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Abstract Steerable sensors, such as pan-tilt-zoom cam-

eras and weather radars, expose programmable actuators to

applications, which steer them to dictate the type, quality,

and quantity of data they collect. Applications with dif-

ferent goals steer these sensors in different directions.

Although being expensive to deploy and maintain, existing

steerable sensor networks allow only a single application to

control them due to the slow speed of their mechanical

actuators. To address the problem, we design MultiSense to

enable fine-grained multiplexing by (1) exposing a virtual

sensor to each application and (2) optimizing the time to

context-switch between virtual sensors and satisfy requests.

We implement MultiSense in Xen, a widely used virtual-

ization platform, and explore how well proportional-share

scheduling, along with extensions for state restoration,

request batching and merging, and anticipatory scheduling,

satisfies the unique requirements of steerable sensors. We

present experiments for pan-tilt-zoom cameras and weather

radars that show MultiSense efficiently isolates the per-

formance of virtual sensors, allowing concurrent applica-

tions to satisfy conflicting goals. As one example, we

enable a tracking application to photograph an object

moving at nearly 3 mph every 23 ft along its trajectory at a

distance of 300 ft, while supporting a security application

that photographs a fixed point every 3 s.

Keywords Virtualization � Sensor � Camera � Radar

1 Introduction

Steerable sensor networks allow applications to steer

actuators to control the type, quality, and quantity of data

they collect. For example, researchers are prototyping the

use of steerable weather radars to improve weather pre-

diction and fill coverage gaps in the existing NEXRAD

system [33]. The US border patrol is also deploying net-

works of pan-tilt-zoom (PTZ) cameras to continuously

monitor the northern border for smugglers [18], and as part

of a ‘‘virtual fence’’ on the southern border [10]. While this

type of networked cyber-physical system is emerging as a

critical piece of society’s infrastructure, the deployments

are expensive. The hardware cost for the steerable radar we

consider is nearly $250,000, not including infrastructure,

operational, or labor costs, and the cost for the 20-mile

prototype of the border patrol’s ‘‘virtual fence’’ is over

$20 million. A key limitation of these systems is that they

are not designed for multiplexing. Despite their expense,

only a single user, or application, is able to control them.

Enabling fine-grained multiplexing is an important step

in providing broader access to use and experiment with

these exclusive systems. As a simple example, consider

using a PTZ camera for both monitoring and surveillance.

The monitoring application continuously scans each road at

an intersection in a fixed pattern, while the surveillance

application intermittently steers the camera to track sus-

picious vehicles moving through its field of view. Each

application alters the setting of three distinct actuators—
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pan, tilt, and zoom—to satisfy its goals. Conflicts such as

these have been cited as one reason multiple government

agencies are unable to coordinate control of border cameras

for different purposes, including both smuggling and

search-and-rescue operations [18]. Likewise, scientists now

control dedicated networks of steerable weather radars in

different ways to accomplish different sensing tasks, such

as rainfall estimation or tornado tracking [33]. While

simple multiplexing approaches, which schedule control in

a coarse-grained batch fashion, are possible [6], they pre-

vent the fine-grained multitasking required for these

examples, and, in the camera example, force a choice

between either monitoring the intersection or tracking the

suspicious vehicle during each coarse-grained time period.

Although many approaches to multiplexing, including

proportional-share scheduling, have been well-studied for

CPUs and other peripheral devices, such as disks and NICs,

steerable sensors present new challenges because they

differ in their physical attributes, application requirements,

and workload characteristics.

Physical attributes mechanically steerable sensors are

both slow and stateful. Since steering latencies are on the

order of seconds, the most contentious resource is control

of the sensor, and not the aggregate bandwidth of sensed

data or the total number of I/Os. Further, since each

actuation changes a sensor’s physical state, its current

state determines the time to transition to a new state,

which results in long, highly variable context-switch

times.

Application requirements applications control a sensor’s

actuators directly to drive data collection—often based on

past observations. Since real-world events dictate steering

behavior, applications may have timeliness constraints,

either to sense data at specific locations, e.g., to track a

moving object, or to coordinate steering among multiple

sensors, e.g., to sense a fixed point from multiple angles.

Workload characteristics since sensing applications

observe real-world events, we cannot make assumptions

about the spatial or temporal locality of actuation

requests—important events may occur anywhere at any-

time. However, we can take advantage of locality if it

exists. Since one or more applications may track similar

events, there are opportunities to merge partial overlaps

among requests.

In general, fine-grained multiplexing benefits any

application that values continuous access to sensor data and

is willing to tolerate a lower resolution (spatial and tem-

poral) than possible with a dedicated sensor. While the

deployment cost of steerable sensors limits their number, it

also magnifies the potential benefits of fine-grained shar-

ing. To realize this potential, we design MultiSense, a

system for fine-grained multiplexing—at the level of

individual actuations—of steerable sensor networks.

MultiSense extends a proportional-share scheduler to

multiplex virtual sensors on a single physical sensor.

While we could implement sensor multiplexing in

numerous ways, MultiSense’s implementation integrates

with a virtualization platform to expose a virtual sensor

(vsensor) to each application that has the same interface as

the physical sensor. The goal is to extend the boundary of

virtual machine performance isolation to include sensors,

in addition to other compute resources. We discuss the

motivation behind this implementation choice further in

Sect. 2. Our hypothesis is that steerable sensors are capable

of sensing multiple real-world events, such as a person

walking, a thunderstorm, or a tornado, with different

sensing modalities. In designing MultiSense, this paper

makes the following contributions.

Multiplexing steerable sensors MultiSense employs a

finite state machine to track each vsensor’s state as it

moves, and uses a request emulation mechanism to buffer

actuations until a sense request arrives—similar to a disk

that buffers write requests until a read request arrives. We

show how MultiSense uses these mechanisms to reduce the

significant state restoration overheads incurred from con-

text-switching between vsensors.

Proportional-share adaptation and extensions We

introduce actuator fair queuing (AFQ) by modifying start-

time fair queuing [11] to allocate shares of a steerable

sensor’s time to vsensors, and evaluate a range of exten-

sions and their effect on performance, including request

batching, request merging, and anticipatory scheduling.

Our experiments quantify the level of AFQ’s isolation and

the benefit of each extension.

Implementation and experimentation We implement

MultiSense in Xen, a widely used system for creating and

managing virtual machines [2], and use it to study two

different examples of steerable sensors: a PTZ camera and

a steerable weather radar. We present a case study for both

sensors using multiple modalities, including continuous

scanning, object tracking, single fixed-point sensing, and

multi-sensor fixed-point sensing. Our case studies show

that MultiSense is able to satisfy concurrent applications

using these sensors. As one example, we enable a tracking

application to photograph an object moving at nearly

3 mph every 23 ft along its trajectory at a distance of

300 ft, while supporting a security application that photo-

graphs a fixed point every 3 s.

In Sect. 2, we motivate our use of vsensors and present

background on sensor multiplexing. Section 3 discusses

MultiSense’s basic design, while Sect. 4 outlines our

adaptation of proportional-share and its extensions. Sec-

tions 5 and 6 present MultiSense’s implementation and

evaluation using cameras and radars. Finally, Sect. 7 puts

MultiSense in context with related work, and Sect. 8 con-

cludes the article.
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2 Background

The primary problem addressed in this paper is how to

multiplex (‘‘time-share’’) a steerable sensor, such as a PTZ

camera or a weather radar, at a fine time scale across

multiple concurrent users with diverse requirements. We

chose a virtualization approach for MultiSense’s imple-

mentation to take advantage of the performance and fault

isolation capabilities present in modern virtualization

platforms. Our approach builds on many different areas,

including sensor networks, platform virtualization, and

proportional-share scheduling, to virtualize stateful sensors

with actuators. We discuss prior work in these areas in

detail in Sect. 7. The goal is to lower the barrier for

Domain scientists to experiment with expensive steerable

sensor networks, such as radar systems or the border

patrol’s virtual fence. This work is in conjunction with a

testbed of steerable sensors we have deployed. In this

scenario, virtual machines (VMs) serve to isolate both a

testbed’s control plane from its users, and its users from

each other. Testbed users, or programmatic controllers

acting on their behalf, request VMs bound to not only a

sliver of the node’s CPU, memory, storage, and bandwidth,

but also one or more attached steerable sensors.

We assume that each sensor node executes a hypervisor

(also known as a virtual machine monitor) that hosts

multiple virtual machines, one for each user. Each virtual

machine exposes a virtual sensor device that appears to be

an identical, but slower, version of the physical sensor to

the user. A user application can manipulate the virtual

sensor independent of other concurrent users; the virtual-

ization layer ensures transparency by hiding the actions of

one user from another, thereby providing the appearance of

a dedicated sensor to each user. Multiple virtual sensors,

one from each virtual machine, are mapped on to the

underlying physical sensor and it is the task of the hyper-

visor to multiplex the virtual sensors onto the physical

sensor, akin to time-sharing. Since concurrent requests

from multiple users must be serviced by the physical sen-

sor, and since mechanical actuation on steerable sensors is

slow, each virtual sensor in MultiSense will appear to be a

slower version of the physical sensor. Although MultiSense

is capable of supporting a broad range of steerable sensors,

in this paper, we focus on pan-tilt-zoom (PTZ) cameras and

weather radars as representative examples of steerable

sensors.

2.1 System model

We assume each steerable sensor exposes one or more

programmable actuators that applications control to steer it,

and attaches to a node with local processing, storage, and

communication capabilities that is capable of running

modern hypervisors. MultiSense multiplexes request to

steer the sensor across multiple applications, each execut-

ing in their own VM on each node. We model each

application as a stream of actuation requests to steer the

sensor, followed by one or more sense requests to collect

data. Thus, an application’s request pattern takes the form:

½A1A2. . .AnS1S2. . .Sm�þ; n� 0;m [ 0; where Ai and Si

denote an individual actuation and sensing request,

respectively.

The request pattern matches low-level sensing device

interfaces, where each actuation request Ai alters the setting

of only a single actuator. Each actuation Ai takes time ti to

steer the sensor to the specified setting, where ti is depen-

dent on the actuator’s speed and its current setting. While

we focus on virtualizing the sensor at its lowest level

interface, our system model does not preclude higher-level

interfaces for interacting and controlling sensors, e.g.,

combining many actuation and sensing commands to track

an object along a path.

We assume a constant actuator speed, although there

may be some mechanical jitter as we show in Sect. 6.2.2.

Sense requests Si either capture data by collecting it using

the current setting of the actuators, or scan data by col-

lecting it while changing the setting of the actuators. For

instance, a monitoring application for a PTZ camera

might issue a repeating pattern of pan and tilt requests,

followed by one or more capture requests to retrieve

images, while a monitoring application for a steerable

weather radar might tilt the antenna to the proper eleva-

tion and issue a repeating pattern of 360� sector scans.

We assume that actuation and sense requests from dif-

ferent applications are independent of one another,

although a scheduler may take advantage of partial

overlaps in requests. To enable fine-grained multiplexing,

MultiSense interleaves requests from concurrent applica-

tions on the underlying physical sensor.

2.2 Design challenges

A simple approach for multiplexing multiple users onto a

physical sensor is to employ time-sharing and allocate a

fixed time slice to each concurrent user in round-robin

fashion. However, steerable sensors have actuators that are

stateful (e.g., the pan and tilt actuators in a PTZ camera

determine where the camera is pointing). Since each user

can modify the state of these actuators via actuation

commands, naive time sharing can be problematic for such

stateful sensor devices. We highlight the challenges in

multiplexing stateful steerable sensors using the following

examples.

MultiSense
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Example 1 Consider two users, Alice and Bob, sharing

control of a single PTZ camera. Assume that Alice first

issues a pan, followed by a capture, denoted by PaCa while

Bob issues a similar sequence PbCb, where the subscripts a

and b denote Alice and Bob, respectively. For a PTZ

camera, panning the camera (Pi) is an instance of actuation

(Ai) from above, and capturing an image (Ci) is an instance

of sensing (Si) from above. Consider naive time-sharing

that interleaves these requests in the following order on the

camera: PaPbCaCb. In this case, the camera pans to position

ha, as requested by Alice, and then pans to a position hb, as

requested by Bob (see Fig. 1a).

As a result of the ordering, executing Alice’s capture

request Ca next results in an inconsistent picture, since the

camera’s lens is at pan position hb when Alice expects the

camera’s lens to be at pan position ha. Since the camera is

stateful, Bob’s actuation leaves the camera in a different

state than Alice left it. As a result, naive time-slicing using

time quanta is inappropriate, since Alice and Bob would

have no guarantee of the camera’s state at the beginning of

any time-slice.

Example 2 A straightforward solution is to restore Alice’s

state before context-switching back to her, similar to a

CPU scheduler that restores the state of a thread’s program

counter and registers prior to scheduling it for execution.

However, unlike CPUs and other peripheral devices, state

restoration for mechanically steerable sensors is slow, and

can be more expensive than the execution time of actuation

requests.

For instance, the PTZ camera we use for our experi-

ments takes nearly 9 s to pan from 0 to 340�, nearly 4 s to

tilt from 0 to 115�, and over 2 s to zoom from 1 to 25x.

Naive state restoration can also exacerbate a sensor’s

slowness by executing wasteful actuations. In our example,

restoring Alice’s state to position ha is wasteful, since it

requires re-executing the Pa pan request (Fig. 1b). Better

interleavings, such as PaCaPbCb, still pose a problem for a

naive strategy, since it is often more efficient to steer the

sensor directly from hb to the position of Alice’s next

request Pa
2, rather than directly restoring her previous state

(Fig. 1c).

These simple examples motivate two basic elements of

our approach. First, we maintain the correct vsensor state

for each user to ensure their sensing requests are consistent.

Second, we automatically group together requests of the

form Ai
*Si to prevent wasteful actuations, since interleaving

actuation requests from other vsensors within a group

results in unnecessary state restoration. Despite these ele-

ments, context-switches between groups inevitably require

some state restoration, making them inherently slow. Since

MultiSense does not know each user’s request pattern in

advance, these context-switch times are also unpredictable.

Users will notice unpredictable context-switch times if

they have strict timeliness requirements, and will perceive

them as changes in vsensor actuation speed. For example,

rather than maintaining a stable vsensor speed of v degrees

per second, an application may observe a speed of v
2

degrees

per second for one sensing request, and then a speed of

2v for the subsequent one. One option for reducing this

variability is to require all applications to reveal their

desired request pattern and timeliness requirements at

allocation time, and then decide whether to insert the

request pattern into a fixed, repeating schedule of actuator

movements, similar to Rialto’s approach to hard real-time

CPU scheduling [13]. This type of scheduling is difficult

even on a dedicated sensor since, similar to a disk head, the

mechanical steering mechanism has inherent jitter, which

we show in Sect. 6.2.2.

Real-time scheduling similar to Rialto also requires

strict admission control policies that limit the number of

simultaneous users a system supports, and is problematic

because sensing applications generally do not know their

request patterns or requirements in advance, since real-

world events may occur anywhere at anytime. Ultimately,

some uncertainty is inherent if we allow each application

the freedom to determine what actuation requests to issue

and when to issue them. As a result, in our design of

MultiSense, we explore how well proportional-share

scheduling and its extensions isolate vsensor performance

and meet the practical timeliness requirements of repre-

sentative applications. Share-based scheduling is appro-

priate for allocating a resource whose supply varies over

time. Since the time the physical sensor spends context-
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Fig. 1 Examples showing why request interleaving is challenging for steerable sensors. a Naive interleaving PaPbCaCb yields incorrect results, b
correct interleaving PaPbCaCb with state restorations and c optimizing state restoration costs
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switching is dependent on the request patterns of its

applications, the time available to control the sensor has the

effect of a resource with varying supply.

Note that share-based scheduling controls each vsen-

sor’s priority using shares or weights. Thus, MultiSense is

capable of changing a vsensor’s priority, and its perfor-

mance, by changing its share of the sensor. For example, in

an extreme case, assigning 100 % of the shares to a

vsensor, and reducing the shares of other vsensors to zero,

would allow a vsensor to have the same performance as a

dedicated physical sensor.

Since our goal is to study how well MultiSense could

satisfy conflicting demands of concurrent applications using

proportional-sharing techniques and various optimizations,

the study of an admission controller and the effects of pre-

empting currently executing applications is out of the scope

of this paper. In fact, assigning 100 % weight to a critical

application and 0 % to others in a proportional-sharing

technique could simulate the job of an admission controller.

3 MultiSense design

MultiSense extends traditional hypervisors by adding

support to multiplex steerable sensors using a virtual sensor

abstraction. A vsensor behaves like a slower version of the

physical sensor that has identical functionality: an appli-

cation designed to interface with the physical sensor should

also interface with the corresponding vsensor. MultiSense

resides in the hypervisor or a privileged control Domain—

Domain-0 in Xen—and interleaves requests from each

vsensor on the underlying physical sensor, as shown in

Fig. 2. We separate MultiSense’s functions into three cat-

egories described below. The goal of this decomposition is

to reduce context-switch overheads while preserving a

level of performance isolation.

1. State restoration MultiSense tracks the state of the

physical sensor and each vsensor using finite state

machines (FSM), and restores state whenever it detects

a state mismatch at context-switch time.

2. Request groups MultiSense prevents wasteful context-

switches by automatically grouping together requests

from each vsensor of the form Ai
*Si and atomically

issuing them to the sensor.

3. Scheduling MultiSense employs a proportional-share

scheduler and extensions at the granularity of request

groups to determine an ordering that balances fair

access to the sensor with its efficient use.

We describe MultiSense’s FSMs, and their use in

restoring state and inferring atomic request groups in this

section, and discuss scheduling in Sect. 4. We use the term

actuator broadly to include both mechanical actuators, as

well as non-mechanical settings of interest. For instance, a

PTZ camera’s state includes both the pan, tilt, and zoom

position of its lens, as well as the image resolution and

shutter speed settings. Pan and tilt are true mechanical

actuators that require a motor to alter, while zoom, shutter

speed, and image resolution are settings of the lens, cam-

era, and CMOS sensor, respectively. Likewise, steerable

radars have both mechanical, e.g., scanning, and non-

mechanical, e.g., pulse frequency, actuators. Each actua-

tion modifies the state of one or more of these parameters,

causing the sensor to transition from one state to another.

3.1 Sensor state machines

Finite state machines track the state of each physical and

virtual sensor, where a state is an n-tuple that represents a

setting for each of n actuators. Each state transition has a

cost that denotes the time the sensor takes to complete the

transition. MultiSense employs a virtual state machine

(VSM) to track the current state of each virtual sensor and a

physical state machine (PSM) to track the state of the

physical sensor. The state of a virtual sensor (and hence the

VSM) changes only when the corresponding user actuates

its vsensor. In contrast, the state of the physical sensor (and

the PSM) depends on which vsensor request is currently

executing on the physical sensor. Thus, the PSM and VSM

state machines allow MultiSense to track the state expected

by each user, as well as the current state of the underlying

physical sensor.

3.2 Intelligent state restoration

Whenever MultiSense context-switches from one vsensor

to another, it compares the state of the currently executing

vsensor state machine (VSM) with the physical sensor’s

state machine (PSM). As with a CPU, if there is a state

mismatch, MultiSense performs state restoration by auto-

matically issuing requests for each out-of-sync state

parameter to synchronize the vsensor’s state with the

physical sensor’s state. As an example, assume that Alice’s

vsensor1

unmodified
app 1

VM 1domain-0

device
driver

physical 
sensor

VMM / hypervisor

vsensor2

VM 2

MultiSense
unmodified

app 2

Fig. 2 MultiSense architecture overview
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VSM is in state pan = ha tilt = /a zoom = Za, and the

PSM is in state pan = hb tilt = /a zoom = Zb. The two

state machines are out-of-sync along the pan and zoom

dimensions but in-sync along the tilt dimension. Multi-

Sense synchronizes Alice’s VSM state with the PSM by

issuing a pan request to move the camera from hb to ha and

a zoom request to move from Zb to Za. No synchronization

action is necessary along the tilt dimension.

We refer to this simple state restoration strategy as the

eager strategy, since it eagerly synchronizes states with a

past state on every context-switch. For steerable sensors,

the eager strategy imposes a higher overhead than neces-

sary, since it ignores actuation requests queued by each

vsensor. Recall the example from Sect. 2.2, where Alice

issues PaCa followed by Pa
2Ca

2, and the Pa request causes

the camera to move to pan position ha. Now suppose that

Bob’s request PbCb executes next, and the camera pans to

position hb. Before executing Alice’s next request, the

eager strategy restores the pan state of the camera by

moving it from the current position hb to position ha. As

depicted in Fig. 1c, the approach is wasteful, since Alice’s

queued pan request Pa
2 intends to pan to position ha

2, making

it more efficient to move the camera directly from hb to ha
2.

To see why, suppose hb = 50�, ha = 30� and ha
2 = 75�.

Eager restoration pans from 50� ! 30� ! 75� ¼ 65�;
while a direct pan from 50 to 75� requires only a 25�
movement. For the PTZ camera, we use an additional 40�
pan movement wastes more than 1 s.

MultiSense avoids this overhead using a lookahead

strategy that does not restore state parameters that queued

vsensor actuations will subsequently modify. For exam-

ple, let VSMprev denote the VSM state prior to a context-

switch, and let VSMnext denote the VSM state that would

result from executing requests queued after the last con-

text-switch. VSMprev \ VSMnext now denotes the set of

state parameters not modified by these requests. The

lookahead strategy only restores the states in VSMprev \
VSMnext. In the Alice and Bob example, VSMprev \
VSMnext includes the parameters zoom and tilt, but not

pan, since Alice’s queued request will modify the pan

parameter.

3.3 Request grouping via request emulation

To eliminate wasteful state restoration overheads, Multi-

Sense automatically groups requests from each vsensor that

the physical sensor should execute atomically (Fig. 3).

Each group includes a sequence of zero or more actuation

requests, followed by a sense request from a single vsensor.

Request groups prevent interference from the actuation

requests of competing vsensors. However, since sensing

and actuation requests are often blocking calls executed

synchronously on the underlying physical sensor, vsensors

only see a single request at a time, which does not permit

grouping. To group requests, MultiSense enables asyn-

chronous execution of blocking requests by emulating the

execution of requests on the vsensor and deferring their

actual execution on the physical sensor.

Request emulation allows the vsensor to behave as if the

request actually executed on the sensor, allowing the

blocking call to complete and the vsensor to continue

execution. The vsensor’s VSM tracks the state changes that

result from any emulated requests, and defers their exe-

cution until the vsensor context-switches in. To ensure

correctness, we only emulate actuation requests, since they

do not return data that alters an application’s control flow.

Since sense requests return real-world data, MultiSense

cannot emulate them, but must execute them using the

physical sensor in the appropriate state to return a correct

result. When a sense request arrives, MultiSense flushes the

queue of deferred actuation requests to its scheduler, which

then schedules the request group as a single atomic unit.

The sense request blocks until the result returns.

As an example, consider how Alice’s virtual camera

maps onto a physical camera. Assume that Alice issues an

actuation request Pa to pan to position ha. Request emu-

lation triggers a VSM state transition to a new pan position

ha, as shown in Fig. 4. The figure also shows that Multi-

Sense queues the request for deferred execution. Once the

blocking pan completes, Alice’s application continues

execution and issues an actuation request to tilt to position

/a, causing request emulation to continue by triggering

another state transition in the VSM. Finally, Alice issues a

S2 A5 A4 A3 S1 A2 A1

S4A3Traffic
Monitoring

vsensor

Vehicle
Tracking

S4 A3 S3 A2 S2 A1 S1

VM

VM vsensor

S1S2A1S3A2

S1A2A1S2A5A4A3

Step 2: Interleave 
Request Groups

Step 1: Construct 
Request Groups

S1S1A2A1S2A1S3A2

raw request stream

prop-share
scheduler

FSM state
tracking

psensor

Fig. 3 Constructing and

interleaving request groups
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capture request Ca, which MultiSense groups with the two

pending actuation requests in the vsensor’s queue and

flushes it to the scheduler for execution on the physical

sensor. Alice blocks until the group executes and returns

the appropriate image.

One consequence of request emulation is that applica-

tions do not immediately perceive errors from actuations.

We report any errors as a result of an actuation when its

corresponding sense request executes, similar to any write-

back cache that will defer reporting hardware errors until

after a write executes. Note that this change affects neither

application correctness nor device safety. MultiSense

delays reporting actuation errors to the time of an appli-

cation’s next sense request. Since sensor data dictate an

application’s control flow, the application will observe

errors prior to making control flow decisions.

Likewise, since MultiSense adds an additional layer in

the software stack that controls the issuing of requests to

the physical sensor, it is capable of including logic that

prevents cascading errors from unknowing applications

that may damage the sensor. For example, an application

might damage a PTZ camera or radar by issuing actuation

commands too fast. MultiSense’s additional layer in the

software stack between the application and the raw sensor

provides a location to implement filters that assure the

sensor is not operated in an unsafe manner.

4 Proportional-share for steerable sensors

MultiSense flushes request groups to a proportional-share

scheduler that decides when to execute them. We design

actuator fair queuing (AFQ) by modifying the standard

start-time fair queuing (SFQ) algorithm, originally

designed for NICs [3] and CPUs, to schedule steerable

sensors [11].

As background, we provide a brief summary of SFQ.

Start-time fair queuing assigns a weight wi to each vsensor

and allocates wi/
P

j wj of the physical sensor’s time to

vsensor i. Controlling the weight assignment alters the

share and performance of a vsensor’s actuators: a smaller

weight results in a smaller share and slower actuation. For

example, a weight assignment in a 1:2 ratio for Alice and

Bob results in an allocation of 1/3 and 2/3 of the physical

sensor’s time, respectively. An ideal fair scheduler guar-

antees that over any time interval (t1, t2), the service

received by any two vsensors i and j is in proportion to

their weights, assuming continuously backlogged requests

at each vsensor during the interval. Thus,
Wiðt1;t2Þ
Wjðt1;t2Þ ¼

wi

wj
; or

equivalently,
Wiðt1;t2Þ

wi
� Wjðt1;t2Þ

wj
¼ 0; where Wi and Wj denote

the aggregate service each vsensor receives over the

interval (t1,t2). In our case, the aggregate service denotes

the total time the (dedicated) physical sensor consumes

scheduling a vsensor’s request during the interval.

We define the SFQ algorithm for scheduling critical

sections in MultiSense as follows. For ease of exposition,

we will use the terms critical sections and requests inter-

changeably: SFQ maintains a queue of pending requests for

each vsensor.

– Upon arrival, the scheduler assigns each request ri
k

with a start tag S(ri
k), where S(ri

k) = max(v(A(ri
k)),

F(ri
k-1)), ri

k denotes the k’th request of vsensor i; F(ri
k-1)

denotes the finish time of the previous request; v(t)

represents virtual time, described below; and A(t)

represents the actual arrival time of the request. The

start tag of a request is the maximum of the virtual time

at arrival or the finish tag of the previous request.

– The finish tag of a request is Fðrk
i Þ ¼ Sðrk

i Þ þ
lki
wi
; where

li
k denotes the length of the k’th request and wi denotes

the weight assigned to vsensor i. Intuitively, the finish

tag of a request is its start tag incremented by the length

of time required to execute the entire critical section,

normalized by the vsensor’s weight. To enable precise

computation of li
k, SFQ computes the finish tag after the

request/critical section completes execution. Once SFQ

computes a request’s finish tag, it computes the start tag

of the next request in its queue.

– The scheduler starts at virtual time 0. During a busy

period—when the scheduler is continuously scheduling

requests on the physical sensor—SFQ defines the

virtual time at time t, v(t), to be the start tag of the

request currently executing. At the end of a busy

period, SFQ sets the virtual time to the maximum finish

tag of any request completed during this busy period.

The virtual time does not increment when the physical

sensor is idle.

– The scheduler always schedules the request with the

minimum start tag next, ensuring that it schedules the

vsensor with the minimum weighted service thus far.

This is the key property that ensures each vsensor

receives its fair share of the psensor over time. Note

also that scheduling the request with the minimum start

tag implies that the virtual time during a busy period is

Fig. 4 Request emulation and request groups
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always equal to the minimum start tag of any request in

the system.

4.1 Actuator-fair queuing

Actuator fair queuing differs from SFQ by setting the

length of a request equal to the time it would take to

execute on the dedicated sensor, and introducing three

important extensions, discussed in the following sections,

that address scheduling issues specific to steerable sensors.

As with other proportional-share schedulers, AFQ associ-

ates a weight wi with each vsensor and allocates wi/
P

k wk

of the physical sensor’s time to vsensor i. Lowering a

vsensor’s weight assignment affects its performance by

slowing down its actuation speed. In work-conserving

mode, actuation speeds may also become faster if any

vsensor is not using its share by being passive. An ideal fair

scheduler guarantees that over any time interval (t1, t2), the

service received by any two vsensors i and j is in propor-

tion to their weights, assuming continuously backlogged

requests during the interval. Thus,
Wiðt1;t2Þ
Wjðt1;t2Þ ¼

wi

wj
; where Wi

and Wj denote the total time the dedicated physical sensor

consumes executing requests from vsensor i and vsensor

j, respectively, during the interval.

The ideal is only possible if the physical sensor is able to

divide each actuation into infinitesimally small time units.

Since actuations are of variable length and MultiSense

schedules at the granularity of request groups, enforcing the

ideal is not possible. We chose SFQ as our foundation

because it bounds the resulting unfairness due to this discrete

granularity by ensuring that jWiðt1;t2Þ
wi
� Wjðt1;t2Þ

wj
j � ðlmaxi

wi
þ

lmaxj

wj
Þ for all intervals (t1, t2), where li

max is the maximum

length of a request group from vsensor i. Intuitively, this

bound is a function of the largest possible request group,

which for our PTZ camera is an actuation, from pan =

-170�, tilt = -90�, zoom = 1x to pan = 170�, tilt =

25�, zoom = 25x. Since this worst-case scenario takes

nearly 16 s for our camera, one goal of our evaluation is to

explore performance in the common, rather than the worst,

case for representative applications. Start-time fair queuing

also raises other issues when co-opted for steerable sensors.

We discuss these issues below and present AFQ’s extensions

to mitigate them.

4.2 Context-switch costs and batching

Start-time fair queuing ignores the actuation costs from

context-switching between request groups, causing signif-

icant overheads. As an example, consider three users Alice,

Bob and Carol sharing a PTZ camera. Assume that the

camera is currently at position 25�, and Alice, Bob and

Carol have start tags of 10, 11 and 12, respectively, when

Alice issues a pan request for position 30� and Bob and

Carol issue pan requests for positions 75 and 40�. Start-

time fair queuing services these requests in order of the

start tags—Alice, then Bob, and finally Carol—and triggers

pans from 25� ! 30� ! 75� ! 40� ¼ 85�: However,

since Alice and Carol’s requests are close to each other,

servicing the requests in the order Alice, then Carol, and

finally Bob lowers the overhead to 25� ! 30� ! 45� !
75� ¼ 50�: For our PTZ camera, this results in nearly a 1 s

reduction in overhead. We address this issue in AFQ by

selecting the k pending request groups with the smallest

start tags, one from each vsensor, instead of selecting only

the request group with the minimum start tag.

Given a batch of k request groups, we reorder them to

minimize the physical sensor’s total actuation time. In our

example, this strategy selects the more efficient Alice ?
Carol ? Bob ordering. For a single actuator, the batching

strategy is similar to proportional-share disk schedulers

that use an elevator algorithm to reorder batched requests

[7]. Since our sensors have multiple actuators, minimizing

actuation time is an instance of the NP-hard traveling

salesman problem. We use a greedy heuristic that always

executes the next closest request in the batch. For small

values of k, a brute force search that tries all permutations

is also feasible. Introducing the parameter k defines a new

tradeoff: the higher the value of k the more efficient, but

less fair, the schedule. In Sect. 6.2, we show that a value of

k that is close to half the number of vsensors N in the

system strikes a good balance between fairness and effi-

ciency for our examples.

4.3 Synchronous I/O

Applications, such as object tracking, must execute sense

requests synchronously if they use the result to determine

their next actuation. Proportional-share schedulers, such as

SFQ, that track progress and make decisions using virtual

clocks do not handle synchronous requests well because of

deceptive idleness [12]. Synchronous requests prevent an

application from queuing up additional requests for the

scheduler to consider, which may cause the scheduler to

pre-maturely context-switch after a synchronous request

completes, but before the application is able to issue

additional requests. Anticipatory scheduling addresses the

problem by pausing for a period after the execution of a

synchronous request, giving the currently executing

application a small time window to issue subsequent

requests for the scheduler to consider [12].

However, mechanically steerable sensors violate the

assumption of anticipatory schedulers that requests from a

single application always have similar degrees of spatial

and temporal locality. Unlike disks, which control the
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layout of their own data, we cannot always assume that

real-world events will be close to each other in space or

time. As a result, while anticipatory scheduling does

achieve better fairness properties, by preventing the virtual

clocks of applications continuously issuing small requests

from lagging behind, in many cases it actually decreases,

rather than increases, performance for mechanically steer-

able sensors. We evaluate the impact of anticipatory

scheduling and synchronous requests in Sect. 6.2.2. We

note that even without assumptions about spatial and

temporal locality, anticipatory scheduling may have bene-

fits for new electronically steerable radars [25] that do not

have steering latency, because some applications will still

need to interpret data from a previous request before

issuing a subsequent request to the scheduler. We leave

evaluating the impact of anticipatory scheduling on elec-

tronically steerable sensors as future work.

4.4 Overlapping requests and request merging

If concurrent applications are interested in similar events,

our scheduler takes advantage of the spatial and temporal

locality between the applications. This phenomenon is

most prevalent for steerable weather radars that sense by

performing sector scans of the atmosphere at specific ele-

vations. During a severe weather event, it is likely that

scanning algorithms run by different agencies or scientists

will observe similar regions of the atmosphere. The con-

cept also applies to PTZ cameras that scan continuous areas

or capture bursts of activity.

To account for these partially overlapping requests, our

AFQ implementation merges multiple requests within a

batch of k according to a simple policy: if any portion of

the scans from two requests overlap, the scheduler merges

them and only executes the single merged request. For

example, if Alice sends a scan request of 10 to 50� and Bob

sends a scan request of 25 to 75�, our AFQ algorithm

merges the two scan requests and sends a single scan

request of 10 to 75� to the physical radar. MultiSense uses

the data collected from the merged request to form the

correct result for each individual request and return it to the

respective application. If workloads exhibit a high level of

overlap, the performance gains from merging are signifi-

cant, as we show in Sect. 6.2.1.

5 Implementation

MultiSense integrates with Xen Linux’s virtual device

framework. Xen is a widely used platform for creating and

managing virtual machines on servers [2]. Xen already

includes support for sharing a server’s CPU, memory, and

common I/O devices, such as disks. The sensors we study,

which we describe in Sect. 5.1, are character devices that

transfer streams of data serially to applications. In Linux,

applications typically interface with sensors through char-

acter device files using the open, close, read, write, and

ioctl system calls. To support devices, Xen uses a split-

driver approach that divides conventional driver function-

ality into two halves: a front-end driver that runs in each

VM and a back-end driver that typically runs in Domain-0,

a privileged management Domain. Details of the split-

driver approach can be found in [2]. Figure 5 depicts

MultiSense’s Xen implementation using a generic front-

end character driver that passes the front-end’s open, close,

read, write, and ioctl requests to the back-end driver, which

executes them and returns the response.

As with other character drivers, the front-end/back-end

communication channel supports multiple threads to permit

asynchronous interactions. In our current implementation,

the back-end driver passes requests to a user-level daemon

running in Domain-0 using the back-end’s read and write

system calls. This daemon includes the logic to maintain

and restore state, group requests, and schedule groups using

a sensor’s conventional application-level interface. Imple-

menting MultiSense at user-level has two advantages

beyond simplifying debugging. First, manufacturers often

release binary-only drivers for Linux that are only acces-

sible from user-level, necessitating user-level integration.

Second, the user-level daemon decouples our implemen-

tation from a specific virtualization platform, allowing us

to switch to alternatives, e.g., Linux Vservers, if necessary.

Since the dominant performance cost for steerable sensors

is actuation time and not data transfer, as we show in Sect.

5.3, the overhead of moving data between kernel-space and

user-space is negligible. For sensors where data transfer is

the dominant cost, we could integrate the functions of this

daemon into the back-end driver.

MultiSense’s front-end/back-end drivers are reusable

with different types of sensors since they only serve as a

front-end
driver

app 1

VM 1dom-0

back-end
driver

device
driver

physical 
sensor

Xen hypervisor
XenBus

front-end
driver

app 2

VM 2

user-level daemon

Fig. 5 MultiSense uses Xen’s split-driver framework for communi-

cation, and a user-level daemon in Domain-0 to maintain vsensor

VSMs and execute scheduling policies. Each request passes from

application ? front-end driver ? back-end driver ? daemon ?
device
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communication channel for requests. We use the same pair

for both the PTZ camera and the weather radar. The user-

level daemon maintains a vector and queue for each

vsensor that stores the current setting of its actuators and its

backlog of deferred actuation requests, respectively. The

daemon also manages VSMs and state restoration as well

as our extensions, such as request batching/merging and

anticipatory scheduling. When an actuation request arrives,

the daemon associates a start tag with it, places it at the end

of its vsensor’s queue, sends back a response, and changes

the actuator’s vector entry. When a sense request arrives,

the daemon batches it with any deferred requests in order

of their minimum start tag, assigns the start tag of batch as

the start tag of the sense request, and flushes the batch to

the common queue used by the AFQ scheduler. As soon as

k request batches arrive or time t passes from the last

scheduling opportunity, the scheduler reorders the request

batches in the common queue using our greedy heuristic

and issues them to physical sensor, as described in Sect.

3.3.

5.1 Example sensors

We evaluate MultiSense for both PTZ cameras and steer-

able weather radars. We use the sony SNC-RZ50N PTZ

network camera. Beyond the three actuators we focus on,

the camera has many non-obvious actuators, including

resolution setting, shutter speed, backlight compensation,

night vision, and electronic stabilization, that influence an

image’s fidelity. The camera is capable of panning between

-170 and 170� and tilting between -90 and 25� of center,

while supporting 25 different optical zoom settings

(1–25x). The camera’s direct drive motor allows control of

pan and tilt increments as small as 1/3�. We benchmarked

the speed of each of the camera’s actuators independently

(Fig. 6). The camera is capable of panning at 40�/s, tilting

at 30�/s, and zooming at 12x/s, although shorter move-

ments are slower due to the acceleration/ deceleration of

the motor, which accounts for a major fraction of overall

actuation time in case of shorter movements.

Similar to PTZ cameras, steerable weather radars are

also an example of multimedia systems.1 As shown in

Fig. 7, weather radars scan and produce high-resolution

images of severe weather conditions, such as tornado,

which are used by various government agencies and

research communities to issue weather warnings and study

weather behaviors, respectively. A network of weather

radars, with possibly overlapping regions (Fig. 7), is often

used to observe and predict correct weather conditions.

To study steerable weather radars, we developed an

emulator, written in Java, modeled after the experimental

IP1 radar (Fig. 8). The IP1 uses a direct-drive, high-torque

azimuth positioner and linear actuator elevation positioner

to reposition its antenna [19]. The positioner is able to scan

from 0 to 360� at a maximum speed of 120�/s, and change

elevation, e.g., tilt, from -2 to 30� at a maximum speed of

30�/s. The radar performs sector scans and produces data at

a maximum of 3 Kb/� when sampling. Each actuation

request specifies a start and stop position, which includes

the azimuth and elevation angles of the antenna, for each

1 One could compare a weather radar to a more complicated camera

that works at a lower frequency.

Fig. 7 Image of a strong tornado in Oklahoma region taken by a

network of four weather radars
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scan. Our emulator introduces necessary delays and gen-

erates right volume of data to emulate scan time and radar

data, respectively.

5.2 Radar emulator

The emulator consists of three modules—a receiver,

executor and dispatcher—where each module executes in a

separate thread. The receiver opens a TCP socket and lis-

tens incoming steering requests. After receiving a request,

the receiver checks its validity before appending it to cir-

cular request queue. Invalid requests return with an

appropriate error code. As with the IP1, valid steering

requests specify an identifier, as well as azimuth and ele-

vation start angles and stop angles within a specified range.

Our emulator keeps other radar parameters, such as the

antenna speed or the transmitter waveform, constant. The

emulator maintains a constant antenna speed of 120�/s,

which represents the maximum the IP1 is able to sustain.

The IP1 antenna executes sector scan in multiple eleva-

tions, where the antenna sweeps over complete azimuth

range, then steps up the antenna’s elevation by 1�, and

repeats sweeping a complete azimuth range, and so on. The

IP1 generates data at a rate of 3 Kb/�.

The executor module, which maintains the physical state

of the radar, is the core part of the emulator. The module

dequeues each request from the circular request queue, and

calculates its positioning latency and execution time. We

define positioning latency as the time to move the radar

from its current position to the start position of the request.

Thus, the execution time represents the time required to

complete a sector scan from the request’s start position to

its end position. The executor also (1) computes the

quantity of data generated by the sector scan, (2) waits for

the appropriate amount of time to satisfy the steering

latency, and (3) creates and enqueues a response into a

dispatcher queue. The size of response header and payload

is identical to the same request on the IP1. Finally, the

executor updates its internal state vector for the radar and

services the next request. The dispatcher module serves

only to dequeue responses from the dispatcher queue and

transmit responses back to the back-end user level daemon.

5.3 Benchmarks

Before evaluating MultiSense, we benchmark its imple-

mentation overhead. Our experiments run on our testbed

nodes which each use a 2.00 Ghz Intel Celeron CPU, 1GB

RAM, and an 80 GB SCSI disk running version 3.2 of the

Xen hypervisor with Ubuntu Linux using kernel version

2.6.18.8-xen in both Domain-0 and each guest VM. Each

guest uses a file-backed virtual block device to store its root

file system image. Using the camera, Table 1 reports the

overhead MultiSense imposes on a single vsensor actuation

request and its response as it flows from the application to

the device and then back to the application. Xen adds two

additional layers in the flow—the front-end and back-end

device driver—while MultiSense adds one layer using a

user-level daemon in Domain-0. As Table 1 shows, the

overhead of these additional layers is minimal compared

(order of ls) to the actuation times (order of seconds).

We also benchmark the maximum aggregate I/O that

MultiSense is able to support, and its CPU overhead. For

Fig. 8 Architecture of an IP1 radar node. The tower top rotating

assembly contains the radar antenna, transceiver, data acquisition

system, and elevation actuator—all mounted on a frame atop the

azimuth positioner. On the radome floor, the nonrotating subsystems

include a gigabit Ethernet switch, Ethernet controlled power outlet

strip, GPS amplifier, and position controller computer. A gigabit

Ethernet optical fiber links the tower top with the data processing

server on the ground. The site is connected to the Internet through a

radio link

Table 1 Latency breakdown for a sample vsensor actuation of the

Sony PTZ camera in our Xen implementation

From ? To Latency Percentage

Application ? Front-end 0.24 ls 7.1 9 10-8

Front-end ? Back-end 6.35 ls 1.9 9 10-4

Back-end ? Listener 286 ls 8.51 9 10-3

Listener ? Camera 274 ls 8.15 9 10-3

Camera ? Listener 3.35 s 99.7

Listener ? Back-end 17 ls 5.1 9 10-4

Back-end ? Front-end 27 ls 8.0 9 10-4

Front-end ? Application 229 ls 6.8 9 10-3

Total 3.36 s 100

The dominant factor in the request latency ([99.7 %) is the time to

actuate the camera

Our implementation imposes comparatively little overhead (\0.3 %)
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these experiments, we use Xen’s proportional-share credit

scheduler to allocate Domain-0 40 % of the CPU and each

VM 10 % of the CPU. We vary the number of VMs from 1

to 5, where the first VM controls the PTZ camera and the

other VMs control the radar. Figure 9a shows the maxi-

mum achievable I/O rate that MultiSense is able to deliver

to each vsensor by allowing our radar emulator to produce

data as fast as possible with no delays from actuation

overhead. The result demonstrates that MultiSense is able

to handle an I/O rate of 4.6 Mbps of streaming data in this

extreme case without overloading the CPU allocated to

Domain-0, as shown by the Domain-0 CPU utilization in

the figure. For reference, Netflix’s watch instantly feature

has a bit rate 5 Mbps using the VC-1 codec [1]. This

maximum I/O rate is 5x more than the maximum possible

sensing rate including actuation overheads as shown by

Fig. 9b, which uses a workload of random actuations. The

experiment also demonstrates that MultiSense uses only

12 % of Domain-0’s, 40 % CPU share, or 4.8 % of the

total CPU, in this extreme case.

6 Evaluation

We first evaluate the impact of MultiSense’s strategies for

state restoration, request groups, and scheduling individu-

ally using synthetic workloads. The experiments demon-

strate the extent to which these optimizations improve

request throughput and latency. MultiSense’s primary

metric for success is whether or not it accommodates real

concurrent applications. We present a case study for the

camera and radar that demonstrates the application-level

performance and timeliness requirements MultiSense can

achieve using our example sensors. We use both deter-

ministic and random synthetic workloads to benchmark

MultiSense’s functions.

For the camera, the deterministic workload performs

continuous scans using a single actuator in a single direction

interspersed with sense requests, while the random work-

load repeatedly issues requests for a random setting of the

actuators followed by a sense request. Each scan issues a

sense request every 10� starting at one extreme and moving

to the other. For the radar, the deterministic workload issues

continuous scans between two extreme points 180� apart at

a specific elevation, while the random workload repeatedly

issues scans between a random start and stop position. We

intend these synthetic workloads to be conservative, since

they force MultiSense to steer to extreme points in a sen-

sor’s state space, while also satisfying randomly generated

requests. We describe the workloads for the applications in

our case study in Sect. 6.3.

6.1 State restoration and request groups

We demonstrate the impact of state restoration and request

grouping, independent of our scheduling policy, on

throughput—the number of requests a sensor is able to

satisfy per time interval. We first compare the eager

approach to state restoration, described in Sect. 3.2, with

our lookahead approach. Figure 10 shows results from an

experiment using five vsensors, with batch size of three,

executing the random workloads described above, with

both the radar and the camera. Figure 10a shows the pro-

gress of completed requests on the physical sensor for both

approaches, while Fig. 10b plots the average latency to

satisfy each request.

The lookahead approach is significantly more efficient:

it is able to satisfy nearly 2x as many requests during the

same 30 min time period with 2x less latency on average

per request. We also demonstrate the impact of request

grouping by running the same experiments above with and

without grouping. Figure 11 shows the results. Using
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request groups, the camera is able to satisfy 2x more

requests than without request groups. Our result highlights

the importance of optimizing state restoration and grouping

requests for efficiency, since a poor strategy may cancel

any benefits from better scheduling. The consequences for

an application are significant. For our camera case study

(Fig. 20), a 2x increase in request latency would mean

capturing an image every 6 s, versus capturing it every 3 s.

6.2 AFQ scheduling

The goal of AFQ is to enforce performance isolation

between vsensors—each vsensor should receive perfor-

mance in proportion to its weight. While AFQ bounds the

maximum unfairness within any time interval, our exten-

sions relax this bound to increase efficiency. We first

demonstrate AFQ’s strengths and limitations when sched-

uling steerable sensors, and then present results that show

the performance gains, as well as the impact on fairness,

for each of our extensions.

Actuator fair queuing advances virtual time in relation

to the time each actuation consumes on the dedicated

sensor, which we denote as vsensor time. The more vsensor

time each actuation consumes the slower the actuator.

Figure 12 shows the total vsensor time of two vsensors

with different weight assignments using AFQ, where each

vsensor executes the continuous scan workload. The figure

demonstrates that a straightforward adaptation of SFQ for

actuators isolates vsensor performance: the cumulative

vsensor time it allocates is in proportion to the assigned

weights. As shown in Fig. 13, AFQ proportionally dis-

tributes share of the passive vsensor (vsensor-5’s share

during time interval 500–1,000 and 1,500–2,000 s) among

active vsensors (vsensor-1 and 2). However, while SFQ

enforces performance isolation over large numbers of

requests, high context-switch costs cause it to perform

unfairly over short intervals.

To demonstrate the point, Fig. 14 shows how the

cumulative vsensor time progresses over the course of an

experiment. Since each workload includes 100 requests, at

any point in time the cumulative vsensor time for each

vsensor should be in proportion to the assigned weights.

The experiment uses five vsensors—four running the

continuous scan workload (one–four) and one running the

random workload (five). The result demonstrates that over

short time periods SFQ is not always fair: during the period

0–100 s both vsensor-3/vsensor-4 and vsensor-1/vsensor-2

receive similar performance that is not in proportion to

their weights. Further, vsensor-1/vsensor-2 receives similar

performance by time 200 and vsensor-3/vsensor-2 receives

similar performance up to time 400, which diverges from

the weight assignments. However, as before, as MultiSense

services larger numbers of requests, performance con-

verges to the assigned weights by 550 s.

6.2.1 Request batching and merging

Figure 15 demonstrates the performance improvement

from batching for the camera. The experiment uses random

workloads from five vsensors to stress actuation, and shows

that the average throughput increases as the batch size
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increases—each increment in batch size results in roughly

a 10 % improvement. However, the improvement comes at

a cost: the scheduler diverges from strict fairness. Fig-

ure 16 shows the cumulative request latency for each of the

five vsensors as a function of batch size, using the same

five vsensors and workloads as Fig. 15. The cumulative

request latency is the sum of the latencies to satisfy all

requests at each vsensor, which is equivalent to each

vsensor’s makespan.

Figure 16b plots the cumulative vsensor time over the

course of the experiment for a batch size of four. Com-

paring the result with Fig. 14 in the previous section

emphasizes the decrease in performance isolation. As

expected, SFQ, which corresponds to a batch size of one,

exhibits strong performance isolation. As the batch size

increases, though, performance isolation decreases, causing

the height of the bars to approach each other. For these
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workloads, a batch size of three exhibits an appropriate

balance by increasing performance by 20 % while

achieving similar fairness properties. In practice, we have

found that a batch size of roughly half the number of active

vsensors strikes the appropriate balance.

Using the same setup as the experiments above, we

evaluate the effect of batching with and without request

merging for the radar, since its sensing requests are sector

scans that may cause overlap among concurrent requests

from different vsensors. Figure 17a shows that merging

results in a 75 % improvement over batching without

merging for multiple batch sizes. Figure 17b also shows

that merging decreases aggregate I/O (data per request) by

nearly 35 %. Finally, we explore how the degree of overlap

present in a workload affects performance. Figure 18

shows the average request latency from two vsensors

executing workloads with different degrees of overlap. We

set each vsensor to issue 180� sector scans, and vary the

starting point of one vsensor to control the size of the

overlap. The experiment shows that the average request

latency approaches that of a dedicated sensor as the degree

of overlap approaches 100 %, and that without request

merging the average request latency is 1.5x higher.

6.2.2 Anticipatory scheduling

Figure 19 shows the performance impact of anticipatory

scheduling using the camera. Anticipatory scheduling has

similar results for the radar. If MultiSense does not use

anticipatory scheduling, vsensors must fill the scheduler’s

queue with multiple requests by either issuing them asyn-

chronously or issuing them on separate threads. This

experiment charts the actuation speed of two vsensors over

time executing random workloads with and without antic-

ipatory scheduling, where each point is an average of five

actuation requests. In this experiment, we only use the pan

and tilt actuators so we can quantify speed in terms of

degrees/second.
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As Fig. 19 demonstrates, using anticipatory scheduling

with request patterns that have low spatial and temporal

locality results in a vsensor that is roughly 25 % slower.

The experiment also demonstrates how weight translates to

the absolute speed of the actuator. Without anticipatory

scheduling, the average speed for the dedicated sensor is

23�/s, while the average speed for the vsensor with

weight = 1 is 12�/s and with weight = 2 is 19�/s. The

average speed for the dedicated sensor is less than the

maximum speed in Sect. 5.1 due to the random workload,

which includes numerous short requests. Both 12 and 19

are roughly 50 and 80 % of the 23�/s possible with the

physical sensor. In this example, the speeds are higher than

the vsensors’ relative weights because of the proximity of

requests. The variance in speed for the vsensors is greater

than that of the dedicated sensor, which highlights the

loose relationship between weight and absolute speed for

steerable sensors.

6.3 Case studies

Our case study explores MultiSense’s use with four

example applications with specific performance metrics

that are applicable to both the camera and radar. We use the

lookahead state restoration approach, request groups, and

AFQ.

Continuous monitoring for the camera, continuously pan

in increments of 65�—nearly one-fifth of the possible pan

range—and capture an image, while for the radar, contin-

uously execute 360� sector scans at a specific elevation.

The performance metric is the time to cover the sensor’s

entire range.

Fixed-point sensing for the camera, pan, tilt, and zoom

the lens to a fixed point and repeatedly capture images at a

regular interval, while for the radar, execute the same 30�
sector scan at a specific elevation. The performance metric

is the sensing rate.

Object tracking for the camera, periodically track a pre-

defined path along both the pan and tilt axes and capture

images every 10�, while for the radar execute small sector

scans every 30�. The performance metrics are both the

latency between sensing requests, and the minimum overall

latency necessary to keep up with the moving object.

Multi-sensor fixed point sensing for two cameras, pan,

tilt, and zoom the lens to a fixed point and repeatedly

capture images at a regular interval, while for two radars,

scan a 30� sector at the same elevation. In both cases, both

sensors must also satisfy competing applications. The

performance metric is the rate at which both sensors cap-

ture the fixed-point, which is equivalent to the minimum

sensing rate of the two sensors.

With a dedicated camera, fixed-point sensing has near

video quality. The sensing rate is 11 images/s with an

average inter-image interval of 0.09 s. However, even on a

dedicated sensor, actuation does have a significant effect on

performance. Executing our random workload, reduces the

rate to 0.3 images/s with an average inter-image interval of

3.35 s. Similarly, two fixed-point sensing applications—at

a distance of 180�—are both able to capture 0.2 images/s

with an average inter-image interval of 4.65 s. With the

radar, fixed-point sensing with a dedicated sensor is able to

scan the same 30� sector every 0.5 s, but executing a

random workload of 30� scans reduces the rate to every

1.5 s. We use these sensing rates for comparison in our

case study below.

We first execute both continuous monitoring (Figs. 20a,

21a) and object tracking (Figs. 20b, 21b) concurrently with

the fixed-point sensing application for both the camera and

the radar. In both cases, we maintain a weight of one for
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fixed-point sensing, while varying the weights assigned to

continuous monitoring and object tracking. Figure 20

shows the results for the camera and Fig. 21 shows the

results for the radar, where the left y axis plots the appli-

cation’s performance metric, the right y axis plots sensing

rate for fixed-point sensing, and the dotted line depicts

performance on a dedicated sensor. The results show that

MultiSense is able to satisfy the conflicting demands of

concurrent applications. Of course, the applications must be

able to tolerate less performance than possible with the

dedicated sensor, which in these examples ranges from 1.5

to 8x less performance for the different weight assignments.

Since weight dictates performance, some applications may

need a minimum weight to satisfy their requirements.

Consider continuous monitoring for the camera with a

1:30 weight ratio, the application is able to pan all 340�
in 20 s. Thus, in the real-world, the monitoring application

is able to capture five distinct points 113 ft apart, e.g.,

four doorways, at distance of 100 ft from the camera every

4 s.2 Simultaneously, fixed-point sensing maintains an

average sensing rate of nearly 0.2 images/s, allowing it to

continuously capture a single point, such as a nearby

intersection. Likewise, for a 1:3 weight ratio, the object

tracking application is able to scan a pre-defined path every

10� and capture images at least every 6 s, which is suitable

for tracking a moving object at a distance of 300 ft moving

at 2.66 mph, e.g., a person walking, for up to 1,779 ft (over

1/3 mile) of the object’s motion with 25x zoom. Both the

specific speed and the total distance tracked are dependent

on the object’s trajectory, its distance from the camera, and

the camera’s optical zoom and resolution settings.3 During

tracking, the fixed-point sensing application maintains a

sensing rate of 0.3 images/s.
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2 The example assumes the points are along a circle with radius

100 ft with camera’s lens as its center.
3 Our example assumes that the object’s trajectory is along a circle of

radius 300 ft with the camera’s lens as its center.
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Now consider continuous monitoring for the radar. With

a 1:5 ratio, the radar is able to complete a 360� scan in

about 7 s, while simultaneously scanning the same 30�
sector every 11 s. Even if we assume that a thunderstorm

travels 60 mph, which is relatively fast, the continuous

monitoring application is able to capture the storm’s

movement every mile. If we track the storm the perfor-

mance is even better. In this case, for a 1:3 ratio, the radar

is able to scan a 30� sector every second, while sensing a

fixed-point every 11 s. Since the radar we emulate has a

range of 25 miles, we are able to capture the storm’s

movement every 1/60 miles or 88 ft. These situations

translate into other real-world events as well. For instance,

fixed-point sensing is useful for monitoring the core of a

slow moving storm, while object tracking is also useful for

tracking a tornado.

Since MultiSense borrows techniques from propor-

tional-share scheduling, it was not designed for synchro-

nizing actuation and sensing within tight time-scales, e.g.,

millisecond-level, between multiple vsensors at different

physical sensors. We ran experiments to quantify appro-

priate time-scales for synchronizing multiple applications

that use vsensors on different physical sensors. The

experiment uses a networked multi-sensor scenario where

the application coordinates multiple sensors to sense a

fixed point, while competing with continuous monitoring

on one sensor and fixed-point sensing on the other. The

experiment’s results demonstrate the extent to which

MultiSense satisfies timeliness requirements. Figure 22

shows the results for both the camera and the radar. The

x axis shows experiments with different weight ratios

assigned to the competing applications on each sensor,

while the y axis plots the average difference in latency

between two requests. The magnitude of this difference

determines how close in time the two sensors are able to

capture data for the same point. As the graph shows, higher

weight assignments decrease the difference, and provide

near (\1 s) simultaneous sensing. Even with a low relative

weight assignment the sensors sense the same point within

2 s of each other, which is suitable for a range of scenarios,

such as estimating three-dimensional wind direction for

radars [30] or pedestrian entry/exit points for cameras. We

are exploring other challenges that arise in distributed

multi-sensor scheduling as part of future work, including

applications with tighter time constraints.

7 Related work

MultiSense adapts existing techniques from many different

areas, including sensor networks, platform virtualization,

and proportional-share scheduling, to virtualize stateful

sensors with actuators. We briefly review important topics

in each of these areas.

Mote-class sensor networks primarily use virtualization

as a mechanism for safe execution and reprogramming, as

demonstrated by Maté [15], since motes are generally not

powerful enough to execute multiple applications concur-

rently. While some recent mote-class OSes incorporate

threads and time-sharing [8], the energy constraints of

motes prevent them from using high-power sensors with

rich programmable actuators, such as PTZ cameras or

steerable weather radars. PixieOS [17] uses proportional-

share scheduling techniques (in the form of tickets) to

enable explicit conventional resource control (CPU,

memory, bandwidth, energy) by individual mote applica-

tions; we extend similar proportional-share scheduling

techniques to the equally important actuation ‘‘resources’’

of high-power sensors. Finally, ICEM also encounters a

problem with blocking calls to peripheral devices when

abstracting devices [14]; ICEM solves the problem for

mote power management by exposing concurrency to

drivers through power locks. In contrast, MultiSense does

not change the application/device interface to support

unmodified applications, and, instead, characterizes actua-

tions as either safe or unsafe and uses request emulation to

‘‘complete’’ blocking calls asynchronously.

MultiSense uses Xen’s [2] basic abstractions for multi-

plexing I/O devices [31]. Other frameworks, including

VMedia [24], use Xen for coordinating shared access to

peripheral devices. As with other device virtualization

frameworks, VMedia focuses on stationary devices, e.g.,

web-based cameras and microphones, but does not extend

the paradigm to steerable devices. Modern VMMs,

including Xen and VMware, focus on virtualizing the

hardware at the lowest layer possible, e.g., the PCI bus, the

USB controller, etc., to support unmodified device drivers.
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However, virtualizing at this layer requires the physical

device to attach to a single VM and ‘‘pass-through’’ device

requests to the physical bus [32]. We virtualize at the

protocol layer—the character device file interface—so

MultiSense can interpret each vsensor request and control

their submission to the physical sensor. Our choice to

implement sensor multiplexing and proportional-share

scheduling in Xen is a result of our broader goal of low-

ering the barrier to experimenting with these systems from

the ground up. Xen and other virtualization platforms offer

the low-level fault, resource, and configuration isolation

that we require. MultiSense’s FSM that tracks the state of

each vsensor is similar to shadow drivers [29], but we use

them to ensure correct operation and enforce performance

isolation and do not focus on reliability. Many prior

approaches structure device drivers as state machines; the

technique is natural for stateful devices [21].

MultiSense applies the proportional-share paradigm

[11], which has been well studied in other contexts, to

multiplex control of steerable sensors. Start-time fair

queuing was originally prototyped for multiplexing packet

streams and later extended to CPUs [11]. More recently,

there has been work on proportional-share scheduling for

energy—another non-traditional resource—using virtual

batteries [9]. We extend the paradigm to the actuation

resources of steerable sensors. Perhaps most related to

MultiSense is past work on proportional-share scheduling

for disks. Disk schedulers incorporate a similar batching

technique [7] and often group together write requests and

flush them to disk after a read request occurs. However,

there are fundamental differences in the relative speed of

actuators and their use, as well as workload characteristics,

that present different trade-offs for steerable sensors.

Rather than modeling the shared resource as I/O bandwidth

or aggregate number of I/Os, which is often the case for

disks [27], we use total time controlling the sensor, since

this determines when and what applications are able to

sense. We also introduce and evaluate new extensions for

scheduling steerable sensors and evaluate their impact on

applications. As with disk scheduling, other optimizations,

such as Anticipatory Scheduling, may further improve

performance [12].

Finally, control strategies for both single PTZ cameras

[20, 22, 23, 28] and collections of PTZ cameras [4, 5] have

been well studied in the computer vision community.

However, prior work focuses primarily on controlling

cameras, or networks of cameras, for a single task, e.g.,

acquiring head imagery [5], rather than multiplexing

cameras across multiple tasks, as in MultiSense. Addi-

tionally, for MultiSense, we evaluate a PTZ camera’s

performance when multiplexing, e.g., how fast it can track

multiple objects, and do not address the important com-

puter vision problem of recognizing objects in video

streams, which is necessary for some tasks, e.g., tracking a

person. We view multiplexing a camera, and evaluating its

performance for multiple types of common tasks as a

orthogonal, but complementary, to the recognition prob-

lem. While many of the problems studied in the computer

vision community for PTZ cameras may also apply to

steerable radars, we are not aware of any work in the area.

8 Conclusion

MultiSense extends proportional-share scheduling to mul-

tiplex the resource of controlling a sensor’s actuators. For

steerable sensors, control of the actuators is the most

important resource since it determines the type of data the

sensor collects. This is the first work, to the best of our

knowledge, to multiplex this important, but often over-

looked, class of sensors. One reason multiplexing is critical

for steerable sensor networks is that their deployment costs

are high. In this paper, we demonstrate techniques for

enabling multiplexing and proportional-share scheduling,

and evaluate our techniques on synthetic workloads, as

well as four real applications, that demonstrate their

effectiveness for two sensors.
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