
WattScope: Non-intrusive Application-level Power Disaggregation
in Datacenters

Xiaoding Guan, Noman Bashir, David Irwin, Prashant Shenoy

University of Massachusetts Amherst

Abstract

Datacenter capacity is growing exponentially to satisfy the increasing demand for many emerging
computationally-intensive applications, such as deep learning. This trend has led to concerns over data-
centers’ increasing energy consumption and carbon footprint. The most basic prerequisite for optimizing
a datacenter’s energy- and carbon-efficiency is accurately monitoring and attributing energy consumption
to specific users and applications. Since datacenter servers tend to be multi-tenant, i.e., they host many
applications, server- and rack-level power monitoring alone does not provide insight into the energy usage
and carbon emissions of their resident applications. At the same time, current application-level energy mon-
itoring and attribution techniques are intrusive: they require privileged access to servers and necessitate
coordinated support in hardware and software, neither of which is always possible in cloud environments. To
address the problem, we design WattScope, a system for non-intrusively estimating the power consumption
of individual applications using external measurements of a server’s aggregate power usage and without
requiring direct access to the server’s operating system or applications. Our key insight is that, based on
an analysis of production traces, the power characteristics of datacenter workloads, e.g., low variability, low
magnitude, and high periodicity, are highly amenable to disaggregation of a server’s total power consump-
tion into application-specific values. WattScope adapts and extends a machine learning-based technique for
disaggregating building power and applies it to server- and rack-level power meter measurements that are
already available in data centers. We evaluate WattScope’s accuracy on a production workload and show
that it yields high accuracy, e.g., often <∼10% normalized mean absolute error, and is thus a potentially
useful tool for datacenters in externally monitoring application-level power usage.

1. Introduction

Datacenter capacity is growing exponentially to satisfy the increasing demand for many emerging com-
putationally intensive applications. For example, a recent analysis estimated a 6× increase in datacenter
capacity from 2010-2018 (or ∼22% per year) [1] with capacity doubling in the past five years [2]. This capac-
ity increase is being driven by a variety of emerging application classes, such as cryptomining [3], machine
learning (ML), and other big-data processing. As one example, over the past decade, the cycles devoted to
training state-of-the-art ML models has been doubling every 3.4 months, which is much faster than Moore’s
Law [4]. Of course, increases in datacenter capacity have also led to increases in their energy consumption
despite substantial improvements in their energy-efficiency over the past decade [5, 6, 7, 8, 9]. Unfortunately,
datacenter energy usage is poised to increase substantially in the coming decade due to the end of Dennard
scaling and limited opportunities for further significant improvements in datacenter energy efficiency. For
example, Google datacenters’ Power Usage Effectiveness (PUE)—the ratio of their total energy to the energy
of IT equipment—is now ∼1.1, which is already near the optimal value of 1 [10].

The trends above have led to increasing concern and criticism over datacenters’ energy consumption and
their resulting carbon footprint. As a result, many cloud providers and datacenter operators have begun
to increase their emphasis on energy-efficient and sustainable operations. Indeed, prominent technology
companies, including Google, Amazon, Meta, and Microsoft, have set ambitious goals to become carbon-
neutral [11, 12, 13], carbon-free [14], or even carbon-negative [15] within the next 10-20 years. Importantly,
the simplest and most basic prerequisite for optimizing a datacenter’s energy- and carbon-efficiency is pro-
viding applications visibility into their power consumption, as they cannot optimize a metric they cannot

Preprint submitted to Performance Evaluation September 24, 2023

measure. Datacenters are well-instrumented with external power meters typically attached to rack-level
power distribution units (PDUs) and individual servers. However, rack- and server-level power monitoring
does not provide insight into the power consumed by individual applications, since servers are multi-tenant
and host multiple applications. Even when a server runs a single application, external power usage data
is often not exposed to the application. While some servers may support internal hardware-level power
monitoring, such as Intel’s RAPL [16], they cannot directly monitor power at the granularity of individual
applications. In addition, internal hardware-level power monitoring is typically a highly inaccurate measure-
ment of the total system power (with up to 70% error), as we discuss §2, since it only measures the power
of CPU sockets and memory, and thus does not capture the power usage of any other important system
components, such as the power supply, motherboard, I/O devices, and GPUs. Notably, these other system
components are accounting for an increasingly large share of server power consumption.

Prior work has developed techniques for attributing server-level power to applications, which generally
involve apportioning a server’s total power usage based on each application’s resource utilization. One
common approach involves training a model that takes per-process hardware performance counters as input
and infers a corresponding power usage, e.g., from RAPL. For example, PowerAPI is an open-source toolkit
that uses such techniques to monitor application-level power [17, 18, 19]. However, such approaches require
access to the hardware performance counters. There are many scenarios, which we summarize below, where
access to hardware counters is either not available or too intrusive. (i) Most importantly, prior approaches do
not apply well to cloud users. While cloud providers can use prior approaches to track the power consumption
of users’ virtual machines, users that host multiple applications within each virtual machine cannot attribute
power to each application, since they lack privileged access to hardware counters. Thus, existing techniques
are not applicable to cloud users. (ii) In addition, process-level power monitoring techniques are intrusive,
as they require server resources that scale with the number of processes tracked, as well as the power data
resolution. This overhead can be high when tracking many applications at high resolution, and becomes
prohibitive at some point. (iii) Further, since hardware interfaces are not standardized, existing in situ
techniques are not general and must be tailored to specific hardware platforms. For example, PowerAPI uses
RAPL, which is only available on Intel processors. Since the set of hardware counters also varies by platform,
existing power monitoring toolkits are primarily designed for Intel or AMD platforms, but generally do not
support Power-, ARM-, and RISCV-based platforms. The limitations above are the primary reason that
fine-grained application-level power monitoring is not offered by cloud providers. This lack of support in-turn
prevents cloud applications from optimizing their energy consumption and carbon emissions. Ultimately, the
lack of application-level visibility into energy consumption is a key impediment to achieving the ambitious
sustainability goals above, as it is impossible to optimize a metric that cannot be effectively measured.

To address the problem, we design WattScope, a system for non-intrusively monitoring application-
level power consumption using aggregate server-level power measurements. WattScope uses disaggregation
techniques to apportion power data from external server- and rack-level power meters, which are typically
available in power distribution units (PDUs), into individual application-level power usage without requiring
intrusive access to system and application software. WattScope recognizes that datacenters already collect
server- and rack-level power data for thermal management and billing purposes, which can be leveraged to
also provide application-level power monitoring. Thus, WattScope analyzes power data collected from these
external meters to infer each application’s power usage. More formally, WattScope disaggregates a time-series
of power readings P (t), over some sampling interval ∆t, into a separate time-series pi(t) for each individual
application i, such that ∀t, P (t) =

∑
i pi(t). Importantly, WattScope does not require any server-level access

or specific hardware/software support, and instead can run externally as part of the facility management
system. As a result, WattScope can be deployed in nearly any datacenter facility with PDUs that measure
server- and rack-level power. Our key insight is that, based on a large-scale analysis of production traces,
the power characteristics of datacenter workloads, e.g., low variability, low magnitude, and high periodicity,
are highly amenable to disaggregation. WattScope adapts and extends a deep learning-based technique,
originally designed for disaggregating building power, and applies it to servers and racks. We implement
WattScope and experimentally evaluate its accuracy on a production workload.

Our hypothesis is that disaggregating server- and rack-level power using WattScope can enable highly
accurate and non-intrusive application-level power monitoring without requiring any server-level hard-
ware/software support. In evaluating our hypothesis, we make the following contributions.
Production Workload Analysis. We first analyze the job characteristics of a large-scale production

2

workload from a major cloud provider that includes 5-minute resource usage readings for 2.7 million jobs
over a 30 day period encompassing more than 100 million job-hours. Our analysis reveals that job usage
patterns exhibit multiple characteristics, including low variability, low magnitude, and high periodicity, that
WattScope can potentially exploit for disaggregation. Our analysis also shows that, while server applications
can operate arbitrarily and irregularly in general, they have a high degree of regularity in practice.
WattScope Design. We present WattScope’s design, which adapts and extends a deep learning-based
disaggregation algorithm originally applied to building power data. WattScope’s design includes a library
of models trained for different classes of applications based on their variability, magnitude, and periodicity.
WattScope then integrates with a cluster scheduler to learn the number and type of applications running on
each server, i.e., based on their attributes, to select an appropriate model for disaggregation.
Implementation and Evaluation. Finally, we implement and evaluate a WattScope prototype. We
implement WattScope’s disaggregation technique by modifying nilmtk-contrib [20], an open-source reference
implementation of multiple algorithms for building energy disaggregation, to instead disaggregate server-
and rack-level power, and evaluate accuracy across multiple dimensions using our production workload
trace. We evaluate WattScope’s accuracy on a production workload and show that it yields high accuracy,
e.g., often <∼10% normalized mean absolute error, and is thus a potentially useful tool for broadly enabling
application-level power monitoring in datacenters.

2. Motivation and Background

A key motivation for our work is that providing application-level visibility and monitoring of power usage
is essential to satisfying companies’ ambitious sustainability goals. Indeed, the U.S. Securities and Exchange
commission may soon require companies, including those using shared server/cloud resources, to report
their carbon emissions from energy usage [21]. In addition, while there has long been a strong incentive to
optimize computing’s energy-efficiency, since energy incurs a cost, optimizing computing’s carbon emissions
is different, as energy’s carbon-intensity varies over time and by region based on the energy mix, e.g., fossil
fuels, nuclear, and renewables [22]. As a result, reducing carbon emissions often necessitates monitoring and
adapting application power usage over time in response to changes in energy’s carbon-intensity.

Our work assumes that a datacenter has external power meters deployed at each server (or rack) that
are capable of continuously monitoring server (or rack) power P (t) (in watts) over some interval ∆t, e.g.,
every 5 minutes. Datacenter servers generally include external power meters and make them available
programmatically in real-time via network protocols, such as IPMI [23] or Redfish [24], to facility management
systems. External power monitoring is necessary for basic datacenter operations, such as fault identification
and billing. In addition, even if individual servers do not include external power meters, power distribution
units (PDUs) that provide power to servers in one or more racks also typically include them.

In general, the data above is collected as part of facility management and is not exposed to application-
or system-level software. Instead, application- and system-level power monitoring typically uses internal
hardware and software support. For example, PowerAPI [17, 18, 19] leverages a model that maps hardware
counters and RAPL readings to application-level power consumption. However, since hardware support is
not standardized, this approach is not general. In addition, as mentioned in §1, RAPL, which measures
CPU socket and memory power, often does not provide an accurate measurement of full system power.
To illustrate Figure 1 shows the absolute (a) and percentage (b) error in RAPL power measurements for
a traditional server compared to an external power meter that directly measures the server’s power. In
this case, the server’s maximum power at 100% utilization is 175W. The figure illustrates that since RAPL
measurements only account for a subset of the server’s hardware resources, they capture only between 30-40%
of the total power a server actually consumes. In addition, RAPL measurement errors vary widely—from
75-110W (a) or 60-70% (b)—depending on the server’s utilization. In addition, these errors would likely be
much worse for modern servers with GPUs, since RAPL measurements do not include GPUs. While GPUs
often have their own internal interfaces for monitoring power, these are also not standardized or general. Of
course, RAPL only measures CPU socket and memory power, and not application power, so even if RAPL
measurements were accurate, an additional server-specific model is necessary to map application resource
usage, e.g., using hardware counters, to the fraction of power an application consumes.

Importantly, WattScope does not assume any hardware or software support on any server, and does
not require training a server-specific model. However, after disaggregating a server’s power into the power

3

0 20 40 60 80 100
CPU Utilization (%)

0

20

40

60

80

100

120
Er

ro
r(W

)

0 20 40 60 80 100
CPU Utilization (%)

0

20

40

60

80

100

Er
ro

r(%
)

(a) Absolute Error (b) Percentage Error

Figure 1: Absolute (a) and percentage (b) error in measuring a traditional server’s power using RAPL, which is Intel’s
internal power monitoring platform.

usage of individual applications, mapping the applications to specific application names running on servers
is often important. Thus, WattScope assumes a minimal interface to integrate with a cluster-level scheduler
that provides, in addition to the number of applications running on a server, the names of the applications
running on it and a minimal amount of coarse summary usage characteristics, e.g., variability, magnitude, and
periodicity. As we discuss, schedulers typically provide the former, while the latter is simple to implement.

WattScope builds on prior work on energy disaggregation or non-intrusive load monitoring (NILM) for
buildings, which infers the average power usage pi(t) of each building load i at time t given the building’s
average power usage P (t) measured at an external smart meter over some interval ∆t. Importantly, the
prior work on NILM has shown that disaggregation accuracy varies widely based on loads’ power signatures,
i.e., their pattern of power usage [20]. For example, disaggregating large loads, such as electric dryers, is
more accurate than small ones, since the power signature of such loads is more distinctive in a building’s
aggregate power usage. Similarly, disaggregating highly periodic loads and those with discrete power states,
such as refrigerators or water heaters, is more accurate than noisy loads that are highly variable, such as
many electronics. Finally, larger buildings with more loads decrease disaggregation accuracy, as it becomes
more difficult for algorithms to extract power signatures for individual loads.

Given the importance of power usage characteristics on the effectiveness of disaggregation, we next
analyze a production workload trace to understand the resource and power usage characteristics of real
cloud applications. Since server applications can exhibit highly variable resource and power usage, there
is no guarantee that their characteristics will be amenable to disaggregation, as with electric dryers, water
heaters, refrigerators, etc. In addition, unlike buildings, which consist of a common set of appliances, the
number and types of server applications is not fixed. As a result, it is not clear a priori whether disaggregation
methods can be applied to server applications.

3. Production Workload Analysis

To guide WattScope’s design, we conduct a large-scale analysis of production workloads, that provide in-
formation for individual virtual machines (VMs), containers, or application tasks, to quantify their regularity,
variability, and intensity i.e., magnitude, in resource and power usage.

3.1. Analysis Setup

Below, we provide details on the workload traces, power models, and metrics we use in our analysis.

4

0 20 40 60 80 100
CPU Utilization (%)

0

20

40

60

80

100

120

140

160

180
Po

we
r (

W
)

Regression

0 20 40 60 80 100
Memory Usage (%)

0

20

40

60

80

100

120

140

160

180

Po
we

r (
W

)

Regression

(a) Power vs. CPU Utilization (b) Power vs. Memory Usage

Figure 2: Relationship between power consumption of a server and its CPU utilization (at fixed memory usage)
and memory usage (at fixed CPU utilization) when replaying production workload traces on a physical server and
monitoring power consumption using an external power meter.

Workload Traces. To evaluate WattScope’s efficacy, we require a dataset that provides ground truth
power information for different VMs or processes running on a server along with the server’s aggregate
power usage. While external power meters can record server-level power consumption, it is not possible
to instrument individual VMs or processes with a physical power meter and record their usage, as they
are virtual and not physical. As discussed in §1, prior work has developed other methods using hardware
performance counters to build models that estimate per-VM or per-process power consumption [25]. However,
such methods are highly intrusive, incur an overhead, and are thus not widely deployed in practice. As
a result, to the best of our knowledge, there is no publicly available dataset that provides power usage
information for individual VMs and application processes on servers. Consequently, we construct such a
ground-truth trace from publicly-available CPU and memory workload traces and use them to derive server
power consumption, i.e., by mapping the usage information to power.

To generate power consumption traces for our analysis, and later evaluation of WattScope in §6, we use
two of the most commonly used industry workload traces: Microsoft Azure Traces (V2) [26] and Google
Cluster Workload Traces (V3) [27]. The Azure trace provides the minimum, maximum, and average CPU
utilization and memory allocation for ∼2.7 million production VMs every 5 minutes over a 30-day period.
The Azure trace has a size of 235GB and contains ∼1.9 billion readings. The Google cluster workload
trace provides average CPU usage, CPU usage histograms, and memory usage information of jobs for each
5 minute period over a 31-day period. The Google trace contains data for ∼2.5 million jobs from 96.4k
physical servers spread across 8 datacenters. In the Azure dataset, we assume each VM hosts a different
application or job. For uniformity and ease of exposition, henceforth, we also refer to Azure VMs as jobs.

Power Model. A traditional server consists of multiple components that consume power including
CPUs, memory, and I/O devices, e.g., network card, disk, etc. Prior work shows that a traditional server’s
power consumption primarily depends on its CPU utilization [25], since the contribution from other com-
ponents is nearly constant and not dependent on their usage. However, as memory sizes in servers increase
to support data-intensive applications and memory technology improves to provide a more dynamic power
range, memory power consumption is becoming both a significant part of system-level power and also usage-
dependent. As a result, to construct our power usage traces, we use both CPU and memory usage information
in the traces above to estimate server power consumption.

To derive our server power consumption traces, we conduct an empirical study that maps a job’s CPU
utilization and memory usage to its power consumption on an example physical server. We randomly sample
10,000 usage readings from each of the Azure and Google traces. We then replay them on our physical server

5

connected to an external power meter that records server-level power consumption. To replay traces, we
use the stress-ng tool [28] that stresses a server’s CPUs, memory, and network interface based on the time-
varying resource usage information provided in the workload traces. We only stress CPU and memory as
both traces only provide CPU and memory usage information and measure the resulting power consumption
of the server under that workload.

Figure 2(a) shows the actual measurements of power when only the CPU was stressed, along with a cubic
polynomial fit to the data using the ordinary least squares method. We note that even though power and
CPU utilization exhibit a clear relationship, it is non-linear and will vary across different types of servers.
Figure 2(b) then shows the actual measurement of power at varying memory usage at a fixed CPU utilization.
We can see that the power consumption varies both with CPU and memory usage. We sample power data
from the results of these experiments to define a power model, which converts usage information in our traces
to power consumption. For example, if a job has a 50% CPU utilization and consumes 1GB of memory, we
sample a random data point from the previous experiments that were run with these configurations. The
variations in power for a given configuration are due to the use of other server components.

Figure 2 also illustrates that, in general, servers are not energy-proportional, and thus may consume
substantial, roughly static baseload power when idle. In Figure 2, the baseload power (105W) is ∼60%
of peak power (175W). The baseload-to-peak power ratio varies widely across servers, generally between
30-70%. Our work focuses primarily on attributing a server’s marginal power, i.e., between its baseload
and peak power, to applications based on their resource usage, since attributing baseload power is largely
a subjective policy choice. Our dissagregation approach is compatible with any policy. As we discuss in
§4, we attribute a server’s baseload power to applications in proportion to their resource usage (at any give
time). However, another policy choice might be to first remove baseload power, and attribute it equally to
all applications (regardless of their resource usage).

3.2. Qualitative Analysis

Using the power consumption traces we construct above, we analyze the workload characteristics relevant
to disaggregation accuracy including power usage variability, regularity, and intensity.

Variability refers to the extent or degree of fluctuation or variation in the power consumption of a
given job over time. Our evaluation results in §6 show that variability is one of the most important factors
in determining disaggregation accuracy. This is intuitive: if a job has a non-variable, or constant, power
consumption pattern, it is simple to disaggregate, as a model need only learn this constant pattern. We
quantify variability using the Coefficient of Variation (CoV), which is defined as the ratio between the
standard deviation of a time series over its mean. CoV can have values between 0 and ∞ with a CoV greater
than 1 typically considered high, i.e., with a standard deviation greater than the average.

To illustrate, Figure 3 shows example time-series of average power (on the y-axis) for four jobs in the
Azure trace with different values of coefficient of variation of 2, 0.5, 0.1, and 0. As expected, high CoV
values translate to more frequent and larger variations in power usage, although, as the figure shows, these
variations are not necessarily random. For a CoV of 2 (a), the power usage is highly random and does
not repeat with any specific pattern. In contrast, a job with CoV of 0.5 (b) exhibits a distinct pattern of
variability in power usage and appears to have a regular pattern that repeats over both 24 hour and 7 day
intervals. Of course, a lower CoV does not always indicate a regular pattern of usage. Indeed, the job with
CoV of 0.1 (c) does not exhibit any repeated pattern of usage, and is more volatile than the job with CoV
of 0.5 Finally, a CoV of 0 (d) indicates a constant power consumption, such that jobs with low CoV values
can be more easily disaggregated with higher accuracy.

CoV is only one metric that correlates with disaggregation accuracy. We next look at the regularity of
the power consumption, which is also related to disaggregation accuracy.

Regularity refers to the degree to which a given job’s power consumption follows a repeating pattern
over time. Prior work on building energy disaggregation shows that a variable time-series with periodic
behavior improves disaggregation accuracy, regardless of its variability. If the pattern of power consumption
is perfectly regular and always repeats the same pattern at regular intervals, e.g., every 24 hours, then a
model need only learn this pattern to disaggregate a job’s power consumption.

To quantify regularity, we use time-series decomposition that distills our power usage time-series data into
its trend, seasonality, and residual (or noise) components, and then apply period detection to the seasonal

6

0 5 10 15 20 25 30
Time(day)

0
50

100
150
200

Po
we

r (
W

)

0 5 10 15 20 25 30
Time(day)

0
50

100
150
200

Po
we

r (
W

)

(a) CoV=2 (b) CoV=0.5

0 5 10 15 20 25 30
Time(day)

0

20

40

60

Po
we

r (
W

)

0 5 10 15 20 25 30
Time(day)

190.0
192.5
195.0
197.5
200.0

Po
we

r (
W

)
(c) CoV=0.1 (d) CoV=0

Figure 3: Illustrative time-series of power consumption for jobs (a-c) with different coefficient of variation (2, 0.5,
0.1), along with an example of a job with 0 coefficient of variation.

component [29]. The seasonal component represents patterns in the data that repeat over time, while the
time between these repeated patterns represents the period. Of course, our time-series data is noisy such
that similar, but not exact, patterns of power usage may repeat, and at periodic intervals that vary slightly.
Thus, given the noise in the power usage data, simply translating it into the frequency domain and applying
a threshold or using autocorrelation is not sufficient for accurate period detection, as discussed in prior
work [30]. Specifically, application power usage, even when periodic, is often noisy with many interruptions
and random load periods; in addition, periodic behavior also often exhibits increasing or decreasing trends
with potentially wide variations in the peaks and troughs power usage [30].

Given the size of the dataset, we leverage builtin functions in the Azure Data Explorer [31] tool to detect
regular periods in our power consumption, which includes an optimized implementation of the basic time-
series decomposition functions above. Specifically, we used the series periods detect() function in Azure
DataExplorer [32]. This period detection algorithm detects time-series periods and assigns them a score in
the range [0, 1) where higher values indicate more intense and regular periodicity, i.e., with less deviation
and noise in both the pattern and interval of repetition. The algorithm reports any periods detected with a
non-zero score, and in most cases, it reports many periods for any given time-series. For example, a time-
series that has a 4-hour period likely also has a 24-hour period, although variance in the pattern and interval
of repetition may cause the 24-hour period to have a different score. In general, we focus our analysis on
the most dominant period that has the highest score. Finally, our time-series decomposition analysis also
assigns jobs without any periods a score of 0.

To illustrate, Figure 4 shows power usage time-series for four jobs that have the same 24-hour period,
but with different scores of 0.9, 0.5, 0.1, and 0. The figure shows how high scores translate to both high
similarity in the pattern of power usage along with the interval between the patterns. Note that we call the
repetitive pattern of power usage the power signature. For a score of 0.9 (a), the power signature is relatively
simple, and nearly the same each time, and repeats at nearly precise 24 hour intervals. In contrast, a job
with a 0.5 score (b) is more variable: there is clearly a repetitive pattern roughly every 24 hours (and also
every 4 hours and at even smaller intervals), but the magnitude of the power signature, while often similar,
exhibits some distinct variability. In particular, there is a large spike on the second day along with some
smaller variations across the other days. Similarly, the job with 0.1 score (c) exhibits even more noise with
a less apparent 24-hour period, while the job with 0 score (d) has no discernible period and appears to be
random noise. Similarly, Figure 5 shows data from jobs with the same score of 0.5, but for different periods.

7

0 1 2 3 4
Time(day)

50

100

150
Po

we
r (

W
)

0 1 2 3 4
Time(day)

0

50

100

150

Po
we

r (
W

)

(a) 24-hour, 0.9 (b) 24-hour, 0.5

0 1 2 3 4
Time(day)

0

20

40

60

Po
we

r (
W

)

0 1 2 3 4
Time(day)

90
95

100
105
110

Po
we

r (
W

)
(c) 24-hour, 0.1 (d) No period, 0

Figure 4: Illustrative time-series of power consumption for jobs with detected periods of length 24-hours (a-c) with
different scores (0.9, 0.5, 0.1), along with an example of a job with no period and a score of 0.

0.0 0.2 0.4 0.6 0.8 1.0
Time(day)

0

20

40

60

Po
we

r (
W

)

0 1 2 3 4 5 6
Time(day)

0
20
40
60
80

Po
we

r (
W

)

0 5 10 15 20 25
Time(day)

0

50

100

150

Po
we

r (
W

)

(a) 6-hour, 0.5 (b) 2-day, 0.5 (c) 7-day, 0.5

Figure 5: Illustrative time-series of power consumption for jobs with detected periods of length 6-hours, 3-days, and
7-days, all with scores of 0.5.

This figure demonstrates that time-series decomposition can recognize a range of different period intervals.
The figures above show that high periodicity scores translate to power signatures that repeat at a regular

periodic interval, such that a higher score represents more similarity and regularity with less noise. As
the score decreases, the similarity in the power signatures and strength of the periodicity both decrease,
but are still clearly evident, while the noise level, i.e., variability, increases. These empirical observations of
periodicity on these and other jobs in our dataset indicate that any positive score represents some periodicity
in the signal that is potentially useful in disaggregating application power usage. Likewise, Figure 4(d) shows
that a 0 score indicates a random or noisy power with no discernible regular pattern of usage.

Intensity refers to a job’s average magnitude of power consumption. We quantify intensity using a job’s
average power with a range between 0 and the maximum server power. A high or low value of average power
is better for disaggregation. A job with very high or very low intensity is easier to disaggregate compared
with a medium-intensity job, since the high/low-intensity jobs have less room for variation in their power
consumption. That is, if the average power consumption is near the server’s maximum or minimum power
it means that any deviations from the average must be brief.

To illustrate, Figure 6 shows example time-series of power usage (on the y-axis) for three jobs that have
different average power magnitudes of 15W, 60W, and 180W. The figure shows that both high and low
magnitudes (a,c) have less room for variation and a less dynamic range of power consumption. As a result,
the power consumption patterns at both extremes are, almost by definition, relatively constant. However,
the average magnitude values, e.g., 100W (b), can come from highly variable power usage patterns, which
makes accurate disaggregation more challenging.

8

0 5 10 15 20 25 30
Time(day)

0
10
20
30
40

Po
we

r (
W

)

0 5 10 15 20 25 30
Time(day)

0
50

100
150
200

Po
we

r (
W

)

0 5 10 15 20 25 30
Time(day)

50
100
150
200
250

Po
we

r (
W

)

(a) 10 watts (b) 100 watts (c) 180 watts

Figure 6: Illustrative time-series of power consumption for jobs with average magnitude of 10W, 100W, and 180W.

3.3. Large-scale Quantitative Analysis

In this section, so far, we have defined the various characteristics of real-world workloads that can impact
disaggregation accuracy and presented illustrative figures to develop an intuitive understanding of each
metric. Below, we present results quantifying the presence of these characteristics in real workloads.

Figure 7(a) shows a histogram of the CoV for each quintile between 0 and 1 for 10,000 jobs randomly
sampled from the Azure trace, as well as the percentage of jobs with CoV greater than 1. In general, CoV’s
below 1 are considered low, i.e., with standard deviation less than the mean, and those above 1 are considered
high. The graph shows that the vast majority (74.5%) of jobs in the Azure trace have CoV’s less than 0.6.
While most of these jobs have some variation (63.2% have CoVs between 0.2 and 0.6), it is generally low.
In addition, only 12.3% of jobs have high CoV’s greater than 1 that would make accurate disaggregation
especially challenging. Thus, our large-scale analysis of variability indicates that the vast majority of jobs
have low variability that is amenable to accurate disaggregation. Figure 7(b) next shows a histogram of the
regularity in job power usage, where the x-axis represents periodicity scores in deciles, and the y-axis is the
fraction of jobs with their highest periodicity score in that range. The analysis shows that over 91% of jobs
exhibit some non-zero periodicity with over half of jobs exhibiting strong periodicity scores above 0.5. In
contrast, only 9% of jobs exhibit no detectable periodic behavior in their power usage. Next, Figure 7(c)
shows the distribution of average power consumption for the jobs. The graph shows that most jobs have
very lower power consumption; 43% have less than 10W power consumption, assuming they run on a server
with 200W maximum power, and 84.9% have less than 30W power consumption. These power consumption
values correspond to roughly 5% and 15% resource utilization on a 200W server.

Finally, in addition to the individual distributions, we show the distribution of CoV, periodicity, and
magnitude for a randomly sampled 1000 VMs from the 10,000 jobs in Figure 7(d). In this graph, the
magnitude of average power consumption is on the x-axis, the CoV is on the y-axis, and the size of each
datapoint represents the periodicity score. The overall takeaway is that majority of jobs in our trace have low
magnitude and CoV, while also frequently exhibiting regular and periodic patterns of power consumption.
As a result, real-world workloads are highly amenable to energy disaggregation. In particular, our analysis
above indicates that, while server applications do not have to exhibit regularity in their power usage, at
production scales they tend to be highly regular with little noise. This is likely due to the fact that most
jobs at large scales are deployed to serve a specific purpose and type of workload with a regular pattern
of power usage. In addition, the periodic intervals cover a wide range, which indicates that different jobs
have widely different patterns of power usage. In addition to distinctive periods, real jobs also tend to have
distinctive power signatures during their active periods, i.e., the magnitude and pattern of power usage when
active, relative to other jobs. Yet, these distinctive power signatures for each job tend to be highly similar
across different active periods. The example jobs in Figures 4 and 5 illustrate both of these characteristics,
i.e., distinctive power signatures across different jobs but similar within the same jobs.

3.4. Implications of Analysis

Our analysis above demonstrates not only is there significant potential to disaggregate application-level
server power, but production workload characteristics suggest that disaggregation may actually be much
more effective when disaggregating server power compared to its original use in disaggregating building power
into individual electrical loads for numerous reasons. Specifically, while many large electrical loads exhibit
periodicity, they are often thermostatically-driven, so the periodic interval varies based on environmental
conditions or user behavior. In contrast, from our analysis, many jobs’ power usage tend be have deterministic
periods, i.e., likely in some cases driven by timers as cron jobs. In addition, job power signatures tend to be

9

(0,0.2]

(0.2,0.4]

(0.4,0.6]

(0.6,0.8]

(0.8,1.0]
 >1.0

Coefficient of Variance

0

10

20

30

40

50

Pe
rc

en
ta

ge
s o

f V
M

s (
%

)

11.3

38.4

24.8

8.6
4.6

12.3

[0
]

(0
,0

.1
]

(0
.1

,0
.2

]
(0

.2
,0

.3
]

(0
.3

,0
.4

]
(0

.4
,0

.5
]

(0
.5

,0
.6

]
(0

.6
,0

.7
]

(0
.7

,0
.8

]
(0

.8
,0

.9
]

(0
.9

,1
.0

]

Periodicity Scores

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f V
M

s (
%

)

9

2

10

13
11 11

9
11

10 10

4

(a) Coefficient of Variation Distribution (b) Periodicity Score Distribution

(0
,1

0]
(1

0,
20

]
(2

0,
30

]
(3

0,
40

]
(4

0,
50

]
(5

0,
60

]
(6

0,
70

]
(7

0,
80

]
(8

0,
90

]
(9

0,
10

0]
>10

0

Magnitudes (W)

0

10

20

30

40

50

Pe
rc

en
ta

ge
s o

f V
M

s (
%

) 43.0

28.1

13.8

4.4 2.8 1.9 1.1 1.0 0.7 1.2 1.9

20 40 60 80 100 120 140 160 180
Magnitudes (W)

1

2

3

4

5

Co
ef

fic
ie

nt
 o

f V
ar

ia
nc

e(
Co

V)

(c) Magnitude Distribution (d) Combined

Figure 7: Distribution of coefficient of variance (a), periodicity score (b), and magnitude (c) from a random sample
of 10,000 jobs in Azure workload trace. The analysis shows that job power consumption at large scales is less variable
and highly periodic. The average power consumption is also low and consistent across jobs regardless of their CoV
or score. Finally, (d) shows the CoV, periodicity score, and magnitude for for 1000 jobs to illustrate most jobs score
low on CoV and magnitude.

highly distinctive and thus identifiable in the aggregate power due to the wide variability in how applications
exercise resources. In contrast, electrical loads typically exercise power in highly similar ways, which makes
distinguishing them in the aggregate power signal P (t) more challenging. For example, the large majority
of electrical loads consist of either resistive heating elements (e.g., coffee makers, toasters, ovens, etc.),
motors (e.g., vacuums, AC compressors, fans, etc.), or both (e.g., electric dryers), which have similar power
signatures [33, 34]. Finally, given our analysis above, there will likely be few co-located jobs on any server
that either have no periods, or have the same overlapping period interval (which would reduce disaggregation
accuracy). Further, even if multiple “noisy” jobs with no period were co-located, their power usage is likely
to be low, and thus likely to only minimally affect the accuracy of disaggregating other jobs that oscillate
between periods of high power usage and low power usage.

4. WattScope Design

In this section, we present the design WattScope, our system for non-intrusively monitoring application-
level power consumption by disaggregating power data from external server- and rack-level power meters.

10

VM
, J

ob
, T

as
k,

 o
r A

pp
lic

at
io

n

N

ra
ck

 1
ra

ck
 2

ra
ck

 N

Node
Manager

server N21

Power Metering Server

Cluster Manager server/VM
meta info.

rack/server
power info.

WattScope

Per-server
or

per-application
power

Performance
Monitor

Training Module

Trained Models
Library

Model Trainer

2 4 N

2

1

3

Disaggregator

Model
Selector

Per-App
Disaggregator

Offline Online

Figure 8: WattScope overview and its three key components: model trainer, disaggregator, and performance monitor.

Below, we describe WattScope’s overall system architecture and its different components for training disag-
gregation models and using them to disaggregate external power data.

Figure 8 shows WattScope’s architecture for non-intrusive application-level power monitoring. WattScope
is implemented as a cluster-level system for monitoring application-level power in datacenters that does not
require any hardware or software support on the servers running the applications. The only requirement is a
network-accessible external power meter that monitors each server’s power, which most datacenters already
have. As in a typical datacenter, WattScope assumes users submit their workload to a cluster manager in
the form of individual jobs or tasks, which run inside containers or VMs. The cluster manager schedules
the jobs on one of the servers depending on resource availability and job placement constraints. The cluster
manager, or the node manager, keeps track of the high-level category and placement for each job, such as their
scheduling priority, nature of the job (service, batch, or interactive), and user information. All datacenters
need such information for scheduling and billing purposes. Optionally, the cluster manager may collect
information on the resource usage for all the jobs, such as CPU utilization and memory usage. While such
information is not necessary for disaggregation, WattScope can opportunistically use it during the training
process if available. There is also an external power monitoring server that records the power consumption
at the server- or rack-level over a pre-defined sampling interval ∆t and exposes that information through an
API. WattScope takes the server- or job-level meta information and rack- or server-level aggregate power
consumption and reports the server- or job-level power consumption. While WattScope can disaggregate
rack-level power consumption into servers, we focus primarily on disaggregating server-level power into
application-level power consumption information in the remainder of this section.

Importantly, WattScope assumes that resource allocations for applications are reserved and not best-
effort. If resources are allocated best-effort, then applications’ variations in resource usage and power is a
function of not only their own behavior, but also the behavior of co-located applications. In this case, the
scheduler would dictate applications’ resource and power variations rather than their own behavior, which
would prevent training our models below. However, our assumption of reserved resources generally holds for
production schedulers in industry, such as Borg [35]. While production schedulers do overcommit resources,
i.e., by reserving allocating more resources than exist on a server, they attempt to minimize application
throttling, i.e., where applications attempt to use their reserved resources but they are not available. Prior
work shows that production schedulers rarely throttle applications [36]. As a result, a cluster manager’s
effectiveness at packing jobs onto servers has no impact on the variability of a job’s resource usage.

In addition, the type of server a job runs on also affects its resource usage characteristics and power, which
also affects the efficacy of disaggregation models. In many cases, since jobs are not throttled, changing server
types will only alter the magnitude of the resource usage and not its variations. In addition, datacenters
often operate large clusters of homogeneous servers, which facilitates training models for each server family.
In general, there is a tradeoff between model accuracy and modeling cost.

WattScope consists of three key components (or modules): an offline model trainer, an online disaggre-
gator, and an online performance monitor. Below, we describe the function of each module in detail.

4.1. Model Trainer

The model trainer module’s task is to train a library of models that can then be used by the disaggregator.
While the model trainer can be modified to work as an online module, we design it as an offline module that

11

trains and stores multiple models. The model trainer takes three inputs: (i) ground truth application-level
power usage, (ii) aggregate server-level power usage, and (iii) meta information about the applications.

Inputs. First, to train an energy disaggregation model, we need ground truth application-level power
data. However, as discussed in §3, physically monitoring per-application power usage is not possible. To solve
this problem, we use alternative methods that provide approximate power consumption with varying levels
of accuracy. In particular, our approach is to use data collected by an intrusive software-based method for
application-level power monitoring, such as PowerAPI [25]. This data can be collected in the same datacenter
on a subset of machines running the representative workload or in another datacenter that has similar
workload characteristics. However, such fine-grained per-application power monitoring is not deployed in
practice. Thus, another option is to use the resource usage information, such as CPU and memory utilization,
as a proxy for estimating power consumption using a power model, such as the one we used in §3.1. Second, we
need the aggregate power consumption information for the server, which is typically collected in datacenters
for power management, billing, and cooling purposes. Third, the metadata information about the servers and
applications is used as a key for distinguishing trained models, which can later be used by the disaggregator
to select a model depending on the characteristics of the workload running on the server. This information
can include job type, hashed user information, job priority, or any other information that can be used to
identify a given job or class of jobs.

Training. Given our problem’s similarity to energy disaggregation in buildings, we examined numerous
existing approaches from the domain of building energy disaggregation [37]. In general, building energy
disaggregation techniques require a per-load model that captures characteristics of each load’s pattern of
energy usage. These models were initially simple and pre-configured, e.g., by specifying a small number of
discrete power states for each load, based on a priori knowledge of each load. However, recent approaches
have instead captured loads using machine learning models, e.g., neural networks, trained on datasets of
buildings where each load’s power is separately monitored to provide ground truth [37, 20]. While we
evaluate many of these approaches in §5, we adapt and extend a recently proposed sliding window approach
that uses deep neural networks (DNNs) as the basis for WattScope [38]. As we show in §5, this technique
provides the highest accuracy, in part, because it is best suited for the characteristics of loads like server
applications that have multiple (or continuous) power states.

Specifically, our sliding window approach takes a window w of data points as input that represent the
past w samples of a server’s aggregate power, e.g., [P (t−100), P (t−99), ..., P (t−1), P (t)]. As discussed in §3,
since we use the server’s aggregate power, rather than its marginal power, our approach implicitly attributes
a server’s baseload power to applications in proportion to their resource usage (at any give time). This input
feeds into a convolutional layer, which in-turn feeds into two bidirectional GRU (Gated Recurrent Unit) layers
and two dense layers, such that dropout units are inserted between these layers. Each of the layers uses an
ReLU (rectified linear unit) activation function except the last dense layer, which uses a linear activation
function. Ultimately, the output is the disaggregated power usage pi(t) for load i at time t. Prior work has
shown that replacing the GRU layers with LSTM layers results in similar accuracy across a wide range of
loads, but requires both more memory and computation for training. The model inserts dropout units, which
probabilistically drops outputs, to both prevent over-fitting and improve robustness with respect to missing
values. The window size is generally set to 50 − 100 datapoints, although the optimal window w may vary
for different loads. We discuss our model’s specific implementation details in §5, including the configuration
and hyperparameters of each layer. Note that a specific application’s load model is trained using data from
multiple servers, which may operate different sets of applications with different characteristics.

Model library. The set of background applications running on a server can significantly vary, over time
and across different servers, in terms of the number of applications and their characteristics. As a result,
it is not possible to train a model for each combination. If our power usage trace provides information on
the co-location of various applications, we train models for the most common co-location scenarios. There
is a trade-off between the number of models trained and disaggregation accuracy; the higher the number
of models, the higher the accuracy and vice versa. If the power usage trace does not provide co-location
information, such as in our Azure-based power trace, we randomly select different applications on a server
and train models for wide range of application combinations. All of the models are indexed by the metadata
information about the applications whose data was used to train a given model. For example, a model
trained with applications that have low variability, low regularity, and medium intensity is saved with this

12

information as a label, enabling it to be selected by the disaggregator’s model selector for applications with
similar characteristics.

4.2. Disaggregator

Formally, our disaggregation problem can be stated as follows: given a certain number of applications
running on a server, as indicated by the cluster-level scheduler, and the server’s aggregate power consumption
P (t) at time t, we need to infer the average power consumption pi(t) (over a sampling interval ∆t) attributable
to each application i. WattScope operates in real-time by inferring each application’s average power usage
over ∆t immediately after the external power meter reports a new power sample for the server. While we
assume a 5-minute sampling interval ∆t to match the resolution of our production trace, our approach is
applicable to any sampling interval on the order of seconds-to-minutes. Note that our approach can also
disaggregate average power usage (or equivalently energy) over coarser time intervals than the sampling
interval by simply averaging the inferred power usage over the coarser interval, e.g., to infer an application’s
energy usage over a month for billing purposes. In general, the longer the interval, the more accurate the
disaggregation.

The model selector component of the disaggregator selects a model from the library for disaggregation
depending on the characteristics of the applications running on the server. As the metadata information
provides high-level information for the applications, collectively used as a label for a model during the training
phase, the model selector uses that information to pick an appropriate model. As the current combination of
applications on the server may not exactly match any of the trained models, the model selector chooses the
closest model to use for disaggregation. The metric used to quantify “closeness” is subjective and depends
on the operator’s choice.

4.3. Performance Monitor

The performance monitor module keeps track of the currently deployed disaggregation model and sends
feedback to the model selector if the accuracy of the current model starts to degrade. To quantify the
performance of a given model, it compares the total allocated power to the applications with the ground
truth aggregate power consumption. Under normal circumstances, the error should be under some pre-
defined threshold. However, the error will increase if the number of applications or their characteristics
change. If a high error persists for more than a specified period of time, it sends a signal to the model
selector to select a new model for disaggregation.

5. Implementation

We implemented WattScope and seeded it with multiple job models trained using data from large-scale
Azure and Google production workload traces described in §3. The Google trace includes job co-location
information, i.e., which jobs are co-located on the same server, while the Azure trace does not. Since the
Azure trace only includes job-level average resource usage statistics, every 5 minutes and not server-level
placement information or power data, we use the trace to construct our own synthetic ground truth power
data for training. Specifically, we assume all jobs run within VMs (or containers), and each is given an equal
number of resources on a server and not throttled. To provide some context, we ascribe a maximum power of
200W to each job based on its resource allotment, such that each VM can independently consume up to 200W
when operating at full utilization, as in prior work [39]. We also assume that power consumption is related
to utilization based on the function from Figure 2. We then construct training datasets by simulating the
mixing of different jobs together on the same server, such that the server’s total power is 200W×n, where n is
the number of jobs. So, for example, a server in our training data that runs 5 jobs has a peak power of 1,000W
(or 5×200W). Our contextual parameterization of 200W is arbitrary, and only relevant to experiments that
cite power values. In most cases, we report normalized results that are not dependent on server power.
Note that, since we derive our ground truth power data from a resource-power model, our experimental
results using this data do not incorporate inaccuracies due to this model, but only quantify inaccuracy due
to disaggregation. There is substantial prior work on accurately modeling the relationship between resource
usage and power [25]. While we leverage this work, our approach is orthogonal to it.

Our approach above is general, and can apply to servers at any level of power consumption. Also, note
that the approach above would not mimic reality if the jobs running on a server consumed the entire CPU,

13

MAE (W) NMAE (%)
Models

job1 job2 job3 job4 job5
Aver
-aged

job1 job2 job3 job4 job5
Aver
-aged

Mean 20.88 4.95 20.33 41.80 2.78 18.15 36.93 27.46 38.99 29.55 29.71 32.53
CO 56.44 23.00 53.85 134.27 9.33 55.38 99.81 127.63 103.28 94.91 99.70 105.07

Exact
-FHMM

16.40 5.75 18.63 41.28 3.36 17.08 29.00 31.90 35.73 29.18 35.96 32.35

DAE 16.79 5.00 18.37 39.54 2.73 16.49 29.70 27.76 35.23 27.95 29.22 29.97
RNN 17.85 4.89 19.72 39.43 2.74 16.93 31.57 27.11 37.83 27.87 29.33 30.74

Seq2Seq 18.30 4.51 18.09 37.66 2.63 16.24 32.37 25.03 34.70 26.62 28.12 29.37
Seq2Point 16.31 4.39 17.29 35.08 2.58 15.13 28.84 24.35 33.16 24.80 27.55 27.74
WattScope 11.02 3.76 13.10 29.61 2.39 11.98 19.49 20.87 25.12 20.93 25.56 22.40

Table 1: Errors in disaggregating the power of five different representative jobs running on the same physical server.

since at that point, they would conflict with each other in a way that would affect their utilization and power
consumption. However, prior work has shown that such conflicts are exceedingly rare, and cluster schedulers
include sophisticated algorithms to avoid them even when overcommitting resources [36].

For the Azure trace, we use the approach above to generate a large number of synthetic training datasets
for different specific jobs and job classes running on servers with a range of different other jobs and job classes.
As discussed in §4, the training data set for a particular job takes a prior window w of aggregate server-
level power as input, and produces a job’s disaggregated power. In §6, we evaluate disaggregation accuracy
with models trained in a variety of different ways, from more-to-less specific. We implement a number of
disaggregation models by modifying nilmtk-contrib [20], an open-source toolkit implementation of numerous
algorithms for energy disaggregation of buildings. In particular, we replace nilmtk-contrib’s existing training
data sets with the synthetic training data above, and also eliminate pre-existing configuration meta-data
that is specific to particular building loads, e.g., refrigerators, ACs, etc. to make our implementation generic.
The toolkit includes numerous other benchmark algorithms, which we evaluate below.

We use two primary metrics for evaluating WattScope’s accuracy: Mean Absolute Error (MAE) and
Normalized Mean Absolute Error (NMAE), shown below. MAE is simply the average of the absolute

difference between the inferred power pi(t) of VM i and its actual power ˆpi(t) over all times t, while the
NMAE is the MAE normalized by the job’s mean power.

MAEi =

T∑
t=1

|pi(t)− ˆpi(t)|
T

(1)

NMAEi =
MAEi

1
T

∑T
t=1

ˆpi(t)
(2)

The MAE is in units of watts (W) and shows the absolute error in WattScope’s inferred power, while
the NMAE quantifies the error as a percentage of a job’s mean power. In general, low power jobs tend to
have higher NMAEs even when their MAE is low in an absolute sense, especially since low power jobs are
more challenging to disaggregate from server power that may be much higher. Likewise, high power jobs
may have low NMAEs even if when their MAE may be comparatively high. Thus, in our evaluation, we
contextualize these results relative to standard benchmark approaches. In particular, we compare with the
NMAE and MAE for a baseline approach that infers a job’s power is always equal to its mean power over the
time interval. We call this the ‘Mean’ model. We implemented our WattScope, and trained and evaluated
our models, on an Intel Xeon Silver 4214R CPU with 12 Cores at 2.4 GHz and 128 GB RAM.

WattScope’s model trainer leverages a neural network that takes as input a sliding window of aggregate
power values to infer a job’s power, as discussed in §4.1. We train WattScope’s neural network for 50 epochs
with a batch size of 1024. We also optimized the training by fine-tuning the hyperparameters based on
prior work [38]. Specifically, our sliding window model uses a window size w of the 100 previous datapoints,
i.e., aggregate power values that first feed into a convolutional layer with 16 filters of size 4 with stride and
a rectified linear unit (ReLu) activation function; this layer feeds into a bidirectional gated-recurrent unit
(GRU) with size 64 and a concat merge mode followed by a drop-out unit with weight 0.5; this layer then
feeds into another similar layer from before but of size 128; this layer finally feeds into two dense layers of

14

0 2 4 6 8 10 12
Time(hour)

0

20

40

60
Po

we
r (

W
) Actual WattScope ActualMean InferMean

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(day)

0
10
20
30
40

Po
we

r (
W

) Actual WattScope ActualMean InferMean

(a) 1h (3.9W, 12%) (b) 12h (1.7W, 38%)

0 1 2 3 4 5 6
Time(day)

0
25
50
75

100

Po
we

r (
W

) Actual WattScope ActualMean InferMean

0 1 2 3 4 5 6
Time(day)

0
20
40
60
80

Po
we

r (
W

) Actual WattScope ActualMean InferMean

(c) 24h (4.0W, 10%) (d) 168h (4.5W, 13%)

Figure 9: Time-series of actual and inferred (disaggregated) power usage of a job for the four representative jobs with
different detected periods with high scores, similar coefficient of variations, and different intensities. The caption
states the period, mean absolute error (MAE), and normalized mean absolute error (NMAE).

size 128 (with ReLU activation function) and 1 (with linear activation function), respectively, with another
dropout unit of weight 0.5 between them.

We compared WattScope’s approach above with a wide range of different disaggregation models imple-
mented by nilmtk-contrib [20]. Table 1 shows that WattScope’s approach generally has the highest or near
the highest MAE, and is also consistent across five different types of job types. For this experiment, all five
of these jobs ran on the same physical server, and we trained each model over 7 days and then tested its
accuracy over the remaining length of our trace. By contrast, the other models have more variable accuracy.
For example, Combinatorial Optimzation (CO) has poor accuracy on job 4, but much better relative accu-
racy on job 5. Table 1 similarly shows the normalized MAE for the same experiment. In all cases, WattScope
yields the lowest MAE and NMAE when inferring each jobs’ disaggregated power. The table also shows the
MAE and NMAE between the actual aggregate power and the inferred aggregate power computed based on
the sum of the inferred power of each job.

6. Evaluation

In this section, we evaluate WattScope for its accuracy in non-intrusively disaggregating total server
power consumption into job-level power consumption. We first present qualitative results illustrating the
high disaggregation accuracy of WattScope and provide some intuition for our quantitative metrics (§6.1).
We next evaluate how job characteristics such as variability, regularity, and intensity affect disaggregation
accuracy (§6.2). We then present quantitative results for desegregating server-level power to job-level power
based on actual co-location information in a production trace, which demonstrates how WattScope would
work in practice (§6.3). Finally, we evaluate the WattScope’s disaggregation approach for its scalability,
robustness, and generalization (§6.4). Note that for most experiments we use application-specific disaggre-
gation models, i.e., trained on the application’s power data. We quantify the inaccuracy due to using a
general model that is not application-specific in §6.4. In evaluating WattScope, we assume that our system
knows the characteristics of jobs on a server and uses them to select the appropriate model for disaggregation.
Evaluating the performance of our model selector or performance monitor is outside the scope of this paper.

15

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) >0.8
Coefficient of Variance (CoV)

0

10

20

30

40

50

60

70

80

90

100
No

rm
al

ize
d

M
ea

n
Ab

so
lu

te
 E

rro
r (

%
)

High Intensity, Low Regularity
Medium Intensity, Medium Regularity
Low Intensity, High Regularity

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1.0)
Periodicity Scores (0~1)

0

30

60

90

120

150

180

210

240

270

300

No
rm

al
ize

d
M

ea
n

Ab
so

lu
te

 E
rro

r (
%

)

High Intensity, High Variability
Medium Intensity, Medium Variability
Low Intensity, Low Variability

(0,20] (20,40] (40,60] (60,80] >80
Power Magnitudes (W)

0

10

20

30

40

50

60

70

80

90

100

No
rm

al
ize

d
M

ea
n

Ab
so

lu
te

 E
rro

r (
%

)

High Intensity, High Regularity
Medium Intensity, Medium Regularity
Low intensity, Low regularity

(a) Effect of Variability (b) Effect of Regularity (c) Effect of Intensity

Figure 10: Effect of job characteristics: (a) effect of variability, quantified as CoV, when both regularity and intensity
are controlled, (a) effect of regularity, quantified as periodicity score, when both variability and intensity are controlled,
and (c) (a) effect of intensity, quantified as average power, when both variability and regularity are controlled. Each
bar represents average across 50 jobs spread across 10 servers and error bars show the 90th percentile confidence
interval across jobs. In total, each subfigure shows the disaggregation accuracy for 750 distinct jobs.

6.1. Qualitative Results

To provide an intuitive meaning to the quantitative results in the following sections, we present the time
series of four representative jobs from the Azure trace. Figure 9 shows the time series of the actual and
inferred (or disaggregated) power for each of the four jobs, along with the actual and inferred average power.
The graphs illustrate that WattScope’s disaggregated power is highly accurate and the actual and inferred
power closely matches for all of the jobs, as does the actual and mean power. While we choose a more
intuitive metric of NMAE for the rest of this section, a high value of NMAE does not necessarily mean poor
disaggregation performance. NMAE can be quite high for jobs with low intensity as the 12h job shown in
Figure 9b has an NMAE value of 38% due to its average power of less than 5W.

6.2. Effect of Job Characteristics

As discussed in §3, a job characteristics impact disaggregation accuracy. We next conduct experiments
that decouple the effect of different job characteristics on disaggregation accuracy. In particular, we evaluate
the impact of variability, regularity, and intensity. To do so, we sample jobs from the Azure trace with
desired characteristics and synthesize servers with desired co-location of jobs. For example, for the left-most
bar in Figure 10(a), we select 50 jobs that have CoV between 0 and 0.2, periodicity score of less than 0.2,
and magnitude of greater than 100W. We next split the 50 jobs into 10 servers each hosting 5 jobs. We then
disaggregate the power of all individual jobs at once and report the average values as well as the confidence
interval. We describe the choice of jobs and their co-location settings when evaluating each factor.

Effect of Variability. Figure 10(a) shows the disaggregation error (in NMAE) on the y-axis and the
coefficient of variation (CoV) on the x-axis when the two other variables are controlled. The graph shows
that, as the coefficient of variation increases, the error increases. The effect of CoV is less prominent for
both low and high intensity settings since, at low and high power consumption, variability is bounded by the
lower limit of 0 and the higher limit of the server’s maximum power, respectively. At medium intensity, an
increase in CoV results in a significant increase in variability and, thus, power disaggregation error increases.

Effect of Regularity. Figure 10(b) shows the disaggregation error (in NMAE) on the y-axis and periodicity
score (CoV) on the x-axis when the variability and intensity are controlled. As the periodicity score increases,
we observe a downward trend in the disaggregation error, which is expected as more regular jobs are easier
to disaggregate. However, we observe a very high error for the left most bar, where we have high variability
(high CoV) and high intensity (high average power). This happens because periodicity is the strongest factor
that affects the disaggregation accuracy. As high variability combines with high intensity, it is challenging
for our disaggregator to infer the power consumption of 5 jobs that have random and high power usage.

Effect of Intensity. Figure 10(c) shows the disaggregation error (in NMAE) on y-axis and intensity (power
usage magnitude) on then x-axis when the variability and regularity are controlled. The effect of magnitude
is only visible at the medium and low variability settings, as at high variability (yellow bar) the effect of
variability dominates and results in high error with a slightly higher error at the medium magnitudes.

16

0 100 200 300 400 500 600 700 800 900 1000 11000
20
40
60
80

100
NM

AE
 (%

) Average Error = 9.26%

Figure 11: Normalized Mean Absolute Error (NMAE) in disaggregating a job’s power consumption on the y-axis for
1,100 servers from the Google trace on the x-axis. The average error across all the servers is 9.26%. Each server runs
40 jobs on average. Servers are sorted in the order of increasing Coefficient of Variation (CoV) for the disaggregated
job from 0.01 (left most) to 3.75 (right most).

0 100 200 300 400 500 600 700 800 900 1000 11000
10
20
30
40
50

M
AE

 (W
) Average Error = 3.69W

Figure 12: Mean Absolute Error (MAE) in disaggregating a job’s power consumption on the y-axis for 1,100 servers
from Figure 11 on the x-axis. The average error across all the servers is 3.69W.

Key Point. The results above show that disaggregation accuracy is a function of a job’s variability, regularity,
and intensity. In general, variability tends to be the dominant metric in dictating disaggregation accuracy
with regularity being the next most important metric followed by intensity.

6.3. Large-scale Job-level Disaggregation

In the previous section, we looked at the individual characteristics of the jobs where we synthesized
servers with five jobs on each server, which allowed for controlled experiments. However, actual production
environments have a larger number of jobs on each server and may not always place similar jobs on the
same server to avoid resource contention. To evaluate the performance of WattScope in real-world settings,
we use a power consumption trace based on the Google Cloud trace, which provides the actual co-location
information, i.e., which jobs run on the same physical servers. We randomly selected 1,100 servers from the
trace, where each server hosts 40 other jobs on average. On each server, we select one job to disaggregate,
at a time, while treating others as a background jobs. As our disaggregator takes <1ms to disaggregate a
single job for a single timestep, our method can scale to a large number of jobs.

Figure 11 shows the error in disaggregating power consumption of a given job on 1,100 different servers
that differ in the number and characteristics of the jobs they run. We have ordered the servers by the
Coefficient of Variation (CoV) for the disaggregated job from low (left) to high (right). We make two key
observations from this experiment. First, most of the jobs (760 out of 1,100 or ∼69%) have a very low
error of 10% or less, and a very small number of jobs (86 out of 1,100 or ∼7.81%) have a higher than 20%
error. The worst-performing job has an NMAE of 90%, but less than 3W of mean absolute error (MAE).
This shows that WattScope is highly accurate in disaggregating the power consumption of jobs even in the
presence of a large number of jobs on the server in practical settings. The average error is 9.20%, which is
very small considering the variations across servers and jobs. Second, overall, the value of NMAE increases
as the CoV increases, indicating the poor disaggregation accuracy for jobs with variability in their power
consumption. However, the trend is not smooth as other factors, such as the regularity and the intensity of
the power consumption for a job, also affect the power disaggregation accuracy.

Figure 12 shows the mean absolute error in disaggregating power consumption of a given job for the
same set of servers as in Figure 11. Most jobs (1,034 out of 1,100) have less than 10W of error. This leads
to a very small average MAE of 3.69W. Even the worst-performing job has an MAE value of 42W, which is
around 20% of the maximum server power in our experimental setup.
Key Point. Disaggregation accuracy is high for the vast majority of jobs in production due to their low
variability and high regularity.

6.4. Scalability, Robustness, and Generalization

In this section, we evaluate WattScope’s ability to scale to a large number of jobs, robustness to the num-
ber of samples used for training, and generalization in using a model trained for a given job to disaggregate
another job with similar characteristics but in total different environment.

Scalability. Figure 13(a) shows the average power disaggregation error as the number of jobs on the server
increase. Remember, in this experiment, we disaggregate a single job against the presence of a varying

17

2 3 4 5 6 7 8 9 10 11
No. of Jobs

0

2

4

6

8

10

No
rm

al
ize

d
M

ea
n

Ab
so

lu
te

 E
rro

r (
%

) polynomial regression
error

500 1000 1500 2000 2500 3000 3500 4000
Training Data Size (samples)

0

5

10

15

20

25

No
rm

al
ize

d
M

ea
n

Ab
so

lu
te

 E
rro

r (
%

) polynomial regression
error

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) >0.8
Coefficient of Variance (CoV)

0

2

4

6

8

10

12

14

No
rm

al
ize

d
M

ea
n

Ab
so

lu
te

 E
rro

r (
%

) Baseline
Swapped

(a) Scalability (c) Robustness (c) Generalization

Figure 13: WattScope Performance: (a) error in disaggregating a single job as the number of background jobs increases,
(b) the effect of size of training data in number of samples used for training, and (c) generalization to disaggregating
similar jobs on different servers. In (c), baseline represents the error when using the model to disaggregate the same
job that was used for training and the swapped represents the error in using the model to disaggregate a similar job
on another server. Each bar in generalization results represents the average across 20 experiments.

number of background jobs. Each bar represents an average across 10 experiments. The decreasing trend of
disaggregation error with increasing number of jobs is the result of statistical multiplexing of power usage
from background jobs. When the number of jobs on a server is small, the background jobs show significant
variation in their usage making the disaggregation of the desired job harder. As the number of jobs on
the server increase, the variability of the background jobs decreases due to statistical multiplexing and the
aggregate of background jobs becomes easier to separate from the desired job. However, it must be noted that
the model used for different number of jobs in the background changes. WattScope needs to train multiple
models with different number of background jobs and select an appropriate model for disaggregation at
runtime, which creates a trade-off between the disaggregation accuracy and the training cost.

Robustness. We next examine how the length of the training period for each job’s model affects the power
disaggregation accuracy. Figure 13(b) shows the length of the training period for the job’s model (ranging
from 500 samples to over 4,000 samples) on the x-axis and the average NMAE on the y-axis across all the
jobs. In this case, we have on average 40 jobs co-located on each server as present in the Google trace and
we are trying to disaggregate all the jobs one at a time. As expected, as the training period increases, the
error tends to decrease. However, the reduction in disaggregation error is marginal once 1,500 samples have
been used for training. In our case, each sample is collected over 5 minutes and the 500 samples roughly
correspond to 2 days while 4,000 samples correspond to 16 days. Since these jobs are long running (31 days),
using up to 6 days (1,500 samples) is feasible. It must also be noted that the wallclock time in days is purely
a function of data collection granularity. If data is collected every minute instead of every 5 minutes, the
same level of accuracy can be achieved using training data collected in one day.

Generalization In our scalability experiments, we mentioned that we need to train a model for different
number of background jobs which can be costly interms of training time and resources. However, the cost
of training can be significantly reduced if we are able to use a single model for a similar set of jobs. To
test the generalizability of WattScope’s disaggregator, we train a model on a job with given CoV and use
it to disaggregate a job with CoV in the same range but running on a different server. Furthermore, the
other server does not have the same number of background jobs as the server used for training. Figure 13(c)
presents the results for our experiments where the x-axis is the coefficient of variation and y-axis is the
average NMAE. The left bar (yellow, slanted pattern) represents the accuracy of the trained model on the
same job while the right bar (red, horizontal pattern) represents the accuracy when the model is used on a
different server to disaggregate a similar job but with different number and characteristics for the background
jobs. The overall results show a high disaggregation accuracy that degrades with the increase in CoV. This
indicated that the variability of the power usage trace is a stronger factor in determining the disaggregation
accuracy than any other factor, even generalization.
Key Point. Our experimental results show that WattScope i) scales well as more jobs run on each server,
ii) is robust as the amount of training data decreases, and iii) enables the use of generalized models trained
similar applications with medium-to-low CoVs at similar accuracy.

18

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200

Po
we

r (
W

)

Actual WattScope ActualMean InferMean

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(day)

0

50

100

150

200

Po
we

r (
W

)

Actual WattScope ActualMean InferMean

0 3 6 9 12 15 18 21
NMAE (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(N

M
AE

x)

0 5 10 15 20 25 30
MAE (W)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(M

AE
x)

(a) Illustrative Examples (b) CDF of NMAE (c) CDF of MAE

Figure 14: WattScope performance in production: (a) time-series of actual and inferred (disaggregated) power usage
for the two jobs with the best NMAE (top) and the worst NMAE (bottom) from our production experiments consisting
of 30 VMs, (b) NMAE distribution (7.12% average), and (c) MAE distribution for the jobs (4.16W average).

6.5. Production Experiments

In this section, we evaluate WattScope’s performance in disaggregating power consumption for jobs that
run in a physical conventional datacenter cluster. Our cluster comprises 40 Dell PowerEdge R430s with Intel
Xeon processors with 16 cores and 64GB memory. We randomly sample 30 servers from the Google Trace
and replay all of the jobs on our servers using stress-ng [28] for 3 weeks. To get the ground-truth power
consumption for a given job, we run it in isolation and record its power consumption.

Similar to our analysis in §6.1, Figure 14(a) presents the time series of actual and inferred (disaggregated)
power usage for the two jobs with the best NMAE (top) and the worst NMAE (bottom) from our production
experiments consisting of 30 VMs, along with the actual and inferred average power. The graph illustrates
that WattScope’s disaggregated power matches well with the actual power consumption observed for the job
for both NMAE values. For the worst NMAE scenario, the disaggregated power deviates from the actual
power consumption but closely matches the trend. Figure 14(b) and Figure 14(c) present the distribution of
errors using NMAE and MAE metrics, respectively. Similar to our large-scale evaluation results, more than
70% of the jobs have a less than 10% NMAE, and more than 90% of the jobs have less than 5W MAE.

Our results demonstrate that WattScope demonstrates good performance on real power consumption
traces from jobs running in conventional datacenters and can be deployed in practice.

7. Conclusion

We design a model-based system WattScope for non-intrusively estimating the power consumption of in-
dividual applications using external measurements of a server’s aggregate power usage and without requiring
direct access to the server’s operating system or applications. WattScope is widely applicable in datacenters,
which typically meter individual servers for management and billing. WattScope addresses key problems with
traditional application-level power monitoring techniques, which are intrusive: require running privileged
software to monitor fine-grained resource utilization and hardware support that is not always available. Our
key insight (§3) is that, based on an analysis of production traces, the power characteristics of datacenter
workloads, e.g., low variability, low magnitude, and high periodicity, are highly amenable to disaggregation of
a server’s total power consumption into application-specific values. We present WattScope for disaggregating
server- and rack-level power meter measurements, that are already available in data centers, to server- and
job-level power information, respectively. We extensively evaluate WattScope’s accuracy on a production
workload and show that it yields high accuracy, e.g., often <∼10% normalized mean absolute error.

Our key insight that enables accurate disaggregation is the generally low variability and high regularity of
production applications in industry traces, as shown in §3. This insight is more broadly applicable to general
scheduling and resource problems in datacenters, including placing jobs and overcommitting resources. In the
future, we plan to explore other implications of this insight. We also plan to explore methods for improving
model selection by inferring an application’s runtime characteristics, in terms of variability, regularity, and
intensity, from its meta-data, such as the characteristics and constraints in its resource request.
Acknowledgements. This research is supported by NSF grants 2213636, 2136199, 2106299, 2102963,
2105494, 2021693, 2020888, 2045641, as well as VMware.

19

References

[1] E. Masanet, A. Shehabi, N. Lei, S. Smith, J. Koomey, Recalibrating Global Data Center Energy-use Estimates, Science
367 (2020) 984–986.

[2] S. R. Group, Hyperscale Data Center Count Reaches 541 in Mid-2020; Another 176 in the Pipeline, Technical
Report, Synergy Research Group, Reno, NV (United States), 2020. URL: https://www.srgresearch.com/articles/

hyperscale-data-center-count-reaches-541-mid-2020-another-176-pipeline.
[3] Digiconomist, Bitcoin Energy Consumption Index, https://digiconomist.net/bitcoin-energy-consumption, 2022.
[4] D. Amodei, D. Hernandez, G. Sastry, J. Clark, G. Brockman, I. Sutskever, AI and Compute, https://openai.com/blog/

ai-and-compute/, 2018.
[5] B. Korn, Data Center Frontier, Achieving Energy Efficiency in Data Centers, https://datacenterfrontier.com/

achieving-energy-efficiency-in-data-centers/, 2022.
[6] R. Hintemann, Efficiency Gains are Not Enough: Data Center Energy Consumption Continues to Rise Significantly,

Technical Report, Borderstep Institute for Innovation and Sustainability, 2018.
[7] A. S. Andrae, Projecting the Chiaroscuro of the Electricity Use of Communication and Computing from 2018 to 2030,

Preprint (2019).
[8] A. S. Andrae, T. Edler, On Global Electricity Usage of Communication Technology: Trends to 2030, Challenges (2015).
[9] L. Belkhir, A. Elmeligi, Assessing ICT Global Emissions Footprint: Trends to 2040 & Recommendations, Journal of

Cleaner Production (2018).
[10] Google Data Centers: Efficiency, http://google.com/about/datacenters/efficiency/, 2022.
[11] Reuters, Amazon Vows to be Carbon Neutral by 2040, buying 100,000 Electric Vans, https://www.reuters.com/article/

us-amazon-environment/amazon-vows-to-be-carbon-neutral-by-2040-buying-100000-electric-vans-idUSKBN1W41ZV,
2019.

[12] K. O’Sullivan, The Irish Times, Facebook Commits to Net-Zero Carbon Emissions by 2030, https://www.irishtimes.
com/news/environment/facebook-commits-to-net-zero-carbon-emissions-by-2030-1.4354701, 2020.

[13] N. Acutt, Radius: Stories at the Edge, Achieving Carbon Neutrality, https://www.vmware.com/radius/

achieving-carbon-neutrality/, 2018.
[14] D. Etherington, TechCrunch, Google Claims Net Zero Carbon Footprint over its Entire Life-

time, Aims to only use Carbon-Free Energy by 2030, https://techcrunch.com/2020/09/14/

google-claims-net-zero-carbon-footprint-over-its-entire-lifetime-aims-to-only-use-carbon-free-energy-by/

-2030/, 2020.
[15] B. Smith, Official Microsoft Blog, Microsoft will be Carbon Negative by 2030, https://blogs.microsoft.com/blog/2020/

01/16/microsoft-will-be-carbon-negative-by-2030/, 2020.
[16] S. Pandruvada, Running Average Power Limit, https://01.org/blogs/2014/running-average-power-limit-\%E2\%80\

%93-rapl, 2014.
[17] M. Colmant, M. Kurpicz, L. Huertas, R. Rouvoy, P. Felber, Process-level Power Estimation in VM-based Systems, in:

ACM European Conference on Computer Systems (EuroSys), 2015.
[18] M. Colmant, P. Felber, R. Rouvoy, L. Seinturier, WattsKit: Software-defined Power Monitoring of Distributed Systems,

in: IEEE/ACM International Symposium on Cluster, Cloud, and Internet Computing (CCGrid), 2017.
[19] A. Bourdon, A. Noureddine, R. Rouvoy, L. Seinturier, PowerAPI: A Software Library to Monitor the Energy Consumed

at the Process-level, ERCIM News, Special Theme: Smart Energy Systems (2013) 43–44.
[20] N. Batra, R. Kukunuri, A. Pandey, R. Malakar, R. Kumar, O. Krystalakos, M. Zhong, P. Meira, O. Parson, Towards

Reproducible State-of-the-Art Energy Disaggregation, in: ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (BuildSys), 2019.

[21] Press Release, SEC Proposes Rules to Enhance and Standardize Climate-Related Disclosures for Investors, https://www.
sec.gov/news/press-release/2022-46, 2022.

[22] W. A. Hanafy, R. Bostandoost, N. Bashir, D. Irwin, M. Hajiesmaili, P. Shenoy, The War of the Efficiencies: Understanding
the Tension between Carbon and Energy Optimization, in: Proceedings of the Workshop on Sustainable Computer Systems
(HotCarbon), 2023.

[23] Intelligent platform management interface specification, https://www.intel.com/content/www/us/en/products/docs/

servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html, 2022.
[24] DMTF: Redfish Developers Hub, https://redfish.dmtf.org/, 2022.
[25] A. Bourdon, A. Noureddine, R. Rouvoy, L. Seinturier, PowerAPI: A Software Library to Monitor the Energy Consumed

at the Process-Level, ERCIM News 92 (2013) 43–44. URL: https://inria.hal.science/hal-00772454.
[26] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, R. Bianchini, Resource Central: Understanding and

Predicting Workloads for Improved Resource Management in Large Cloud Platforms, in: Proceedings of the Symposium
on Operating Systems Principles (SOSP), ACM, 2017.

[27] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-Balter, J. Wilkes, Borg: The Next
Generation, in: ACM European Conference on Computer Systems (EuroSys), ACM, New York, NY, USA, 2020.

[28] C. I. King, stress-ng, https://github.com/ColinIanKing/stress-ng, 2023.
[29] M. Elfeky, W. Aref, A. Elmagarmid, Periodicity Detection in Time Series Databases, IEEE Transactions on Knowledge

and Data Engineering (TKDE) 17 (2005).
[30] A. Kumbhare, R. Azimi, I. Manousakis, A. Bonde, F. Frujeri, N. Mahalingam, P. Misra, S. Javadi, B. Schroeder, M. Fon-

toura, R. Bianchini, Prediction-based Power Oversubscription in Cloud Platorms, in: USENIX Annual Technical Confer-
ence (ATC), 2021.

[31] Microsoft Ignite, anomaly Detection and Forecasting in Azure Data Explorer, https://learn.microsoft.com/en-us/

azure/data-explorer/anomaly-detection, 2022.

20

[32] Microsoft Ignite, series periods detect(), https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/

series-periods-detectfunction, 2022.
[33] S. Barker, S. Kalra, D. Irwin, P. Shenoy, Empirical Characterization, Modeling, and Analysis of Smart Meter Data, IEEE

Journal on Selected Areas of Communications (JSAC), Smart Grid Communications Series 32 (2014) 1312–1327.
[34] S. Barker, S. Kalra, D. Irwin, P. Shenoy, Empirical Characterization and Modeling of Electrical Loads in Smart Homes,

in: Proceedings of the 4th IEEE International Green Computing Conference (IGCC), Arlington, Virginia, 2013, pp. 1–10.
[35] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-scale Cluster Management at Google

with Borg, in: ACM European Conference on Computer Systems (EuroSys), Bordeaux, France, 2015, pp. 1–17.
[36] N. Bashir, N. Deng, K. Rzadca, D. Irwin, S. Kodak, R. Jnagal, Take it to the Limit: Prediction-Driven Resource

Overcommitment in Datacenters, in: ACM European Conference on Computer Systems (EuroSys), 2021.
[37] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, M. Srivastava, Nilmtk: An open source

toolkit for non-intrusive load monitoring, in: ACM International Conference on Future Energy Systems (e-Energy), 2014.
[38] O. Krystalakos, C. Nalmpantis, D. Vrakas, Sliding Window Approach for Online Energy Disaggregation using Artificial

Neural Networks, in: Hellenic Conference on Artificial Intelligence, 2018.
[39] A. Kansal, F. Zhao, J. Liu, N. Kothari, A. A. Bhattacharya, Virtual Machine Power Metering and Provisioning, in: ACM

Symposium on Cloud Computing (SoCC), ACM, New York, NY, USA, 2010, p. 39–50.

21

