
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A reconfigurable on-the-fly resource-
aware streaming pipeline scheduler

Michael Bradshaw, Jim Kurose, Lela Jane Page, Prashant
Shenoy, Don Towsley

Michael K. Bradshaw, Jim F. Kurose, Lela Jane Page, Prashant J. Shenoy,
Don Towsley, "A reconfigurable on-the-fly resource-aware streaming pipeline
scheduler," Proc. SPIE 5680, Multimedia Computing and Networking 2005,
(17 January 2005); doi: 10.1117/12.592262

Event: Electronic Imaging 2005, 2005, San Jose, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Feb 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Reconfigurable, On-The-Fly, Resource-Aware,
Streaming Pipeline Scheduler

Michael K. Bradshaw, Jim Kurose, Lela Jane Page§, Prashant Shenoy, Don Towsley
Dept. of Computer Science § Centre College
University of Massachusetts 600 W. Walnut St

Amherst, MA 01003 Danville, KY 04022
{bradshaw, kurose, shenoy, lelajanepage@hotmail.com

towsley}@cs.umass.edu

ABSTRACT

Multimedia systems use stream modules to perform operations on the streams that pass through them. To create services,
programmers hand-code modules together to form a pipeline. While some advances have been made in automating this
process, none yet exist that create pipelines that are fully aware of the system’s resources. In this paper, we present the
design and evaluation of the Graph Manager (GM), a pipeline scheduler that determines, on-the-fly, the best way to satisfy
requests using stream modules and reusing existing streams in the system.

1. INTRODUCTION

Building networked multimedia systems has become an artform embraced by the networking community over the course
of the past 15 years. Networked multimedia systems integrates real time systems and networks and nurtures a host of inter-
esting problems. In the 1990s, a consensus formed in the research community regarding the architecture of these systems.
Chief among these designs was the concept of modularity, the ability to create systems from predesigned components to
allow for rapid prototyping of more interesting algorithms and to foster sharing of code within the community.1 While
efforts to unite the community behind a particular multimedia toolkit have proved unsuccessful,2–4 such systems have
blossomed – even entering into the mainstream commercial sector.5

One particular challenge in the design of modular multimedia systems is the modularization of subsystems that operate
on the streams. Stream modules are used to implement each stream operation in the system. In order to use multiple
modules in series,pipes are used to redirect the output stream of one module to serve as the input stream of another
module. By passing a stream through a sequence of stream modules, connected by pipes, a programmer can create a new
service from the pipeline of stream modules. The simplest application of this technology is to hand-code pipelines6–11 to
create a particular multimedia service. Table-based systems are more flexible. Programmers hand-code several pipelines
and the system uses a lookup table to determine which pipeline can be used to provide a requested service.12, 13 Some
table-based systems14 can also choose pipelines based on available resources. These require a programmer to specifically
build each service. More dynamic systems15, 16 define a specific pipeline. Each position in the pipeline can be filled using
a specific class of module. At runtime, the system fills in each position of the pipeline using the modules registered to
provide the required stream services and/or formats. Class-based pipelines are much more versatile, but are limited in that
the specific pipelines do not offer enough expressiveness to cover all pipelines that can be constructed.

Fully automated efficient pipeline construction presents multiple challenges. Some systems5, 17–19 build the pipeline
on-the-fly as requests arrive. These systems search through stream module descriptions to find and instantiate a sequence
of modules that can satisfy individual requests. In these systems each stream module is limited to one input stream and
one output stream. As the number of possible modules becomes large, there may exist different combinations of modules
that perform the same task. When more than one module pipeline can solve a task, there is an opportunity to use resources,
such as memory or bandwidth, more efficiently. In more sophisticated systems,13, 20 scheduled streams within the system
are also resources. In these systems, pipes can dynamicallybranch the output stream to serve as an input stream to more
than one module. Branching allows the system, typically a server or proxy, to reuse the stream generated by previously
instantiated modules before the branching point to service multiple requests.

To date there has not been pipeline scheduler that can both generate a complex pipeline, with more than one input
stream or output stream, and choose between alternate pipelines based on the resources consumed. A pipeline scheduler
that is resource-aware has two significant advantages over existing pipeline generation models. First, the scheduler is aware

Multimedia Computing and Networking 2005, edited by Surendar Chandra,
Nalini Venkatasubramanian, Proc. of SPIE-IS&T Electronic Imaging,
SPIE Vol. 5680 © 2005 SPIE and IS&T · 0277-786X/05/$15

131

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

of the resources present in the system and can create pipelines that conserve heavily utilized resources by using alternative
sequences of stream modules or by branching an existing stream. Second,the scheduler allows programmers to focus on
higher level multimedia algorithms such as broadcast schemes21–23 rather than building a system from the ground up. The
scheduler handles the hard work of insuring that pipelines are efficient.In this paper, we present the design and evaluation
of the Graph Manager (GM), a pipeline scheduler that determines, on-the-fly, the best way to satisfy requests using stream
modules and reusing existing streams in the system.

The rest of this paper is structured as follows. We present the design of the GM in Section 2. In Section 3, we address
concerns about running time. In particular, we show that exponential running time is not a common occurrence. Section 4
summarizes this work and offers future research topics for the GM.

2. GRAPH MANAGER ARCHITECTURE

The Graph Manager (GM) is a scheduler for modular multimedia systems. The GM accepts requests and returns the
sequence of modules that satisfy the request, making the most efficient use of limited system resources. The GM is targeted
for modular multimedia systems that exhibit one or more of the following traits: 1) contains a large set of stream modules in
which multiple sequences can satisfy the same request; 2) concurrently provides a stream to multiple clients using different
services and different starting times; 3) offers a large and changing set of services; and/or 4) is resource-constrained.
When there are multiple sequences of stream modules that can satisfy a request, the GM can determine which is best,
given the present resource usage. When a server or proxy must serve the same stream, but offer different services and
different starting times, the GM determines those portions of existing streams that can be reused, by introducing buffering
in the system or by providing more than one stream to the client. When a system needs to offer a large and changing set
of services, the GM can help the system avoid recompilation. The GM determines the best way to use new modules in
coordination with old modules to satisfy requests. This ability avoids costly rewrites when new modules become available.
When resources are constrained, the GM can determine how to utilize resources to service more requests. In the rest of this
section we discuss the modules that can be represented by this system and the steps that the GM takes to satisfy a request:
enumerating, matching and searching.

2.1. Representing the stream modules

One of the main contributions of this work is the design of a GM that is able to represent and use stream modules with
multiple inputs and outputs to satisfy requests. The GM describes stream modules using XML files. The XML description
allows stream modules to be described with multiple input and output streams. These streams are typed (mpeg,avi,. . .).
An input stream must match the input stream type described in the module’s description. In addition to typing, the XML
description also indicates the amount of resources, such as memory, CPU, or bandwidth, needed to generate each output
stream. Finally, the XML file lists the services that are performed on the stream that passes through that module. To avoid
the high cost of parsing text files, all descriptions are read into an internal format during the system’s initialization.

2.2. Enumerating solutions from requests

The first step in satisfying a request is to enumerate (list) all possible combinations of stream modules that could satisfy
the request.Requests are represented using a tree data structure called apresentation tree. Nodes in the presentation tree
indicate a set of services that must be performed on the stream. The links in the tree indicate the order that each node
should be visited. Children nodes are satisfied before their parents. Parents with multiple children indicate a service that
requires multiple streams as inputs.

The GM enumerates each solution by recursively satisfying each subtree in the presentation tree starting at the leaf
nodes. Each enumerated solution is stored in acandidate stream. A candidate stream records the format, cost, schedule
and the graph of stream modules needed to produce a solution. A request node issatisfied when the graph manager finds
all sequences of stream modules that can use the output streams generated for the children nodes as inputs and provide all
the services requested by the node. Each such solution is stored as a candidate stream. Once the graph manager satisfies
the root node, the graph manager has the list of all candidate streams that can satisfy the request

132 SPIE-IS&T/ Vol. 5680

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

da b c

ea b c

d

d

Candidate Stream

Scheduled Stream

New Candidate Stream 1

New Candidate Stream 2 ts

Time Playout OccursStreams Stream Modules

Figure 1. Matching Scheduled Streams

2.3. Matching scheduled streams

In the second step, the GM uses the candidate streams to guide the search for existingscheduled streams that could be
reused to satisfy the present request. A scheduled stream is an existing candidate stream that was used to satisfy a request
and is stored with the internal representations of each stream module description in the original candidate stream. The
record at each stream module includes the schedule and apath string that uniquely identifies the initial multimedia stream
and the modules used on that stream up to the present stream module. For instance, if the candidate stream plays stream
2 with scheduleS and passes through stream modulesa, b andc, then the GM stores scheduleS at each module and path
strings2, 2a and2ab at modulesa, b andc respectively. To find all scheduled streams that can be used to satisfy the
present request, the GM visits the stream modules of each candidate stream. At each stream module, the GM compares the
path string of the scheduled stream and the candidate stream. If the path string indicates that the streams match, the GM
compares the schedules and determines what segments of the scheduled stream, if any, can be reused to satisfy the new
request.

Scheduled streams can be reused in one of two ways as demonstrated in Figure 1. Letn be the sequence of stream
modules that the candidate stream visits andp be the longest common prefix of stream modules that both the scheduled
stream and the candidate stream have in common. Lets be the resulting suffix of modules in which the scheduled stream
and enumerated solution differ, in other wordsn = ps. In Figure 1n is abcd, the prefixp is abc, and the suffixs is d.
First, the GM constructs a new candidate stream starting from the last matching stream module and whose suffix equals
s. Second, the GM constructs a new candidate stream starting from the last matching stream module linking to a stream
module thattime shifts the stream, and whose suffix equalss. A time-shifting module buffers the stream until the original
candidate stream’s playback time. In the new candidate streams formed, resources are only consumed by the modules in
the suffix. In this paper the GM always creates candidate streams, in the matching phase, by using a time-shifting module.
When time-shifting is not used, searching for the best solution becomes computationally expensive. In future work we
discuss the challenges and performance benefits of removing the time-shifting constraint.

2.4. Searching for the best solution

The final step is to determine the best solution with the lowest marginal system cost. The system cost is the sum of the
instantaneous cost over present and future instances of scheduled streams under the assumption of no future arrivals. The
instantaneous cost describes the cost to the system at a particular point in time. The instantaneous cost function is defined
to be the sum of the squares of the resource utilizations. We choose the square of the utilization since it increases faster than
the utilization as the utilization approaches100%. This cost increase discourages the GM from selecting pipelines that use
heavily utilized resources and to instead favor pipelines that consume underutilized resources. Thus for a vector of resource
utilizations�r(t) = {r1(t), r2(t) . . . rk(t); 0 ≤ ri ≤ 1} at timet, the instantaneous cost function isc(�r(t)) =

∑k
i=1 r2

i (t).
Then, the system cost function at timet0 is s(t0) =

∫ ∞
t=t0

c(�r(t))dt. The request’s solution is found by pairing eachframe
with a candidate stream that can generate thatframe with the lowest marginal cost. Here a frame is a non-divisible unit of
the stream. Note that candidate streams derived from scheduled streams might not be able to provide all of the frames in a
stream.

In practice, the GM does not perform the cost calculations using the specific resource utilization for all future times, as
defined by the system cost. As there could realistically be thousands of existing scheduled streams the cost to calculate the
system cost would be too great. Instead, the GM uses the peak resource utilization plus the solution’s resource needs when

SPIE-IS&T/ Vol. 5680 133

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

 0

 50

 100

 150

 200 400 600 800 1000

R
un

ni
ng

 T
im

e(
m

s)

Number of Service Modules

Time to Enumerate

1 service
2 service
3 service

Figure 2. Running Time to Enumerate All Possible Solutions

calculating the system cost. Using peak resource utilizations simplifies the calculation of the system cost and ensures that
the GM will never schedule streams that the system cannot support.

3. PERFORMANCE EVALUATION

The problem of enumerating all of possible combinations of stream modules that can satisfy the request is NP complete.
However, the worst case running times only occur for very peculiar requests. In this section we present a set of experiments
that demonstrate running time of enumerating all configurations of modules that can satisfy a request.

All experiments are conducted on a 2 GHz Pentium 4 processor with 512MB of RAM running Redhat Linux 9.0. The
experimental system has one input modulein, one output moduleout andN service modules. Each service module is
named after the service it providessi, 1 ≤ i ≤ N . All modules operate on the same stream format. We conducted three
experiments, each with 400 trials for different values ofN . In the first experiment we sent a request to the GM for a stream
that provides only one services1. As only one stream module providess1 there is only one way in which the request can be
satisfied, using the sequence of modulesin,s1,out. In the second experiment we sent a request to the GM for a stream that
provides two services:s1 ands2. We make no restrictions on the order of the services so there are two ways in which the
GM can satisfy the request. In the final experiment we sent a request to the GM for a stream that provides three services:
s1, s2 ands3. There are a total of six ways that the GM can satisfy the request.

The results of these experiments are plotted in Figure 2. The running time increases in a roughly linearly fashion
for increasing values ofN . The slope of the cost increase is related to the number of enumerated solutions that the GM
can produce. This is because the GM can prune paths once it realizes that a node provides a service that is not required.
As the GM will cycle through all the nodes once (because all nodes accept the same stream formats) for each additional
enumerated solution, the number of additional comparisons is proportional toN .

Requests that require excessive amounts of time are those that can be satisfied in many different ways. For instance if a
request requiresN services (in no particular order) there would beN ! possible solutions. One realistic request that requires
a large amount of time to solve exactly is a request that requires a service with multiple inputs. For example, consider a
service that requires 10 input streams, with each input stream being generated in 2 different ways. There would be a total of
1024 possible solutions, causing a sharp increase in the amount of time needed to satisfy such a request. Creative heuristics
will be needed if multiple input services, as described, are part of the GM’s workload.

4. CONCLUDING REMARKS

In this paper we presented the Graph Manager, a pipeline scheduler that determines, on-the-fly, the best way to satisfy
requests using stream modules and existing streams in the system. Our pipeline scheduler is the first one that can exploit
multiple input and output stream modules, enabling the GM to satisfy a wide class of requests. Resource-awareness allows
the GM to satisfy requests using the modules that consume the least utilized resource, at the time of the request. Finally,
while the GM must satisfy a problem that is NP-complete, the computation increases linearly with the complexity of the
request.

134 SPIE-IS&T/ Vol. 5680

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

ACKNOWLEDGMENTS

This material is based on upon work supported by the National Science Foundation under Grant Nos. ANI-9980552,
ANI-0070067, ANI-0085848 and EIA-0080119. Any opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

1. S. McCanne and et al., “Toward a common infrastructure for multimedia-networking middleware,” inACM Intl
Workshop on Network and Operating Systems Support for Digital Audio and Video, May 1997.

2. W.-T. Ooi, B. Smith, S. Mukhopadhyay, H. Chan, S. Weiss, and M. Chiu, “The Dali multimedia software library,” in
Proc. SPIE/ACM Conference on Multimedia Computing and Networking, January 1999.

3. K. Patel and L. Rowe, “Design and performance of the Berkeley Continuous Media Toolkit,” inProc. SPIE/ACM
Conference on Multimedia Computing and Networking, February 1997.

4. A. P. Black, J. Huang, R. Koster, J. Walpole, and C. Pu, “Infopipes: an abstraction for multimedia streaming,”
Multimedia Systems 8, pp. 406–419, December 2002.

5. M. Inc., “Directshow.” http://msdn.microsoft.com.
6. M. Vernick, C. Venkatramini, and T. Chiueh, “Adventures in building the Stony Brook Video Server,” inProc. of

ACM Multimedia, 1996.
7. J. Rexford, S. Sen, and A. Basso, “A smoothing proxy service for variable-bit-rate streaming video.” To appear in

Proc. Global Internet Symposium, December 1999.
8. V. Kahmann and L. Wolf, “A proxy architecture for collaborative media streaming,” inMultimedia Systems, December

2002.
9. M. K. Bradshaw and et al., “Periodic broadcast and patching services - implementation, measurement, and analysis

in an Internet streaming video testbed,” inProc. of ACM Multimedia System, 2001.
10. W. T. Ooi, R. V. Renesse, and B. Smith, “Design and implementation of programmable media gateways,” inNOSS-

DAV, 2000.
11. T. Fitz, “tgw: A webcast trasncoding gateway,” inProc. SPIE/ACM Conference on Multimedia Computing and

Networking, January 2003.
12. L. Amini, J. Lepre, and M. Kienz, “Mediamesh: An architecture for integrating isochronous processing algorithms

into media servers,” inProc. SPIE/ACM Conference on Multimedia Computing and Networking, January 2000.
13. C. Griwodz and M. Zink, “Dynamic data path reconfiguration,” inInternational Workshop On Multimedia Middle-

ware, October 2001.
14. E. J. Posnak, H. M. Vin, and R. G. Lavender, “Presentation processing support for adaptive multimedia applications,”

in Proc. SPIE/ACM Conference on Multimedia Computing and Networking, January 1996.
15. S. Roy, J. Ankcorn, and S. Wee, “Architecture of a modular streaming media server for content delivery networks,”

in IEEE Intl. Conference on Multimedia and Expo, July 2003.
16. R. Inc., “Realsystem streaming platform.” http://www.realnetworks.com.
17. B. K. Zhuoqing Morley Mao, Hoi-sheung Wilson So, “Network support for mobile multimedia using a self-adaptive

distributed proxy,” inACM Intl Workshop on Network and Operating Systems Support for Digital Audio and Video,
2001.

18. GStreamer Team, “GStreamer: open source multimedia framework.” http://www.gstreamer.net.
19. S. D. Gribble and et al, “The ninja architecture for robust internet-scale systems and services,”Journal of Computer

Networks 35, March 2001.
20. X. Zhang and et al., “AMPS: A flexible, scalable proxy testbed for implementing streaming services,” Tech. Rep.

04-08, Department of Computer Science, University of Massachusetts Amherst, 2004.
21. K. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting scheme for metropolitan video-on-demand

systems,” inProc. ACM SIGCOMM, September 1997.
22. D. Eager and M. Vernon, “Dynamic skyscraper broadcasts for video-on-demand,” inProc. 4 th Intl. Workshop on

Multimedia Information Systems, September 1998.
23. L. Gao and D. Towsley, “Supplying instantaneous video-on-demand services using controlled multicast,” inProc.

IEEE International Conference on Multimedia Computing and Systems, 1999.

SPIE-IS&T/ Vol. 5680 135

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

