6 0.8 1

20

30

40

50

Fraction of frames

L
at
en
cy

(𝑚
𝑠)

BLEU Chameleon

LW RAVAS

(c) Average

Precision Recall F1-Score

0.8

0.9

N
o
rm

al
iz
ed

v
al
u
e

BLEU Chameleon

LW RAVAS

Figure 7. (a) and (b) fraction of frames with accuracy constraint 𝐶𝑎𝑐𝑐 = 0.7 and 𝐶𝑎𝑐𝑐 = 0.8 over latency. Each point represents the output of

one video feed in the dataset. (c) Average precision, recall, and F1-Score.

G
P
U
u
ti
l.
(%
)

(a) Chameleon

0 20 40

0

20

40

60

(b) RAVAS

0 20 40
0

20

40

60
Total Overhead

Time Slot

Figure 8. An illustration of GPU utilization over time for

Chameleon and the RAVAS approach. The red dotted line represents

the GPU overhead of the model selection algorithm and the solid

blue line represents total GPU utilization of the model selection

over time.

BLEU lies in its propensity to produce considerably more false-

negative errors due to the omission of processing entire segments

of incoming frames.

There are two reasons for RAVAS to have better latency perfor-

mance. First, there is a lower fraction of heavier models used by

RAVAS for processing frames, as illustrated in Figure 6. Second and

foremost is the lower overhead of RAVAS in measuring the accuracy

of individual models and in selecting a model according to the tem-

poral effects of the environment (as discussed in Section 3). Figure

8 illustrates the total GPU utilization and the GPU usage overhead

over time for RAVAS versus Chameleon to show the overheads

of the different approaches. Figure 8-a shows that Chameleon has

higher GPU utilization overhead peaks, resulting in sharp peaks

in total GPU utilization. In contrast, Figure 8-b illustrates that the

overhead of RAVAS caused smaller peaks, and as a result, the total

GPU utilization is lower and smoother over time. Chameleon can

use up to 48% of the GPU in processing a single video feed, while

the RAVAS uses the GPU up to 26% at peak.

We also look at the average power and GPU utilization for the

four baselines, including model selection and video analytics sys-

tems, along with the heaviest model (denoted as Golden) using the

Nvidia toolkit. Figures 9 and 10 illustrate the average GPU power

consumption and GPU utilization for all the videos for a single

video feed. According to these two Figures, The Golden algorithm

has no overhead on the GPU for model selection because it always

uses a single model to process all incoming frames. Hence, it does

not do model selection and evaluation. However, this algorithm

requires more computational power than RAVAS and the other

P
o
w
er

(W
a
tt
)

Golden

O
ve
rh
ea
d

To
ta
l

35

40

45

50

AWStream

O
ve
rh
ea
d

To
ta
l

Chameleon

O
ve
rh
ea
d

To
ta
l

OTIF

O
ve
rh
ea
d

To
ta
l

RAVAS

O
ve
rh
ea
d

To
ta
l

Figure 9. GPU power consumption of individual frames in all

videos in the dataset for single video processing experiments.

G
P
U
u
ti
l.
(%
)

Golden

O
ve
rh
ea
d

To
ta
l

0

20

40

AWStream

O
ve
rh
ea
d

To
ta
l

Chameleon

O
ve
rh
ea
d

To
ta
l

OTIF

O
ve
rh
ea
d

To
ta
l

RAVAS

O
ve
rh
ea
d

To
ta
l

Figure 10. GPU utilization of individual frames in all videos in the

dataset for single video processing experiments.

baseline algorithms since it always uses the heaviest model to pro-

cess the frames. As a result, it uses higher total GPU utilization and

power usage compared to other algorithms. The main difference in

the GPU utilization of the proposed RAVAS and the four baselines

lies in the overhead GPU utilization and power usage. RAVAS algo-

rithm results in a significant improvement in total GPU usage by

43.4%.
Finally, to give more insights into the performance of RAVAS,

Figure 12 illustrates the cumulative distribution function (CDF) for

the fraction of frames processed with different latency values and

accuracy thresholds. Figure 12-a shows that RAVAS processes a

higher fraction of frames with lower latency than baseline algo-

rithms. For example, 90% of the frames processed by RAVAS had a

latency within 40 ms, while Golden, Chameleon, AWStream, and

OTIF algorithms were respectively able to process only 63%, 70%,

74%, and 76% of the frames within the same period. Similar to Figure

7, Figure 12-b shows no substantial difference in the fraction of

35

G
P
U
u
ti
l.
(%
)

0

20

40

60

80

100

1 Video feed 2 Video feeds 3 Video feeds 4 Video feeds 5 Video feeds 6 Video feeds

Figure 11. Average GPU utilization over different number of incoming stream video feeds.

frames processed with different accuracy constraints between the

proposed and the baseline algorithms.

Key takeaways: RAVAS reduces GPU overhead and achieves lower

latency with its lightweight interference-aware model selection

approach compared to baselines.

5.3 Evaluation with Concurrent Video Feeds

In this experiment, we evaluate the effect of concurrent frame pro-

cessing of multiple video feeds multiplexed on the same GPU on the

performance of RAVAS. In this scenario, there are multiple Streamer

modules; each receives frames from a specific video feed and trans-

mits them to a unique model instance on the edge server. There are

multiple model instances on the edge server to perform concurrent

frame processing. We performed different experiments with one to

six concurrent video feeds. Figure 11 shows the GPU utilization of

the edge server while it processes the frames of concurrent video

feeds. If the number of concurrent video feeds increases, the total

amount of computation on the GPU increases, and as a result, the

GPU utilization increases. As described previously, the maximum

GPU utilization is affected by the overhead of the model selection

algorithm and total computation to process concurrent frames. The

maximum GPU utilization with concurrent video feeds in the base-

line systems is significantly higher than RAVAS. Given that the

computational overheads of Chameleon, AWStream, and OTIF are

more than RAVAS (refer to Figure 10). The three baselines pose

higher total GPU utilization with higher and more aggressive com-

putation fluctuations over time than RAVAS. Although the Golden

algorithm does not lead to computational overheads due to model

selection, its heavy computation to process the incoming frames

(a)

20 40 60 80 100

20

40

60

80

100

Latency (𝑚𝑠)

C
D
F
(F
ra
ct
io
n
o
f
F
ra
m
es
)

Golden

AWStream

Chameleon

OTIF

RAVAS

(b)

0.2 0.4 0.6 0.8 1.0

60

70

80

90

100

1-Accuracy (%)

Figure 12. The cumulative distribution function (CDF) of the (a)

latency and (b) accuracy.

1 2 3 4 5 6

20

40

60

80

100

120

Number of concurrent video feeds
L
at
en
cy

(m
s)

Golden AWStream Chameleon

OTIF RAVAS

Figure 13. Average latency over different number of concurrent

video feeds.

1 2 3 4 5 6

30

40

50

60

Number of concurrent video feeds

G
P
U
p
o
w
er

co
n
s.
(w
a
tt
)

Golden AWStream Chameleon

OTIF RAVAS

Figure 14.Average GPU power consumption over different number

of concurrent video feeds.

significantly increases GPU utilization. In contrast, RAVAS causes

a smoother increase in GPU utilization compared to baseline algo-

rithms in concurrent video feed processing. For example, the GPU

is fully utilized in all baselines when there are six concurrent video

feeds, while RAVAS uses up to 60% of the GPU compute capacity.

Figures 13 and 14 illustrate the average frame processing latency

and GPU power consumption for different numbers of concurrent

video feeds, respectively. These figures show that the latency and

the GPU power consumption are correlated with the GPU utiliza-

tion. The increase in concurrent video feeds leads to increased

latency and GPU power consumption for the baselines compared to

RAVAS. Specifically, there is a considerable increase in latency for

all baseline algorithms when there are six concurrent video feeds

because the GPU is highly or fully utilized most of the time.

Key takeaways. RAVAS enables higher concurrency for stream

video feeds with smoother GPU utilization, effectively mitigates

interferences, and ensures end-to-end latency guarantees.

36

5.4 Impact of Different GPU models

In our final set of experiments, we wanted to evaluate how RAVAS

and the different baselines perform with different GPU accelerators

to understand performance variation across GPU architectures. We

use the four GPUs described earlier with different computing ca-

pacities and power consumption levels. The edge server runs only

one of the four GPU accelerators in each experiment. Before run-

ning our experiments, we profiled the four GPUs for the maximum

number of feeds it can support. The experiments were performed

with the maximum number of concurrent video feeds that a GPU

accelerator is capable of processing: 1 video feed for Nvidia K80; 2

concurrent video feeds for Tesla P4; and six concurrent video feeds

for Tesla T4 and Nvidia V100 GPU accelerators.

Figures 15 and 16 show the total GPU utilization and the av-

erage latency of the edge server with the different GPU models

resepctively. Golden, Chameleon, and OTIF over-utilized K80, Tesla

P4, and Tesla T4 accelerators. Also, AWStream over-utilized K80

and Tesla P4 accelerators. On the contrary, RAVAS performed sig-

nificantly better in GPU utilization and did not over-utilize any

GPU models. To better understand what happens when the GPUs

are over-utilized, we plot the fraction of frames processed by each

framework in Figure 17-b. None of the baselines is capable of sup-

porting the processing of the video stream on the K80, with frame

drop rates above 90%. On the contrary, RAVAS can process around

80% of the frames. Figure 17-a also shows the accuracy of the

processed frames of the four frameworks. Note that even though

Chameleon shows higher accuracy, it dropped more than 90% of

the frames.

Figure 16 shows the frame processing latency for different algo-

rithms on different GPU models. The figure shows that the average

frame processing latency of all baseline algorithms has increased

drastically due to the GPU over-utilization. For example, the aver-

age frame processing latency for Golden and Chameleon algorithms

is 75, 700ms and 3, 880ms, respectively, while the frame processing

latency of RAVAS algorithm is around 70 ms on Nvidia K80 GPU.

Figure 18 illustrates the fraction of violated frames in meeting

the deadline for completing the frame processing, which is particu-

larly beneficial for real-time applications. For this experiment, we

consider a frame as violated if its processing takes longer than the

deadline, as shown in the x-axis. We consider different values for

the deadline from 80 to 1000𝑚𝑠 to see the performance of different

algorithms on various latency constraints and GPU accelerators. As

shown in the figure, RAVAS achieves an outstanding performance

G
P
U
U
ti
l(
%
)

K80

10

40

70

100
Tesla P4 Tesla T4 V100

Figure 15. Average GPU utilization on different types of GPUs: (a)

Nvidia K80 with one video feed; (b) Tesla P4 with two concurrent

Stream video feeds; (c) Tesla T4 with six concurrent stream video

feeds; and (d) Nvidia V100 with six concurrent stream video feeds.

Nvidia K80 Tesla P4 Tesla T4 Tesla V100

101

103

105

L
at
en
cy

(m
s)

Golden AWStream Chameleon

OTIF RAVAS

Figure 16. Average total latency on different GPU models.

(a)

Precision Recall F1-Score

0.8

0.85

0.9

0.95

N
o
rm

al
iz
ed

v
al
u
e

AWStream Chameleon

OTIF RAVAS

(b)

0

20

40

60

80

Fr
a
ct
io
n
of

Fr
a
m
es

(%
)

Figure 17. (a) Average accuracy metrics on K80 GPU; (b) Fraction

of frames succeeded processing within 100𝑚𝑠 on K80 GPU.

where it secured the processing of most of the frames within the

deadline compared to the baseline algorithms. For example, Golden,

AWStream, Chameleon, and OTIF resulted in 100%, 98.4%, 95.9%,

and 82.8% latency violation, respectively, when the deadline is 200

𝑚𝑠 while RAVAS resulted only in a 0.3% latency violation. The pro-

posed algorithm has no violation for a deadline higher or equal to

200𝑚𝑠 . This is attributed to the efficient usage of the GPU by the

RAVAS algorithm.

Key takeaways. RAVAS avoids GPU over-utilization and ensures

end-to-end latency within latency deadlines across different GPU

models.

V
io
la
ti
o
n
(%
)

K80

80 10
0

20
0

40
0
10
00

10

40

70

100
Tesla P4

80 10
0

20
0

40
0
10
00

Tesla T4

80 10
0

20
0

40
0
10
00

V100

80 10
0

20
0

40
0
10
00

Golden

AWStream

Chameleon

OTIF

RAVAS

Deadline (𝑚𝑠)

Figure 18. Fraction of violated frames on (a) Nvidia K80, (b) Nvidia

Tesla P4, (c) Nvidia Tesla T4, (d) Nvidia Tesla V100 GPUs with

different latency contraint treshold values.

6 Related Work

Edge video analytics applications are projected to be the most

prominent use-case for edge computing [4]. Model configuration

techniques for wide-area video network analytics have been sug-

gested as a possible way to manage the resource usage, bandwidth,

37

and performance tradeoffs in these systems. Different efforts have

been made to reduce computing resources for video analytics.

Model Selection. Some recent works aim to choose the best config-

urations for the object detection model and frame input resolution

as the main knobs that impact both resource usage level and predic-

tion accuracy[6]. Zhang et al. [37] design a profiling-based video

analytics system to maximize resource usage over quality. It profiles

a large number of initial queries for each video. It then estimates

resource quality and approximates the best configuration to opti-

mize accuracy and resource usage. Nigade et al. [38] introduce an

adaptation mechanism by considering service-level objectives for

timely edge analytics. A naive feedback control makes adaptation

decisions. Zhang et al. [39] introduce a rule-based model selection

algorithm to select the best DNN model from a set of light to heavy

DNN models for fluctuating workloads. Their algorithm decided to

choose lighter models in the presence of load spikes. Kim et at. [25]

introduce LW as a lightweight online profiling and configuration

adaptation to dynamically optimize resource-accuracy trade-offs

for multiple video streams on GPU-enabled edge servers with lim-

ited resources. LW enhances the model selection process through

lightweight online profiling and adaptation, ultimately minimizing

accuracy degradation while improving resource utilization within

their system. Marco et al. [24] present a dynamic DNN model selec-

tion approach that balances accuracy and inference time based on

input characteristics. Their model selection method, BLEW, lever-

ages machine learning for swift model choice, enhancing execution

optimization on embedded devices.

Infernce Serving Systems. Crankshaw et al. [40] design a general-

purpose prediction serving system, Clipper, that supports customiz-

ing model selection policies in a containerized environment so

that applications use isolated compute resources. Clipper also sup-

ports adaptive batching to maximize throughput and prediction

caching to reduce latency. Ran et al. [41] design a framework for

video analytics on front-end devices (i.e., smartphones), edge, and

cloud resources. The framework uses only one convolutional neural

network for object detection. The authors propose an offloading

strategy that decides where to compute based on the estimation of

the network condition while considering the application’s require-

ments. Romero et al. [42] design an automated model-less system

to provide inference-as-a-service. Their main contribution is to pro-

vide an inference system that does not require developers to specify

various performance and accuracy requirements. Developers only

submit their tasks and their application requirements. Then, the

system automatically deploys a specific object detection model on

a specific compute resource (e.g., CPUs and GPUs) and the scaling

configurations to process the developer tasks.

7 Conclusion

The paper presents RAVAS as a lightweight, scalable, real-time

edge video analytics framework with an RL-based model selection

technique. The RAVAS framework handles the communication be-

tween video feed sources and object detection model instances,

monitors, analyzes, and makes online optimized decisions. The pro-

posed ML-based optimization algorithm automatically determines

a configuration that optimizes GPU resource usage while consider-

ing the performance requirement of an edge-based video analytic

application. Our experimental evaluation in a real environment

demonstrates that RAVAS outperforms the baseline approaches in

processing latency, GPU utilization, and power consumption while

meeting the desired accuracy threshold. The experiments were

made using various GPUs in an edge server for individual and con-

current videos to evaluate the performance of the proposed RAVAS

framework under various conditions. Our analysis using a diverse

data set shows that RAVAS incurs 57% less compute overhead and

achieves 41.29% improvement in latency and 43.4% savings in to-

tal GPU usage for a single video feed and up to 99% and 40.0%
reduction in latency and total GPU usage respectively for multiple

concurrent video feeds while still meeting accuracy constraints.

Acknowledgments. This work was partially supported by Eric-

sson Research and the Industrial Doctoral School at Umeå Uni-

versity. Ahmed Ali-Eldin is supported by an SSF Future Research

Leader grant. Prashant Shenoy is supported by NSF grants 2211302,

2211888, 2105494, and an Adobe grant.

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:

Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934,
2020.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[3] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International conference on machine learning, pages
6105–6114. PMLR, 2019.

[4] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. Real-time video
analytics: The killer app for edge computing. Computer, 50(10):58–67, 2017.

[5] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Yuanchao Shu, Niko-
laos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica. Ekya: Continuous
learning of video analytics models on edge compute servers. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages
119–135, 2022.

[6] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, pages
253–266, 2018.

[7] Qianlin Liang, Prashant Shenoy, and David Irwin. Ai on the edge: Characterizing
ai-based iot applications using specialized edge architectures. In 2020 IEEE
International Symposium on Workload Characterization (IISWC), pages 145–156,
2020.

[8] Jack Choquette, Edward Lee, Ronny Krashinsky, Vishnu Balan, and Brucek
Khailany. 3.2 the a100 datacenter gpu and ampere architecture. In 2021 IEEE
International Solid-State Circuits Conference (ISSCC), volume 64, pages 48–50.
IEEE, 2021.

[9] Nan Tian, Ajay Kummar Tanwani, Jinfa Chen, Mas Ma, Robert Zhang, Bill Huang,
Ken Goldberg, and Somayeh Sojoudi. A fog robotic system for dynamic visual
servoing. In 2019 International Conference on Robotics and Automation (ICRA),
pages 1982–1988, 2019.

[10] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,
and Ravi Netravali. Reducto: On-camera filtering for resource-efficient real-time
video analytics. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’20, page 359–376, New
York, NY, USA, 2020. Association for Computing Machinery.

[11] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,
David G Andersen, Michael Kaminsky, and Subramanya Dulloor. Scaling video
analytics on constrained edge nodes. Proceedings ofMachine Learning and Systems,
1:406–417, 2019.

[12] Favyen Bastani and Samuel Madden. Otif: Efficient tracker pre-processing over
large video datasets. In Proceedings of the 2022 International Conference on
Management of Data, SIGMOD ’22, page 2091–2104, New York, NY, USA, 2022.
Association for Computing Machinery.

[13] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A Lee.
Awstream: Adaptive wide-area streaming analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages
236–252, 2018.

[14] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: optimizing neural network queries over video at scale. arXiv preprint
arXiv:1703.02529, 2017.

[15] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. Machine learning
at the edge: Efficient utilization of limited cpu/gpu resources by multiplexing. In
2020 IEEE 28th International Conference on Network Protocols (ICNP), pages 1–6,

38

2020.
[16] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. Primitives en-

hancing gpu runtime support for improved dnn performance. In 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD), pages 53–64, 2021.

[17] Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy. The hidden cost of the edge:
a performance comparison of edge and cloud latencies. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12, 2021.

[18] Aditya Dhakal, K. K. Ramakrishnan, Sameer G. Kulkarni, Puneet Sharma, and
Junguk Cho. Slice-tune: A system for high performance dnn autotuning. In
Proceedings of the 23rd ACM/IFIP International Middleware Conference, Middle-
ware ’22, page 228–240, New York, NY, USA, 2022. Association for Computing
Machinery.

[19] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. Gslice: Controlled
spatial sharing of gpus for a scalable inference platform. In Proceedings of the
11th ACM Symposium on Cloud Computing, SoCC ’20, page 492–506, New York,
NY, USA, 2020. Association for Computing Machinery.

[20] Can Wang, Sheng Zhang, Yu Chen, Zhuzhong Qian, Jie Wu, and Mingjun Xiao.
Joint configuration adaptation and bandwidth allocation for edge-based real-
time video analytics. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 257–266. IEEE, 2020.

[21] Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael
Maire, and Shan Lu. ALERT: Accurate learning for energy and timeliness. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 353–369. USENIX
Association, July 2020.

[22] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. Live video analytics at scale with
approximation and delay-tolerance. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17), pages 377–392, 2017.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Tvm: An automated end-to-end optimizing compiler for
deep learning. OSDI’18, page 579–594, USA, 2018. USENIX Association.

[24] Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib. Optimizing
deep learning inference on embedded systems through adaptive model selection.
ACM Trans. Embed. Comput. Syst., 19(1), feb 2020.

[25] Woo-Joong Kim and Chan-Hyun Youn. Lightweight online profiling-based
configuration adaptation for video analytics system in edge computing. IEEE
Access, 8:116881–116899, 2020.

[26] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. Focus:
Querying large video datasets with low latency and low cost. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages
269–286, 2018.

[27] Nvidia tensorrt: Programmable inference accelerator, 2018. https://developer.
nvidia.com/tensorrt/.

[28] Tensorrt demos. https://github.com/jkjung-avt/tensorrt_demos/.
[29] Ffmpeg. https://ffmpeg.org/ffmpeg-formats.html/.
[30] Prometheus. https://prometheus.io/.
[31] Nvidia gpu prometheus exporter. https://github.com/mindprince/nvidia_gpu_

prometheus_exporter/.
[32] Prometheus operator. https://github.com/prometheus-operator/prometheus-

operator.
[33] Prometheus client library. https://github.com/prometheus/client_python/.
[34] Prometheus http api. https://prometheus.io/docs/prometheus/latest/querying/

api/.
[35] Prometheus query language. https://prometheus.io/docs/prometheus/latest/

querying/basics/.
[36] The virat video dataset. https://viratdata.org/.
[37] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,

Paramvir Bahl, and Michael J. Freedman. Live video analytics at scale with
approximation and Delay-Tolerance. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 377–392, Boston, MA, March
2017. USENIX Association.

[38] Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang. Better never than
late: Timely edge video analytics over the air. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’21, page 426–432,
New York, NY, USA, 2021. Association for Computing Machinery.

[39] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth Garg.
Model-Switching: Dealing with fluctuating workloads in Machine-Learning-as-
a-Service systems. In 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20). USENIX Association, July 2020.

[40] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonza-
lez, and Ion Stoica. Clipper: A Low-Latency online prediction serving system. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pages 613–627, Boston, MA, March 2017. USENIX Association.

[41] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. Deep-
decision: A mobile deep learning framework for edge video analytics. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pages 1421–1429,
2018.

[42] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis. INFaaS:
Automated model-less inference serving. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 397–411. USENIX Association, July 2021.

39

