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ABSTRACT—Smart agents are equipped with sensors that enable them to be sensitive to their 
surrounding environment.  However, the mapping of multiple raw streams of sensory data to the 
appropriate actions is not an easy problem, especially when multiple conflicting objectives are 
involved.  This type of multi-sensor fusion problem through the domain of power management 
for smart mobile devices was investigated in this study.  In this application domain, the objective 
is to keep the user’s mobile devices in an “on” state as long as possible such that just-in-time 
services (such as reminder announcements) can be provided. However, this conflicts with the 
mobile device’s inherent goal – to turn off to conserve power. Due to the stochastic nature of 
human behavior, a hand-coded fixed strategy may not be the best solution.  A learning control 
approach to the problem is presented in this paper.  The experimental results show that the 
approach learns the appropriate mapping from multiple streams of raw sensory data to power 
conserving actions that can out-perform the hand-crafted policies. The learned policies are also 
shown to be more robust in handling unscheduled events. 
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1.  INTRODUCTION 
When smart agents, physical (robots) or virtual (software agents), to work to assist humans, 

sensors are needed for detecting changes in the environment.  However, the mapping of multiple 
raw streams of sensory data to the appropriate actions is a difficult task, especially when multiple 
conflicting objectives are involved. This type of multi-sensor fusion problem is studied in this 
paper through the domain of smart mobile devices. Smart assistant digital agents running on a 
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PDA, a wearable computer or a capability-rich cell phone can provide digital services to a user 
based on the user’s current activity [1, 13]. Such tasks may include reminding the user of relevant 
upcoming events [15], autonomously handling incoming phone calls under different context [2, 
8], or pre-caching web pages [16] or emails for offline browsing. These proactive assistive actions 
often occur in the background when the user is not physically interacting with the device.  
Therefore, the device must stay ON (even though the user is not actively using it) in order to 
collect information and to assist the user. Ideally, it should be ON all the time such that no event is 
missed. However, this is not possible with the current battery technology. Therefore, for the 
device, there exist two conflicting objectives:  to stay ON for as long as possible to assist the user, 
and to take power conservation actions without causing annoyance to the user or missing 
important events. Due to the stochastic nature of human behavior, a hand-coded fixed strategy 
may not be the best solution. 

The approach taken by this work is a learning control algorithm, Reinforcement Learning 
(RL) [21]. With various physical sensors (e.g., location sensors [5, 3, 10, 12]) as well as data 
streams from software applications (e.g., calendar events, email notifications, application usage 
patterns), states of the world (from the user’s perspective) can be captured. Any control actions 
taken by the system has consequences, some positive and some negative. They are referred to in 
this paper as costs. By associating control actions with costs, and designing an appropriate cost 
model for the application, the RL system can autonomously learn the mapping between multiple 
sensory streams and the correct sequence of system actions such that total cost can be minimized,  
thus balancing the two opposing objectives. 

2.  A LEARNING CONTROL APPROACH 
To address the issue of mapping sensor data to the appropriate action, an approach from the 

feedback control domain is employed. In the form of a control problem, the actions that the 
system takes are treated as control actions that change the state of the world and the user: after 
action ta  state ts  is changed to a new state 1+ts . Consequently, the system receives an updated 
state estimate as well as a signal that represents the cost associated with taking the last action. 
From this feedback, using traditional RL learning algorithms such as Q-learning, the agent can 
learn a value function such that given the current state, the agent can determine which action it 
should take next so as to minimize the total cost in the future.  

However, unlike conventional control problems, where control decisions are made at regular 
intervals, in the domain of context-aware applications, the intervals between events can be 
irregular.  As a result, the control decisions also occur at irregular intervals. For example, the user 
may receive emails consecutively and then wait a long time before the next email arrives. In this 
case, the system may choose to take actions to reduce the frequency of checking for emails and 
direct the available resources for other more urgent tasks. The Semi-Markov Decision Process 
(SMDP) approach to Q-learning approach handles the irregularity issue [21], and allows the 
system to change behavior as a function of user context.  

In the formulation of SMDPs (Figure 1), the world model is that from a given state, the 
system makes a choice of an action. Then at some nondeterministic time later, the state changes 
and system receives a report of the new state, plus the immediate cost. The goal is to take the 
sequence of actions that minimizes the discounted sum of these costs. In particular, the system 
would choose an action  ta  to minimize the expected discounted return (total cost starting from 
time t):  
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Figure 1. Semi-Markov Decision Processes (SMDP) Q-learning. 
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where γ < 1, is a discount factor that causes costs for further away (time-wise) actions to have less 
of an impact on the value of the current state-action pair. To achieve minimizing the discounted 
sum of costs, a way is needed to estimate the “value” of taking an action from a given state. In this 
work, the value of an action ta  is defined as the negative discounted sum of costs that result from 

first selecting ta and then selecting the estimated highest value action for the rest of the sequence.  
SMDP Q-learning is an algorithm that incrementally estimates these action values, optimizing the 
parameters to minimize the discounted sum of the future costs.  The discrete SMDP Q-learning 
value update function is given as below [21]: 
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where ( )asQt
,  is the estimated action value for action a when state is s. We assume the duration 

of the action a is τ  , which varies with different actions. The cost associated with the selected 
action at time t is represented as ct

. 

State spaces for general problems can be prohibitively large, especially when continuous 
variables such as time are considered and thus the state space becomes continuous. Therefore, 
function approximation (FA) is employed in this work. Instead of learning an enormous action-
value lookup table as in the discrete case, with FA, an approximate continuous multi-dimensional 
function is learned to best fit the real action-value function. Furthermore, when facing unforeseen 
situations or unvisited states, FA allows for extrapolation on the past learned action-values that are 
similar, and thus informed guesses of the state-action value can be made in these cases.  

3.  CASE STUDY: ADAPTIVE POWER CONSERVATION 
To demonstrate the application of learning control optimization approach for multi-sensor 

fusion with conflicting objectives, the mobile device power conservation problem is selected as an 
example. This approach applies equally well to other domains, such as mobile robotics. Under the 
context of mobile devices, the system needs to take the appropriate sequence of actions that makes 
the trade-off between two conflicting goals of both conserving power to stay ON for longer and of 
minimizing missed events. The follow table is the cost model for our problem. 

3.1. A SMDP Learning System 
To formulate this as a SMDP Q-learning problem, a cost model is first established.  The costs 

for staying ON and for missing events has to be combined into the same cost model such that the  
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Table I. Cost model 

Case Action taken Events Cpower(joules) Cevent 

1 OFF user event 279 1 

2 OFF non user event 0 0.5 

3 OFF None 279 0 

4 KEEP ON Any 186 0 

 
value of an action can be computed (using equation (1)) for evaluation. The cost for missing 
events is denoted as Cevent, and the cost for power consumption as Cpower. There are two types of 
power consumption: keeping the PDA running and switching from OFF to ON. Using the Sharp 
Zaurus as an example (whose power consumption is 6.2 watts), power needed to keep the PDA 
ON per unit time (30 seconds) is 186302.6_ =×=runpowerC joules. It is assumed that more energy 

is required to switch the PDA ON than to keep it running. Therefore, we define 
2791865.15.1 __ =×== runpoweronpower CC  joules. For missed events, there are also two types: 

user events and non-user events; the associated cost for both is denoted as eventC . However, due 

to the fact that the units for powerC and eventC are different, they cannot be combined directly. 

Therefore, a regularization parameter α is introduced for the purpose of costs aggregation. 
Specifically, using α , eventC can be converted to units in joules, denote as eventevent CC α='  
joules.  Finally both costs can be combined to compute the total cost:   

 eventpowereventpowert CCCCC α+=+= '  

For any action a, assuming that the action execution time is τ , at any given time instance t on 
the timeline, the costs Cpower  and Cevent are defined as follows: 

In case 1, the system decides to turn OFF for time τ , and a user event occurrs during the 
sleep time. The user was forced to manually turn on the PDA since he needed to use the PDA. 
Thus, the total cost ci includes both the cost of switching ON the PDA, and the cost of missing a 
user event.  For case 2, again, the OFF action was chosen, and we assume for this duration, only 
non-user events (such as changing rooms, or incoming emails) were missed. Compared with 
missing user events that forces the user to turn on the PDA repeatedly, missing non-user events 
causes less annoyance. Therefore, we define Cevent= 0.5 in this case to reflect lesser annoyance. 
Since the PDA does not turn ON until the current OFF action ends, no cost for power 
consumption is needed. For case 3, since nothing happened during the OFF period, no event is 
missed and the cost only involves the power spent for switching ON at the end of the OFF period. 
For the last case, where the system chose to stay ON to anticipate for future events, since no 
events will be missed during this time, the only cost is the accumulative cost of staying ON for τ  
time, which is the length of the selected action. These cover all the cases for all possible actions. 

It is assumed that the state of the world (with respect to the user) can be captured using the 
available sensors. The state representation in this application includes the following state 
variables: location, application usage, time of events, scheduled events and recent activities. A 
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linear neural network is used as the function approximator to both handle continuous variables 
and unforeseen situations. 4 ON actions and 4 OFF actions are chosen as the available action set.  
The durations of these actions are: 30 seconds, 1 minute, 2 minutes and 5 minutes, both for the 
ON and OFF set. 

3.2 User Activity Simulator 
To allow for analysis the SMDP Q-learning algorithm under various situations, a large set of 

diverse, interesting and repeatable user activities are needed. A user activity simulator is 
implemented to generate simulated user experiences. This guarantees repeatability, which is 
crucial for in-depth analysis. 

The simulator contains five different probabilistic activity models for the same user: each 
corresponds to one of the weekdays.  Thus, the user has a different schedule for each day.  For 
instance, for Monday (Figure 2), the circles represent the state of the user and the edges indicates 
the transition probability between the states. Throughout the day, the user context transitions from 
one state to another based on the defined the activity duration model and the probabilistic  
transition model. Each activity has a predefined a duration. However, each person has different 
habits of arrival time for different event. Also, unpredictable events (traffic, weather) add 
randomness to these events. To model this variability, a user action uncertainty parameter σ  is 
introduced. The arrival and departure time is defined by the nominal transition time t and a 
random offset generated from a Gaussian distribution: ( )1,0 σNt + , where 1σ  is proportional to 

σ  and is different under different contexts. The relationship between σ  and 1σ  is given in Table 
2. As for the transition probabilities, by design, the scheduled events have a high transition 
probability (e.g. 90%) such that they are more likely to occur.  Unscheduled events are also 
modeled with transition probabilities, e.g. with 5% probability, class 1 may run late and the user 
may skip the free time and directly transition to class 2. 

 

 

Figure 2. Monday Schedule User Activity Transition Probabilistic Model. 

Once the simulator transitions into a state, user events are simulated using actions from the 
behavior model, such as note-taking or email-checking behavior defined under the current 
context.  For example, during class the user exhibits a frequent note-taking behavior. When the 
user works in the lab, much longer rest intervals are more common since the user tends to use the 
desktop during this period, with only occasional checks of calendar schedules. An idle interval 
period is associated with each of these behaviors. This interval period is defined by ( )22 ,σμN , 
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where 2μ   is the mean transition time, and σ  again is the user action uncertainty parameter.  The 

relationship between σ  and 2σ  is also given in Table II. Upon each simulated event, the event is 
logged as well as the corresponding sensor readings (such as time or scheduled activity) are 
generated and recorded at the same time. These form the simulated sensory stream to be observed 
by the learning system. 

 
Table II. Activity duration and transition time model. 

Event t(start/end) σ1 μ2 σ2 
Class(1) 9:30am/10:45am 2σ 10 σ 
Class(2) 11:15am/12:30pm 2σ 10 σ 
Work(1) 1:00pm/3:15pm 4σ 5 σ* 

LabMeeting 3:30pm/5:00pm 2σ 15 1.5σ 
Work(2) 5:00pm/7:00pm 2σ 5 σ* 

 
(*) The idle interval for the work period depends on a different transition model: work 

duration between 20 minutes and 1 hour is drawn from a uniform distribution. The PDA will be 
idle during the work duration. Between the work periods, the user uses the PDA to download 
emails or check schedules and thus the similar activity model used in other events are used again.  

4.  EXPERIMENTAL RESULTS AND DISCUSSION 
The goal of the following experiments is to explore the effects of the control optimization 

technique: (1) with this approach, can the system learn to translate multiple raw sensory inputs 
into appropriate sequence of system actions (for which we will use the term policy in the 
remaining discussion), optimizing on two conflicting goals? (2) Can the learned policy outperform 
the user-defined policies? (3) Can the learned policy robust handle unscheduled events? 

4.1 Learning Appropriate Action Policies From Multiple Sensor Streams 
The first experiment examines the feasibility of the learning control approach to produce 

appropriate action policies from multiple raw sensor data streams. The system is trained on a 
series of simulated experiences drawn from the Monday activity model. One hundred daily 
experiences are then drawn separately for evaluation. Performance for a single trial is measured in 
terms of the amount of power consumed and the number of missed events. 

The top panel of Figure 3 shows how the system’s behavior changes throughout the day. 
When the user is in a class, the system prefers to turn the PDA OFF for 2 minutes over the other 
off actions. Occasionally, 5-minute OFF actions were used. This is the case because the user 
exhibits a frequent note-taking behavior, with idle intervals drawn from Gaussian distributions 
with a mean value of either 2 or 5 minutes.  When the user works in the lab, much longer rest 
intervals are more common since the user tends to use the desktops during this period, with only 
occasional checks of calendar schedules. Likewise for lab meetings, although the user also takes 
notes during lab meetings, a different usage pattern is used. Therefore, the system chooses a 
distinctively different ON/OFF pattern compared with the class sessions. Most of the user events 
are anticipated since the system is able to turn on the system at the right times.  Notice that 
although the agent can select 1-minute or 30-second OFF actions, these are never chosen. This is 
because the cost associated with turning on the PDA after an OFF action is higher than simply 
staying on for same the duration. 
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The bottom panel of figure 3 summarizes the maximum values of the ON action and OFF 
actions over a single trial. At any given time, the action selection policy is greedy with respect to 
the action values, i.e. the action with the highest value is chosen.  The shapes of the Q action value 
function are noticeably different when the context of the user switches from one activity to the 
next.  For instance, the greedy action switches between ON and OFF more frequently in the class 
period than the work period in the lab. As a result, the system using the learned policy wakes up 
much more frequently in anticipation for user events. On the other hand, the OFF period is much 
longer when the user is working in lab. The choices that the learned policy made are reasonable 
because during classes, the user works in an active note-taking mode with some intermittent idle 
time when listening to lectures. Therefore, more frequent wake-up actions are needed. When 
working in the lab, the user tends to use the desktop instead of the PDA. During this period, the 
PDA is occasionally used for checking upcoming appointments. As a result, longer sleep periods 
are used to conserve power. This shows that the system is able to learn to differentiate between 
user activity patterns. 

 
Figure 3.  Learned behavior over a single trial (α = 8). 

The action value for the OFF action dramatically decreases shortly prior to the occurrence of 
an event (allowing the on action to take over). This is a reasonable strategy since the cost function 
assigns a cost to those actions that result in missed events. On the other hand, the choice of an ON 
action immediately following an event that has more value than an OFF action, since the 
likelihood of an event remains high sometime after the previous event. Staying on allows the 
system to avoid receiving the high cost of missing a user event. Therefore, over time, the system 
learns that the values for the OFF actions are much lower than the ON action when an activity 
occurs. Similarly, there are also costs associated with ON actions. The phenomenon is reversed 
when during idle periods:  that the value of ON action decreases and the value of OFF action 
recovers.  Thus, OFF mode takes over during idle periods.  The training experiences and the 
design of the cost model dictate the expected action values. In turn, the action values dictate the 
resulting policy that uses different ON and OFF patterns under different user contexts. 

The top panel illustrates the system behavior under different user contexts.  The horizontal 
axis is the time line, from 9:15 to 18:00.  The top 5 rows show which actions were selected at any 
given time.  The 6th row shows the duration of each scheduled activity (e.g., in a class, in a 
meeting).  Anticipated and missed are shown as tick marks in the two remaining rows. The bottom 
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panel summarizes the maximum values of the on (dotted line) and OFF (solid line) actions over 
time. The system has learned to adapt to the user’s habits by switching to the appropriate ON/OFF 
pattern when the user context changes.  

4.2 Performance Comparison 
Since the cost model is one of the important factors that dictates the resulting policy, it is 

conceivable that changing the cost model will result in a series of different policies and thus a 
variety of system behaviors (Figure 4). Compared with the top panel of figure 3, the action 
selection behavior change most occurred in the lab meeting session: due to a different cost model, 
less 5-minutes OFF actions, more 2-minute OFF actions and ON actions were selected. As a 
result, fewer events were missed. In the design of the cost model, a regularization 
power/correctness trade OFF parameter α is introduced, to linearly combine the costs associated 
with power consumption and missed events. 

 

Figure 4. Learned behavior when the cost of missed events is higher (α = 16). 

As a side-effect, changing α also alters the relationship between the two conflicting costs. 
These effects are shown in Figure 5.  

Each data point represents the performance of the learned control policy over a single trial. 
For each learned policy, the performance on 30 distinct trials is shown.  As shown in the figure, 
there is a distinct distribution associated with each α value. As α is increases, better performance 
is achieved with respect to the number of missed events. This comes at the cost of increased 
power consumption. To view the trend with a wider range of α values, the overall performance of 
an individual control policy is measured as an average over one hundred trials of the number of 
missed events and of the consumed power. Figure 6 shows the overall performance for policies 
resulting from N-values of α. A Least-Mean-Squared-fit inverse function (E= α/P+b: where E 
denotes the number of missed event and P denotes the amount of power consumed) is 
superimposed on the data, and shows a general trend of trading power consumption for missed 
events as α is increased. 
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Figure 5. Trial performance under three learned policies (α  = 8, 16, 22) 

 

Figure 6.  Performance of a range of learned policies trained under 10 cost models, 
compared against the performance of the user-defined policies. For the learned policies, as 
α  increases, better performance is achieved with respect to the number of missed events. 
This comes at the cost of increased power consumption. Comparing against the user-
defined policies, a learned policy can be found such that it performs significantly better than 
the user-defined policy in one dimension if the performance over the other dimension is 
matched. 

The α parameter can be used as an intuitive mechanism for the user to alter the system 
behavior in order to suit his needs. If the user feels that the system the needs to be more attentive 
to his activities, then he can increase the cost for missing events by increasing α. If he is willing to 
sacrifice missed events in exchange for longer battery life, then α should be lowered. The control 
optimization formulation of the problem allows us to translate cost functions into a specific 
prescription for action under different contexts, and thus an appropriate performance trade-off 
solution for a certain behavior value can be computed. The end result is a much simpler and more 
flexible way to adjust system behavior than the complex multivariate rule set system that requires 
manual configuration by the user. 

For comparison purposes, two heuristic policies are designed.  The Power-saving heuristic is 
defined to aggressively conserve power with no regard for missing events: it turns off the PDA 
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whenever the system is idle. This is the lower-bound for power conservation because it represents 
the minimal power necessary to address the user’s requests, with no regard for missing user 
events. The balanced heuristic consists of a set of hand-designed rules that are intended to balance 
power consumption against the number of missed events. The performance of these heuristics is 
measured by averaging the power consumption and the number of missed events over one 
hundred trials. 

4.3 Robustness Analysis 
Although human behavior exhibits patterns that have strong correlation with scheduled 

activities, there are times when the user will deviate from the typical schedule. Some of these 
deviations are dramatic, e.g. canceling meetings, changing locations, or even moving scheduled 
events to an earlier time and date. Some deviations are minor, e.g. arriving late for classes.  
Robustness of the learned control policies is tested on both of these unscheduled human activities. 
For scheduled activities, both the training and test trial experiences are drawn from the same 
activity model.  The unscheduled activities are simulated by drawing training and test trials from 
different activity models. Since each policy is trained for a specific day’s activity model, 
presenting trials drawn from a different day model to the system creates the effect of drastic 
deviation from original schedules. In the first experiment, both scheduled, and unscheduled trials 
are presented to the system for evaluation. Overall performance for a single learned control policy 
is measured as an average over the trials of the same type (scheduled vs. unscheduled). As with 
the previous results, a series of cost models (corresponding to different α’s) were used for training 
in each case. The results are shown in Figure 7. Although performance is consistently made worse 
by the introduction of the unscheduled activities, the control policies in the latter case still 
demonstrate a clear trade-off between power consumption and the number of missed events that is 
controlled by the selection of a particular value of α.  This shows that the system is able to learn a 
policy that handles unscheduled activities robustly. 

 

Figure 7. Learned policy performance with respect to scheduled and unscheduled activities. 
In general, the learned policies performed better when the user activities follows the 
schedule under which they were trained. The ellipse highlights the performances for α = 16 
for both cases. 

In designing context-sensitive devices (and in particular those that are calendar-sensitive), 
some users are expected to adhere closely to their scheduled activities, whereas others are 
expected to demonstrate a significant amount of variability in their arrival times to some activities.  
It is critical that any approach to learning context-sensitive behavior be robust to this range of 
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users. Here, the latter users are modeled with the user action uncertainty parameter such that more 
different random idle intervals between user events can be generated.  Experiences are drawn 
from this model for both training and test trials. Evaluations show (Figure 8) that as randomness 
of the activities increases, the performance of the learned policy (performance trend with respect 
to α (the ALL case) slightly dropped. The drop is more apparent toward the power saving end.  
However, the important thing is that the trend of performance trade-off is with respect to the 
corresponding α value is retained. This demonstrates the robustness of the learned policy obtained 
using the current state representation. 

 

Figure 8. Sensitivity analysis. Performance of learned policies when the user action 
uncertainty parameter is varied ((a) σ = 0.5 and (b) σ = 4). The solid line represents the 
policy learned using full state representation. The long dotted line is the policy learned 
using a state representation that includes recent activity only, and the short dotted line is 
one that only excludes the recent activity. 

Finally, the sensitivity of the system is examined with respect to the chosen state 
representation. This is important since choosing the appropriate state variable (where a feature or 
a set of features is used to encode a variable) to comprise our state representation is crucial to the 
performance of the learning system. To analyze the impact of state variables (e.g. calendar or 
time) in the performance of the resulting policy, each should be removed individually.  If the 
variable has significance, then a drop in performance would be expected. Results (Figure 8(a)) 
show that when the user’s action is more predictable (i.e. low variance), the recent activity state 
variable has a strong correlation with the user event patterns, and therefore significantly impact 
the performance of the system if removed. For situations when the user’s action is highly variable 
(subject to change), an opposite trend is shown Figure 8(b): there is essentially no difference 
between the full representation and the one that excludes recent activity, but a clear disadvantage 
by the representation that only captures recent activity. From these two experiments it can be 
concluded that it is important to use the full representation in order to capture the range of users. 

5.  CONCLUSIONS 
This paper presents a Reinforcement Learning approach to multi-sensor fusion problems with 

conflicting objectives. An example application of the approach is given in the domain of adaptive 
power management for mobile devices. Experimental results show that (1) the system can learn to 
translate multiple raw sensory inputs into appropriate sequence of system actions, optimizing on 



288 Intelligent Automation and Soft Computing 

two conflicting goals; (2) the learned policy can outperform the user-defined policies; (3) by 
combining multiple sensor information, the learned policy handles unscheduled events reliably. 

REFERENCES 
1. E. Issac et al., Hubbub, “A sound-enhanced mobile instant messenger that supports 

awareness and opportunistic interactions,” 2002. 
2. R.H. Katz, B. Raman and A. D. Joseph, Universal inbox: “Providing extensible personal 

mobility and service mobility in an integrated communication network,” In Proc. of the 
Workshop on Mobile Computing Systems and Applications (WMSCA’00), 2000. 

3. P. Bahl and V.N. Padmanabhan.  Radar, “An in-building RF-based user location and 
tracking system,” In Proceedings of the IEEE Infocom 2000, 2000. 

4. B. Davison and Hirsch, “Predicting sequences of user actions.  In Workshop on Predicting 
the Future,” AI Approaches to Time-Series Analysis, pp. 5-12. 

5. R. Want, E.D. Ynatt, M. Back and Frederick, “W4: Real-time system for detection and 
tracking people in 2.5d,” In Proceedings of European Conference on Computer Vision, 
Banff, Canada, pp. 877-892. 

6. A. Krause et al., “Unsupervised, dynamic identification of physiological and activity 
context in wearable computing,”  In Proceedings of the 7th International Symposium on 
Wearable Computing, New Y, al,” Agile application-aware adaptation for mobility,” In 
Sixteen ACM Symposium on Operating Systems Principles, Saint Malo, France, 1997. 

7. M. Roussopoulos et al.  “Person-level routing in the mobile people architecture,” In 
Proceedings of the USENIX Sym.le people architecture.  In ACM Mobile Computing and 
Communications Review (MC2R), 1999. 

8. R. Want et al. “The active badge location system,” In ACM Transactions on Information 
Systems, 1992. 

9. S. Thrun et al., “Robust Monte Carlo localization for mobile robots,” In Artificial 
Intelligence, 2000. 

10. N. B. Privantha et al.,  “The cricket location-support system,”  In Proceedings of the Sixth 
Annual ACM International Conference on Mobile Computing and Networking, Boston, 
pp. 32-43. 

11. H. Chalupsky et al., “Electric elves: Applying agent technology to support human 
organizations,” In Proceedings of IAAI-2001, Seattle, WA, 2001. 

12. J. Hightower and G. Borriello. “Location systems for ubiquitous computing,” In IEEE 
Computer, pp. 57-66, 2001. 

13. N. Kern and B. Schiele, “Context-aware notification for wearable computing.” In 
Proceedings of the 7th International Symposium on Wearable Computing, New York, 
USA, 2003. 

14. H. Lieberman. Letizia, “An agent that assists web browsing,” In Chris S. Mellish, editor, 
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence 
(IJCAI-95), Montreal, Quebec, Canada, 1995. Morgan Kaufmann publishers Inc.: San 
Mateo, CA, USA, pp.  924-929. 

15. N. Marmasse, commotion:  “A context-aware communication system,” In Proceedings of 
CHI 99, pp. 157-171, 1999. 

16. S. Mohapatra and N. Venkatasubramanian. Parm, “Power-aware reconfigurable 
middleware,” In ICDCS 2003:23. 

17. T. Pering and T. Burd.  “Voltage scheduling on the lparm microprocessor system,” In 
Proceedings of the 2000 International Symposium on Low Power Electronics and Design, 
Volume 3, 30448, 2000. 



Application of Reinforcement Learning in Multi-Sensor Fusion Problems with Conflicting Control Objectives 289 

18. Y. Qi and R. W. Picard, “Context-sensitive Bayesian classifiers and application to mouse 
pressure pattern classification,” In Proceedings of International Conference on Pattern 
Recognition, 2002. 

19. R. Sutton and A. Barto, “Reinforcement Learning,” MIT Press, Cambridge, Massachusetts, 
1998. 

ABOUT THE AUTHORS 
 
S. Ou received his M.S. degrees in Computer Science in 2006 from the 
University of Massachusetts Amherst. He is currently working towards a 
Ph.D. degree under the guidance of Professor Roderic Grupen, in the 
Laboratory for Perceptual Robotics, at the University of Massachusetts 
Amherst. His research reflects a broad interest in computer science, including 
human-robot interaction, knowledge discovery, mobile devices, distributed 
sensor network, assistive technologies, and computer vision. 
 
 

 
A. H. Fagg received his M.S. and Ph.D. degrees in Computer 
Science from University of Southern California in 1991 and 1996, 
respectively. He joined the Computer Science faculty at the 
University of Oklahoma in 2004, where he is currently Associate 
Professor. His research focuses on the relationships between 
biological systems and machines. In this area of symbiotic 
computing, he studies the interaction of humans with machines, 
machines as models of how biological systems represent and learn 
motor and cognitive skills, and primates as inspiration for new robot control and learning 
techniques. 
 

 
 
P. Shenoy is an Associate Professor of Computer Science at University of 
Massachusetts Amherst. His research interests lie in operating and 
distributed systems, sensor networks, Internet systems and multimedia. He 
heads the Laboratory for Advanced Systems Software at University of 
Massachusetts Amherst, and leads the research in building systems and 
understanding them through analysis and experimentation.  
 

 
 
 
L. Chen is a Professor of College of Information at South China 
Agricultural University. She heads the Laboratory for Information 
Systems at South China Agricultural University. Her research interests 
are data mining, machine learning methods and embedded systems. 
 


