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Abstract—As edge computing and sensing devices continue
to proliferate, distributed machine learning (ML) inference
pipelines are becoming popular for enabling low-latency, real-
time decision-making at scale. However, the geographically
dispersed and often resource-constrained nature of edge devices
makes them susceptible to various failures, such as hard-
ware malfunctions, network disruptions, and device overloading.
These edge failures can significantly affect the performance and
availability of inference pipelines and the sensing-to-decision-
making loops they enable. In addition, the complexity of task
dependencies amplifies the difficulty of maintaining performant
and reliable ML operations. To address these challenges and
minimize the impact of edge failures on inference pipelines,
this paper presents several fault-tolerant approaches, including
sensing redundancy, structural resilience, failover replication,
and pipeline reconfiguration. For each approach, we explain
the key techniques and highlight their effectiveness and trade-
offs. Finally, we discuss the challenges associated with these
approaches and outline future directions.

I. INTRODUCTION

As the Internet of Things (IoT) and sensing devices con-
tinue to proliferate, a massive influx of data is being generated
at the network’s edge. This surge in data demands efficient
processing capabilities, which has paved the way for edge
computing. Edge computing extends cloud computing by
bringing computational resources closer to data sources, re-
ducing latency and bandwidth usage while enabling real-time
decision-making [1]. This strategic placement of resources
has fostered the development of latency-sensitive machine
learning (ML) applications such as streaming video analytics,
autonomous driving, and augmented reality [1].

Advances in IoT systems have enabled their vast and
complex deployments with systems comprised of sensing
nodes with multi-modal sensing capabilities. For example,
sensing nodes often have a microphone and a camera, and
the compute resources are shared between the two [2], [3].
Edge networks utilize the available resources to enhance
applications’ accuracy by orchestrating complex decision-
making processes through distributed ML inference pipelines.
ML inference pipelines combine data from various sensors,
integrate multiple ML models into dataflow graphs, and are
deployed on multiple edge servers. Fig. 1 shows an example
ML inference pipeline, where inputs from multiple sensors
are merged to form complex detection tasks. The results
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Fig. 1: Distributed ML Inference Pipelines at the edge.
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of these detection phases are later utilized for downstream
classification and fusion tasks.

In contrast to traditional cloud data centers, edge computing
clusters are often deployed across multiple geographically-
distributed locations and may communicate using wireless
networks that lack advanced support systems, such as ad-
vanced heat management or outage support systems [4].
Moreover, unlike cloud platforms, edge resources often lack
a high degree of compute, network, or power redundancy.
For example, a network failure could disrupt multiple servers
within the same physical/virtual network. In addition, server
failures, such as transient, crash, and byzantine failures, are
common, especially in the adversarial environment of the
Internet of Battlefield Things (IoBTs). In IoBT scenarios,
battlefield intelligent devices are attacked, and sensors can be
deceived using malicious inputs [5]. Although these failures
have significant implications for traditional ML systems, the
effect of failures is exacerbated for inference pipelines, where
a single bottleneck node failure can disrupt multiple sensing-
to-decision loops.

Resilient execution of edge ML applications has been
extensively studied, where researchers developed multiple
mechanisms to increase the resiliency of their deployed ap-
plications [6], [3]. For example, researchers have proposed
failover replication methods that utilize model selection strate-
gies by placing smaller standby backups to ensure availability.
In addition, researchers have used resource allocation and
scheduling techniques by executing requests at a further node
or a lower priority [7]. However, unlike single application
scenarios, ML inference pipelines are complex and have many
dependencies. For instance, replacing an ML model with a
smaller one in case of failures may highly reduce the accuracy



as there are dependencies on the representations generated
by each model. In addition, naively placing a part of the
pipeline at a remote edge will affect the response time of
all applications that rely on this component.

To address these challenges, this paper focuses on ensuring
the resilience of distributed ML inference pipelines through a
set of complementary approaches. First, ML pipelines often
utilize multiple sensing modalities (e.g., audio and video)
at various vantage points, allowing a task to be performed
using diverse and redundant data resources. These multi-
modal and multi-vantage sensors can enhance the reliability
and resilience of ML pipelines against failures or disruptions
at any point. Second, decoupling the interdependency among
modules, for example, sharing intermediate representation
with different sensors, further improves the pipeline’s struc-
tural resilience. Third, models in ML pipelines can utilize
the trade-offs between accuracy and resource usage, adjusting
the end-to-end pipeline phases based on resource availability.
Last, ML pipelines are deployed on multiple resources that
can be tailored to adapt to dynamic environments by adjusting
the input rates, locations, and priorities of different phases to
ensure maximum performance.

In light of these considerations, this paper illustrates multi-
ple strategies for ML inference pipelines, presents preliminary
results using model-based simulations, and outlines the chal-
lenges and future directions. In summary, our contributions
are threefold:

1) We illustrate possible mechanisms for resilient ML infer-
ence pipelines (Section III).

2) We present our preliminary results for resilient ML infer-
ence pipelines (Section IV).

3) We discuss the challenges associated with deploying such
techniques and outline future directions (Section V).

II. BACKGROUND

This section presents the background on edge ML infer-
ence, distributed pipelines, and various strategies for edge
resiliency.

A. Edge Inference

Edge Computing brings cloud-like computational and stor-
age resources to the edge of the network and provides users
with low-latency applications [8]. Many ML-based applica-
tions are placed at the edge for the benefits of real-time
interaction and data privacy, such as streaming video analytics
and autonomous driving, known as Edge Inference [9]. The
overall edge inference procedure can be described as follows:
a sensor node sends input data xz; to a specific ML inference
application, and the application responds with output data y;,
where y; = f(z;). The function f() may represent a single
model inference or a pipeline of different ML models typically
placed to minimize latency [10], [11].

The development of edge inference faces several chal-
lenges, one of which is the computational gap between

computation-intensive machine learning algorithms/models
and resource-constrained capable edge networks. The other
challenges include stringent latency requirements, scaling ML
applications across distributed edge devices, and adapting
to dynamic environments. To bridge these gaps, ML in-
ference pipelines are designed to efficiently and adaptively
perform intelligence on resource-constrained edge devices.
These adaptive pipelines facilitate the efficient execution of
ML tasks by optimizing models and workflows for the unique
constraints of edge environments.

B. ML Inference Pipelines

ML inference pipelines integrate multiple machine learning
models and data transformations to address more complex
tasks [12], [13]. For instance, an autonomous driving service
combines object detection models for detecting objects with
classification models to identify the objects. Typically, a
distributed inference pipeline can be represented as a di-
rected acyclic graph (DAG), where each vertex corresponds
to a model or a data transformation, and edges represent
dataflow between vertices. In executing an inference pipeline
for serving a request, the ML model for one task generates
intermediate outputs that serve as inputs for the ML model in
the subsequent tasks, and the last task outputs the response to
the request. The response time of a request is the summation
of response times of all tasks in the path for producing the
response. Fig. 1 shows a representative inference pipeline.
The video monitoring pipeline uses object detection models to
identify vehicles and people and perform subsequent analysis,
including vehicle and person identification [13].

ML inference pipelines simplify model development by
allowing model developers to reuse models that have been
pre-trained on large benchmark datasets. In many cases, a
single model (e.g., Resnet50 [14]) can be re-used as a feature
function for a wide range of prediction tasks. Additionally,
models and data transformation in an inference pipeline can
be developed, optimized, and configured independently. If one
model fails or a model’s performance degrades, the pipeline
can be configured to raise alerts or take recovery actions to
enhance the pipeline’s resiliency.

C. Edge Resiliency

Resiliency is crucial in edge computing because edge
resources are often geographically distributed and resource-
constrained, and failures can occur more frequently compared
to cloud data centers. To prevent performance degradation
and service outages, many strategies for fault prevention and
recovery have been studied.

Fault prevention refers to strategies implemented to avoid
faults and failures before they occur. This proactive approach
aims to enhance edge systems’ overall reliability and stability
by reducing the likelihood of disruptions or malfunctions.
One fault prevention strategy is redundancy and replications,
such as deploying hot standby (where backup systems are
always ready to take over) and cold standby (where backups
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Fig. 2: Sensing redundancy approaches.

are activated only after a failure) across different edge nodes.
Another strategy is load balancing, which distributes workload
across multiple edge nodes to avoid a single point of failure.

When a failure or disruption occurs, recovery strategies are
used to restore system functionality and minimize downtime.
Unlike fault prevention, which aims to avoid failures, recovery
strategies focus on responding to and recovering from faults to
maintain service continuity. One of the key recovery strategies
is automated failover, where the hot standby can instantly
take over to minimize downtime, and the cold standby can
be quickly powered on and configured to take over [6].
The cold standby may involve some downtime but is more
cost-effective and resource-efficient. The second strategy is
dynamic load redistribution, which redistributes workloads
across available nodes or reallocates resources across different
workloads. The third strategy is graceful degradation, which
allows the system to continue operating at a degraded perfor-
mance during a failure [6]. For example, an application might
conserve resources for critical functionality while disabling
non-essential failures. In addition to the above strategies,
many other recovery techniques exist, such as system reboot-
ing, service restarting, checkpointing, and rollback [15].

III. METHODS

In this section, we explore a set of complementary ap-
proaches for enhancing the resiliency of distributed ML
inference pipelines at the edge.

A. Sensing Redundancy

Sensor deployments often utilize redundancy to enhance the
quality of inputs. For example, security cameras are placed
to ensure maximum angular coverage, and no critical zones
are left unobserved [16]. In addition to advantages in inputs’
quality, sensing redundancy enhances resiliency by ensuring
another sensor can fully or partially capture the same input.
Fig 2 illustrates two approaches commonly used in sensing
redundancy. The first approach, see Fig 2a, shows an example
where cameras are replicated to cover the same scene from
multiple angles. In this case, when one camera fails, others
can still capture the scene. The second approach is multi-
modal sensing, where nodes are equipped with multiple types
of sensing, see Fig 2b. In this case, each node can utilize
cameras and audio sensors to enhance the input diversity and
quality and increase detection accuracy. For example, authors

have shown that multi-modality can increase accuracy by up
to 10% compared to a single-sensing modality [3].

B. Structural Resilience

Interdependencies among components of inference
pipelines act as conduits for failure propagation. When a
component fails, all those which depend on it may also fail.
Reducing dependencies among components reduces how
failures in one can propagate to others. Thus, it improves a
notion of resilience called “structural resilience”.

In the context of distributed analytics, different types of
learning have implications for structural resilience. Multi-
modal self-supervised learning, for example, creates an in-
termediate representation of input data into which all modal-
ities encode their respective measurements. This intermediate
representation is further suitable for many downstream tasks,
essentially decoupling sensing from inference, thus improving
structural resilience. Specifically, different sensors can encode
data into the same intermediate representation, allowing the
downstream pipeline to remain the same even as some sensors
(or even modalities) fail and are replaced by others. Similarly,
downstream analytics tasks can be changed without impacting
the sensing and sensor data encoders. No such decoupling
exists in supervised learning, where a monolithic neural
network directly links sensors to inferences. An interesting
topic, therefore, is exploring the interplay between learn-
ing/inference solutions and structural resilience.

C. Failover Replication

Replication is a key strategy incorporating failover mech-
anisms, such as hot and cold standby, to enhance system
resilience. For improving the resiliency of single models,
several failover strategies have been proposed [6]. This section
explores the failover strategies for ML inference pipelines,
which consist of multiple ML models.

Providing backups for ML models is often challenging
because of resource limitations in edge computing. However,
interdependencies in ML inference tasks highly complicate
the problem. For instance, the resilient execution of the
inference pipeline requires guaranteeing the resiliency of
all components while meeting the end-to-end latency re-
quirements. In addition, the failover model must follow the
exact representation of inputs and outputs. Therefore, the key
question for replication strategies in inference pipelines is:
How to ensure resilient execution of ML inference pipelines,
while meeting the resource, latency constraints, and ensuring
compatibility?

Fig. 3 illustrates heterogeneous replication for inference
pipelines. To implement end-to-end failover replication, we
list two complementary solutions.! First, users can leverage
the trade-offs in accuracy, resource usage, and inference
time to deploy smaller replicas. Thus, instead of doubling
the pipeline’s entire resource requirements, the system can

'We address the challenges of partial replication in Fig. V.
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Fig. 3: Heterogeneous Replication of ML Inference Pipelines
at the edge.

utilize a fraction of the resource and provide complete but
less accurate models. Second, instead of deploying backup
models with fine-grained prediction results, the edge system
can provision a smaller model that delivers coarse-grained
results and consumes fewer resources. For instance, instead
of deploying a pipeline that utilizes an image classification
model with multiple classes (e.g., ImageNet has 1000 classes),
the pipeline can provide only a handful of classes that
portray key classes (e.g., CIFAR’s 10 or 100 classes). In
this case, as the resulting complexity decreases, users can
utilize compressed images, which increases the execution
speed and decreases the scarce network and memory resource
requirements.

In addition to methods that provide hot failover replicas for
the entire pipeline, edge systems can also utilize a mixture of
hot and cold standby replicas. One way to implement such
techniques is to prioritize stages based on their request rate or
order in the pipelines. In this case, the system can utilize the
execution time of the early stages to load later stages, which
highly decreases waiting time. For instance, in the pipeline
shown in Fig. 1, if the execution time of the vehicle detector
is longer than the activation time of the vehicle classifier’s
cold standby, the system can provision hot standby for the
vehicle detector and cold standby for the vehicle classifier.

D. Pipeline Reconfiguration

ML inference pipelines are highly configurable to adapt
to changes in edge networks. When an edge server becomes
unavailable, consequently disrupting its hosted services, the
pipeline can be reconfigured to ensure service availability.
This reconfiguration may involve reallocating the workload
among the active instances through load balancing, adjusting
arrival rates, or selecting smaller models for inference [17],
[6]. However, these changes always come with trade-offs
between latency, throughput, accuracy, and availability. In par-
ticular, stages within a pipeline are interdependent, indicating
that a reconfiguration in one part may impact the performance
of subsequent tasks. Therefore, it is crucial to predict the
performance of the entire pipeline to optimize outcomes.

To address this challenge, we analytically model ML in-
ference pipelines using a tandem queue network to estimate
the end-to-end response times of different configurations. An
ML inference pipeline with N stages is represented as a
network of N queueing models, where each queue captures
the processing of one of the stages. We model each stage using

an M/M/1 queue, where the first M denotes that arrivals
follow a Poisson process with rate A, the second M indicates
the service times are exponentially distributed with service
rate u, and 1 represents that each stage runs on one edge
server [10].

The expected end-to-end response time per application
depends on the path it takes within the pipeline. A path
p € P contains a set of stages, denoted as V?. The end-
to-end response time of a path p, denoted as F[RP] is:

E[R") = Y E[RI] (1)

veVP

where E[RP] is captured using the closed form equation for
M/M/1 systems, E[RF] = M%/\p where p,, is the service
rate, and \? is the request rate of the path, which is fixed
for steady state tandem queues [18]. Note that when stages
are shared between pipelines, the arrival rate at each stage,
denoted as )\, is the sum of the arrival rates of each path.

IV. PRELIMINARY RESULTS

In this section, we present the preliminary results of apply-
ing pipeline reconfiguration to improve the resiliency of the
distributed ML inference pipeline.

A. Experimental Setup

To understand the effect of pipeline reconfiguration, we
use SimpleKit [19], an open-source? discrete event scheduling
engine written in Python that implements the Event Graph
modeling paradigm [20]. We implement N tandem M /M /1
queuing models, where requests propagate from the ¢ — 1-
th to the ¢-th stage. The pipeline is a 2-stage ML inference
pipeline: the first stage implements object detection using
Yolov4, and the second stage implements image classification
using EfficientnetBO, Resnet50, and EfficientnetB5, where
EfficientnetBO has the lowest accuracy and EfficientnetBS5 the
highest. We profile these models on three different GPUs:
Nvidia A2, Orin Nano, and GeForce GTX 1080, to get
their service times. Requests arrive following an exponential
distribution. Each request starts service either at its own
arrival time or at the departure time of the previous request,
whichever is later. A request departs after ¢4 time units,
where ¢4 is an exponentially distributed service time with a
mean based on the model profiling results. The total time
a request spends in the system is the sum of the waiting
time (the difference between the service start and arrival)
and the service time. Finally, we evaluate the performance
by emulating 1000 requests.

B. Results

We present the results of two types of reconfiguration—
model and resources-by analyzing their impact on the
pipeline’s end-to-end response time and throughput.

Zhttps://github.com/PaulSanchez/SimpleKit-Python
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Fig. 4: End-to-end response times and throughput of three
different pipelines.

Effects of Model Reconfiguration. We start by evaluating
the effect of model sizes, where we execute three different
pipelines with different model combinations that result in the
same types of outputs. The first stage of the pipeline runs
a Yolov4 DNN, followed by either: (1) EfficientNetB0, (2)
EfficientNetB5, or (3) Resnet50 DNNs. Stages run on the
device type, and although we have results for all GPUs,
we focus on the Nvidia A2 for our analysis. Fig. 4a and
Fig. 4b demonstrate the response time of the three pipelines
under different request rates, along with the throughput. The
differences in end-to-end response times (Fig. 4a) can be
seen when more complex models such as EfficientNetB5
are selected, which consumes twice the amount of memory
resources as EfficientNetBO. Although EfficientNetB5 can
produce higher quality results (in terms of accuracy), even
when compared to Resnet50, it results in higher average
end-to-end response times. In addition, Fig. 4b shows no
differences in the average end-to-end throughput, demonstrat-
ing an important opportunity for model selection. Although
Resnet50 consumes as much as 1.5Xx memory resources as
EfficientNetBO0, Fig. 4b shows all pipelines sustain the same
throughput under the same arrival rates while resulting in
similar quality of results.

Key Takeaway. Model selection plays a critical role in opti-
mizing ML inference pipelines. By carefully choosing models,
it is possible to maintain similar levels of workload rate, end-
to-end response time, and quality of output results, all while
significantly reducing resource utilization that provides higher
availability and resilience for ML pipelines.

Effects of Resource Reconfiguration. To analyze the effects
of resource reconfiguration, Fig. 5 displays the response time
and throughput of different pipelines executing over different
edge servers with homogeneous and heterogeneous resources.
Similar to the previous experiments, we first execute model
inference through the three pipelines on the same types of
resources (Fig. 5a): both stages are placed on an Nvidia A2,
Orin Nano, and a GTX-1080. As can be seen, since the 1080
is the most performant device, it sustains a low end-to-end
response time of up to 250ms, even at high request rates.
Likewise, Fig. 5b showcases similar heterogeneity effects on
the end-to-end response time, mainly due to 1080’s higher
performance, irrespective of the device allocated for the
second pipeline stage. When the first stages of pipelines are

allocated with either an A2 or an Orin, the response time
increases by 1.4x on average. This is because both the A2
and the Orin ability to sustain load is reduced due to their
lower performance, compared to the 1080. This results in
increases in the average queuing times, which then decreases
the throughput in the first stages. Along with Figures Sc
and 5d, these results demonstrate an important tradeoff when
selecting and allocating resources to stages of a pipeline,
whereas larger devices are needed to sustain loads beyond 30
requests arriving per-second. Importantly, although the total
amount of resources between any two resources are the same,
the resource selection for a stage can highly affect both the
end-to-end response times and pipeline throughput.

Key Takeaway. Resource reconfiguration has a greater impact
on response time and throughput than model reconfiguration.
Even when total resource utilization across different device
combinations is similar, resource selection affects the end-to-
end response times and the pipeline’s capacity to handle the
load by up to 1.5X. By leveraging queuing models, resource
selection in pipelines can be optimized and enhance end-to-
end response time and throughput.

V. CHALLENGES

In this section, we explore the challenges for enhancing the
resiliency of distributed ML inference pipelines.

A. Representations Compatibility

Despite the numerous advantages of multi-vantage and
multi-modality sensing to recover from hardware and byzan-
tine failures where sensor input can be fully or partially
recovered using another sensor or another modality, missing
sensor information can introduce compatibility issues, where
ML models often rely on a fixed number of inputs to produce
the results. Thus, the input size and shape will change when a
model fails, requiring further adjustments. Similarly, failover
replication approaches that utilize heterogeneous backups
introduce challenges where the latent space representations
for models of different sizes are incompatible.

To address the representation compatibility challenges, we
list three possible approaches. First, users can utilize multiple
versions of the pipelines based on input data. For example, an
inference pipeline that utilizes seismic and acoustic sensors
can have three variants that use both or only one of the
input sensors. However, this method faces many scalability
challenges as the number of variations grows exponentially
with the number of sensors. Second, pipelines can utilize
adaptive learning techniques, similar to slimmable neural
networks [21], that cope with missing or incomplete inputs.
Nevertheless, this method faces learning challenges, where
models are trained for much longer and do not guarantee
better inputs result in higher accuracy. Third, users can rely on
a unified latent space representation where different sensors’
or models’ outputs utilize the same representation space [22],
[23]. Despite the advantage of having a unified latent space,
this technique requires huge amounts of data.
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Fig. 5: End-to-end response times and throughput on different edge servers.

B. Reconfiguration Challenges

In addition to challenges in traditional pipelines [24],
addressing the resiliency challenges for multiple co-located
pipelines introduces further complications. Determining a
failover execution plan compatible with accuracy and la-
tency objectives is complex for many reasons. First, a single
node failure might introduce a cascading effect where other
pipelines that share some or all servers are affected. Second,
although controlling different phases’ input rates and priorities
is beneficial, they highly expand the search space. To address
the placement challenges, we envision a modeling and place-
ment method that utilizes reinforcement learning approaches
to place the ML models in failure recovery scenarios.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents four complementary approaches from
different perspectives — sensing redundancy, reducing module
inter-dependencies, model replications, and pipeline recon-
figurations — to enhance the resiliency of ML inference
pipelines. In addition to the benefits and challenges of each
approach, integrating these approaches introduces additional
failure resilience benefits. One interesting future direction is
to design an edge system that integrates these approaches and
determines the optimal recovery actions, balancing trade-offs
between accuracy, latency, resource utilization, and energy
consumption.
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