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Abstract—Many IoT applications have increasingly adopted
machine learning (ML) techniques, such as classification and
detection, to enhance automation and decision-making processes.
With advances in hardware accelerators such as Nvidia’s Jetson
embedded GPUs, the computational capabilities of end devices,
particularly for ML inference workloads, have significantly
improved in recent years. These advances have opened oppor-
tunities for distributing computation across the edge network,
enabling optimal resource utilization and reducing request
latency. Previous research has demonstrated promising results
in collaborative inference, where processing units in the edge
network, such as end devices and edge servers, collaboratively
execute an inference request to minimize latency.

This paper explores approaches for implementing collabora-
tive inference on a single model in resource-constrained edge
networks, including on-device, device-edge, and edge-edge col-
laboration. We present preliminary results from proof-of-concept
experiments to support each case. We discuss dynamic factors
that can impact the performance of these inference execution
strategies, such as network variability, thermal constraints, and
workload fluctuations. Finally, we outline potential directions for
future research.

Index Terms—Collaborative inference, edge computing

I. INTRODUCTION

Machine learning (ML) techniques such as detection and
classification have become essential in IoT sensor-to-decision
pipelines. In edge networks, network components such as
sensing nodes, edge servers, and the cloud possess vary-
ing processing capabilities. Traditionally, sensing nodes are
resource-constrained compared to servers and often lack the
processing power and energy needed for these ML techniques.
To mitigate this performance disparity, sensing nodes can
offload computation-intensive tasks to nearby edge servers
equipped with more powerful hardware. This offloading strat-
egy is illustrated in Figure 1.

With advances in hardware accelerators, new opportunities
have emerged to further optimize computation placement
within the edge network. Accelerators such as Intel’s Mo-
vidius Vision Processing Unit (VPU) [1], Nvidia’s Jetson
Nano [2], TX2 [3], Orin Nano [4], Orin NX edge GPUs
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Fig. 1. Inference execution offloading in an edge network.

[5], and Google’s Edge Tensor Processing Unit (TPU) [6]
are designed to bridge the performance gap between resource-
constrained sensing nodes and powerful servers. These lower-
cost, energy-efficient accelerators are specifically designed
to efficiently handle ML tasks such as computer vision and
deep learning inference. As a result, it is now possible to
equip sensing nodes with these accelerators and achieve
performance comparable to that of general-purpose servers for
specific applications. Since data transfers are often a source
of high latency, processing data directly at the sensing nodes
can potentially reduce the latency of IoT applications.

Specifically, recent research [7]–[16] has demonstrated the
effectiveness of collaborative inference in edge networks,
where multiple processing units or network components work
together to execute inference requests. This collaboration can
be implemented in two primary forms. First, a single network
component can leverage its processing units to jointly perform
inference, thereby optimizing the use of available resources.
For instance, a sensing node equipped with an accelerator
can distribute the computational load between its CPU and its
accelerator to enhance performance. Second, multiple network
components (e.g., a sensing node and an edge server) can
collaboratively execute different portions of the same infer-



ence request, with the goal of minimizing network latency
while leveraging the superior hardware available at the edge
server. Each approach can be implemented using various
combinations of hardware, presenting distinct trade-offs, with
their applicability depending on the specific requirements of
the task at hand.

Beyond static collaboration configurations, dynamic con-
ditions in resource-constrained edge networks must also be
carefully considered when designing collaborative inference
applications. Specifically, external dynamics, such as attacks
on sensing nodes, network disruptions, and DDoS attacks,
are prevalent in the adversarial environments of IoBTs and
may disrupt operations and degrade overall performance [17].
Additionally, internal dynamics, including thermal conditions
and battery levels of sensing nodes, can also affect system
performance. Therefore, collaborative inference applications
must be designed to be robust and adaptive to address these
challenges.

This paper explores collaborative inference strategies that
execute inference on a single ML model and their various
implementations. We categorize these strategies into two main
classes: intra-component collaboration, which involves the
collaboration of processing units within a single network
component, and inter-component collaboration, which in-
volves collaboration across multiple network components. For
each class, we discuss potential implementation approaches
and present preliminary results to demonstrate their benefits.
Additionally, we examine the challenges of dynamics in
resource-constrained networks that may impact system per-
formance. In summary, we make the following contributions:
• We discuss different forms of single-model collaborative

inference strategies and categorize them into two main
classes (Section III).

• We present preliminary results to support the practicality
of the strategies (Section IV).

• We discuss challenges associated with the dynamics in
resource-constrained edge networks (Section V) and outline
directions for future work (Section VI).

II. BACKGROUND

This section presents background on edge-based IoT appli-
cations, commonly used hardware accelerators, and collabo-
rative inference techniques.

A. Edge-based IoT Applications

In IoT applications, sensing nodes collect raw data that
must be processed to extract meaningful insights. Machine
learning (ML) inference is a key technique used in this pro-
cess, which involves passing input data through a trained neu-
ral network to generate predictions. For example, a surveil-
lance camera captures an image and requires image classi-
fication to identify objects within the frame. Since sensing
nodes are often resource-constrained, they typically offload
computationally intensive ML inference tasks to nearby edge
servers, which may introduce high network latency. However,
if a sensing node is equipped with a hardware accelerator,

it can perform the computation locally and only transmit the
results to the remote server, thereby reducing network latency
and improving overall efficiency.

B. Hardware Accelerators

A wide range of hardware accelerators with small form
factors have been developed to speed up machine learning
inference workloads on the edge. Table I highlights the
characteristics of several commonly deployed accelerators,
spanning from low-end to high-end options. Specifically, the
Intel Movidius Myriad X Vision Processing Unit (VPU) is
designed to accelerate vision-based applications and CNN
inference. Google Edge Tensor Processing Unit (TPU) op-
timizes ML inference with the Tensorflow-lite framework on
the edge. Nvidia Jetson Nano, TX2, Orin Nano, and Orin NX
are all tailored for AI workloads, delivering accelerated GPU
performance for tasks such as deep learning and computer
vision. These accelerators are engineered to operate within
low power budgets, making them suitable for devices with
constrained power availability, such as low-end Raspberry
Pi-class nodes. All network components can deploy an ac-
celerator to boost the processing capabilities. Not only can
end devices (e.g., sensing nodes) leverage accelerators to
achieve near-server-level performance in certain applications,
but edge servers can also utilize these accelerators to optimize
performance and manage increased workloads.

C. Collaborative Inference

Collaborative inference has recently gained significant at-
tention in both academia [7]–[14], [16] and the industry [15].
It involves utilizing multiple processing units in the edge
network to execute inference requests, and the collaboration
can be realized in two forms: single-model collaboration and
multi-model collaboration. In single-model collaboration, a
model is partitioned into multiple segments, each processed
by different network components. Conversely, multi-model
collaboration utilizes inputs from various sensors to jointly
complete an inference task, leveraging diverse data sources
to enhance overall accuracy and performance. Additionally,
collaboration can occur across different network topologies,
such as a device interacting with multiple edge servers in a
broadcast manner, peer-to-peer interactions between devices,
or a client-server model between devices and edge servers. In
this paper, we focus on single-model collaboration approaches
that employ the client-server model. We focus on collabo-
ration approaches that take the ML model as a black box
and do not require modifying the neural network structure.
Techniques such as integrating collaborative inference with
model quantization [11], [13], [15] or employing multi-exit
deep neural networks [10], [16] are beyond the scope of this
paper.

III. COLLABORATIVE INFERENCE APPROACHES

Single-model collaborative inference strategies can be cate-
gorized into two main classes: intra-component collaboration,
which involves the collaboration of processing units within



TABLE I
CHARACTERISTICS OF COMMON HARDWARE ACCELERATORS

Accelerator Peak Power (W) Memory Cost Target Workload
Intel Movidius Myriad X VPU 1 – 2.5 2.5 MB of SRAM $59 Imaging, computer vision and CNN inference

Google Edge TPU 2 8 MB of SRAM $75 ML Inference with TensorFlow Lite
Nvidia Jetson Nano 10 4 GB of LPDDR4 $99 AI and GPU workload
Nvidia Jetson TX2 15 8 GB of LPDDR4 $399 AI and GPU workload

Nvidia Jetson Orin Nano 15 8 GB of LPDDR5 $499 AI and GPU workload
Nvidia Jetson Orin NX 25 16 GB of LPDDR5 $899 AI and GPU workload
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Smaller 
model
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model

Dynamics

Fig. 2. Intra-component collaboration with GPU and CPU.

the same network component, and inter-component collab-
oration, which spans across multiple network components.
This section explores possible implementations for each class
and discusses their associated benefits and tradeoffs.

A. Intra-component Collaboration

With the integration of hardware accelerators, sensing
nodes can now have more than one processing unit. This cre-
ates opportunities for applications to utilize both processing
units within the device to execute the same inference task,
thereby maximizing resource utilization and reducing latency.
For example, an NVIDIA Jetson TX2 can leverage both its
GPU and CPU, while a Raspberry Pi 5 with an attached
TPU can utilize both its TPU and CPU. In the following, we
present an example of an implementation of intra-component
collaboration.

Figure 2 illustrates an example of intra-component collab-
oration using both GPU and CPU on the sensing node, where
two models that perform the same inference task but differ
in computational requirements and precision are used. The
quantized MobileNetV2 model, which runs on the GPU, is
optimized for efficient execution, while the full MobileNetV2
model, running on the CPU, offers higher precision at the
cost of increased computational demand. Given an input, the
application performs inference on both models in parallel. If
the classification confidence level from the quantized model
exceeds a predefined threshold, the application returns the
result and terminates the CPU processing. Conversely, if the
confidence level is low, the GPU picks up the intermediate
output from the CPU and continues processing the full model
inference. This approach offers potential latency reduction
by exploring the accuracy-latency tradeoffs. The application
only relies on the more advanced but slower classifier for

Sensing node Edge server

Intermediate 
output

Dynamics

Fig. 3. Device-edge collaboration example.

challenging cases, ensuring that accuracy is maintained while
minimizing overall average latency.

The effectiveness of this approach largely depends on the
models chosen, as highlighted in previous work [18], [19].
First, inference on the smaller model must be fast while still
maintaining high accuracy. Second, the two models should be-
have differently, ideally not returning low-confidence results
for the same set of inputs. This ensures that if the smaller
model fails, the larger model still has a strong likelihood of
producing a high-confidence result. Additionally, as will be
discussed in Section V, dynamics such as changes in power
levels can result in throttling, which affects the performance
of each processor. Therefore, adaptive techniques are needed
to select the appropriate models for each processor at runtime.

B. Inter-component Collaboration

Next, we discuss two possible implementations of inter-
component collaboration: device-edge collaboration and edge-
edge collaboration.

1) Device-edge collaboration: In device-edge collabora-
tion, a sensing node first partially processes the inference
request using its accelerator. Subsequently, the sensing node
transmits the intermediate output to a nearby edge server
over the network, and the edge server runs the remaining
computation.

Figure 3 illustrates an example of a sensing node and an
edge server collaboratively executing an image classification
request. The sensing node captures an image with its camera
and processes it through the first k layers of the neural
network. Then, it transmits the intermediate output of layer k
to the edge server, which completes the processing with the
remaining layers. This approach reduces latency by leveraging
the strengths of both on-device and edge processing. Instead
of performing the entire inference on the sensing node, it takes
advantage of the edge server’s superior hardware for the final
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Fig. 4. Intermediate output size of each layer for the (a) MobileNetV2 and
(b) InceptionV4 models.
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Fig. 5. Edge-edge collaboration executing an inference request.

computation. Additionally, it minimizes the payload size by
transmitting only the intermediate output rather than the full
input.

One critical consideration when using this approach is
determining the amount of processing to be performed by
the sensing node [8], [9]. Specifically, to reduce latency
compared to the inference offloading approach in Figure
1, the intermediate output size must be smaller than the
input size. This requirement means that the applicability of
this approach is highly model-dependent. Figure 4 shows
the intermediate output sizes of two commonly used image
classification models– MobileNetV2 and InceptionV4. As
illustrated in Figure 4a, the output size of the ex conv 6 layer
of MobilenetV2 is 8× smaller than the input size, making
it a viable candidate for splitting. In contrast, as shown in
Figure 4b, all layers of InceptionV4, except for the last four,
have output sizes larger than the input, making it less suitable
for this strategy unless compression techniques [20]–[22] are
used.

2) Edge-edge collaboration: The second possible inter-
component collaboration implementation is edge-edge collab-
oration, where multiple edge servers work together to execute
an inference request. Unlike device-edge collaboration where

TABLE II
COMPARING INTRA-COMPONENT COLLABORATION WITH BASELINES FOR

CIFAR-10 ON JETSON ORIN NANO.

Baselines Collaborative inference
Res-8 Res-50 α = 0.7 α = 0.8 α = 0.9

Accuracy (%) 78 86 80 82 84
Latency (ms) 32 91 38 43 47

inference is performed sequentially, edge-edge collaboration
explores parallelism in the execution. Figure 5 presents an
illustrative example of this collaboration approach, showing
two edge servers collaboratively processing an inference re-
quest. Here, the neural network is horizontally partitioned into
two or more segments, with each server hosting a portion of
the network. Each edge server processes its assigned segment
in parallel and communicates over the network to exchange
intermediate outputs to complete the inference execution.

Previous work [12] has focused on minimizing network
communication overhead during inference. However, new
challenges arise with dynamic conditions and adversarial
factors (discussed in Section V) in edge networks. Therefore,
solutions must be adaptive to these changing conditions to
maintain performance and reliability.

IV. PRELIMINARY RESULTS

In this section, we present preliminary experimental results
to demonstrate the effectiveness of the discussed collaborative
inference implementations.

Table II compares the performance of the intra-component
collaboration approach discussed in Section III against two
baseline models. We use a proof-of-concept collaborative
inference setup, where an Orin Nano sensing node hosts
the smaller, less accurate ResNet-8 model on the GPU and
the larger, more accurate ResNet-50 model on the CPU. We
execute the inference request on both processors simultane-
ously. If the confidence of the prediction result from ResNet-
8 falls below the classification threshold α, we load the
intermediate results from the CPU and continue processing
with the ResNet-50 model on the GPU; otherwise, we directly
return the result. We vary α from 0.7 to 0.9 and compare the
accuracy and latency of the proposed approach with scenarios
where only the Resnet-8 or Resnet-50 model is used on
the GPU. We observe that, with α = 0.9, the collaborative
approach achieves a 48% reduction in latency compared to the
ResNet-50-only approach while incurring only a 2% decrease
in accuracy. Compared to the ResNet-8-only approach, the
proposed method provides a 6% improvement in accuracy,
with a trade-off of a 46% increase in latency at α = 0.9. These
results illustrate that the collaborative inference approach
effectively balances latency and accuracy. The user-defined α
allows for fine-tuning this trade-off, showcasing the potential
of this approach for optimizing performance in practical
applications.

Figure 6 illustrates the performance of various inference
execution strategies, including device-only execution, edge-
only execution, and inter-component collaborative inference.
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Fig. 6. Comparing the performance of different inference execution strate-
gies.

We use a Jetson Orin Nano as the device and a server
equipped with Nvidia’s GTX 1080 GPU as the edge. The
results indicate that splitting the inference at layer ex conv 6
yields the optimal performance, as it effectively minimizes
network latency while leveraging the superior hardware ca-
pabilities of the edge server for the latter half of the infer-
ence processing. We note, however, that the performance of
different strategies may vary with dynamic conditions, such
as network fluctuations and edge server load, which we will
discuss in the next section.

V. CHALLENGES FROM DYNAMICS

In addition to static configurations, dynamic conditions
within edge networks can significantly impact the efficiency
of collaboration strategies. This section investigates the chal-
lenges posed by these dynamic conditions.

A. Network Variability

Network conditions in IoT environments are highly variable
and can be further exacerbated by the presence of adversaries
[17]. Such variability may lead to intermittent connectivity,
network congestion, and even network partitions, all of which
affect the performance of collaborative inference strategies.
For example, decreased network bandwidth can increase com-
munication overhead in edge-edge collaborative approaches.
In mission-critical scenarios, network partitioning can result
in disconnections, potentially compromising the application’s
ability to function as intended. Therefore, to ensure continued
functionality and optimal performance, applications must be
resilient to these dynamic network changes.

B. Node Failures

Node failures are common in IoT settings due to the numer-
ous network components and environmental uncertainties. In
adversarial environments, attacks on battlefield intelligent de-
vices and servers can also lead to failures, potentially causing
severe consequences. For instance, critical information may
be lost if an edge server fails during a collaborative inference

request. To ensure robust performance, collaborative inference
applications must be resilient to node failures.

C. Thermal Conditions and Energy Constraints

Environmental or operational heat can significantly impact
sensing node performance. Managing thermal conditions be-
comes even more critical in adversarial environments, where
sensing nodes might be subjected to harsh conditions or inten-
tional interference. A major source of heat within the device
is prolonged inference execution. For instance, in an IoBT
setting, a sensing node might continuously perform multiple
inference tasks, such as audio and seismic classification for
object detection. This can generate substantial heat, poten-
tially leading to overheating and thermal throttling, which
forces the system to reduce the clock speed of the CPU and
accelerators to prevent hardware damage, leading to increased
latency [23]. Moreover, sensing nodes, such as field-deployed
sensors, are often required to operate over long mission
lifetimes. Many of these nodes rely on batteries, and as the
power level decreases, nodes may enter power-saving modes
that underclock the processors, negatively affecting inference
performance. To maintain efficiency and performance under
varying thermal and power conditions, adaptive techniques are
necessary to dynamically forward requests or adjust execution
strategies.

D. Mission Dynamics

Mission goals may dynamically change in real time in
response to evolving situations. For example, an initial mis-
sion might focus on detecting new subjects within video
frames in a battlefield context. Once a subject is identified,
the mission could shift to classifying the detected subject
into specific categories. This change requires the collaborative
inference application to reconfigure its resource allocations or
reoptimize the collaborative inference strategy. In the previ-
ous example, the application should prioritize classification
requests over detection requests from other sensors to align
with new mission objectives. Applications must provide such
flexibility to ensure that mission-critical tasks continue to
function effectively even as goals and conditions evolve.

E. Environmental Variability

Environmental variability can impact the performance of
collaborative inference systems. Factors such as adversarial
interference, changing weather conditions, and fluctuations in
ambient noise levels can affect the accuracy and reliability of
sensors, potentially diminishing their effectiveness. To ensure
that the system maintains optimal performance and accuracy
despite varying environmental conditions, the collaborative in-
ference application must dynamically adapt by reconfiguring
its data fusion topology and analytics workflow to leverage
the most reliable sensors available.

F. Workload Fluctuations

Workload fluctuations on edge servers can result in in-
creased queuing delays and prolonged latency. For example,



adversaries may intentionally overload edge servers by in-
jecting excessive workloads. Also, events such as a passing
vehicle may simultaneously trigger multiple sensing nodes
in the same area, causing a spike in offloaded inference
requests to the nearby edge server. This indicates that ap-
plications must account for the dynamic nature of server
loads to optimize performance, and balancing the workload
across network components is crucial to maintaining efficient
inference processing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explored two primary classes of single-
model collaborative inference strategies and presented possi-
ble implementations of each class. We demonstrated the ben-
efits of the strategies through proof-of-concept experiments
and identified challenges posed by dynamic conditions in
resource-constrained edge networks.

To unlock the full potential of collaborative inference,
future research may focus on developing adaptive techniques
that improve system resilience in dynamic environments. A
promising direction is to create mechanisms that dynamically
adjust workload distribution and resource allocation based on
real-time network performance metrics, ensuring efficiency
even under fluctuating network conditions. To address thermal
and power challenges, future research can focus on dynamic
model selection techniques that select the model to collaborate
and fine-tune the collaborative inference strategy based on
real-time thermal and power levels. Additionally, incorporat-
ing redundancy and error correction techniques will be es-
sential for managing node and network failures. Furthermore,
dynamic techniques for reconfiguring the data fusion topology
and analytics workflow to prioritize more reliable sensors
should be developed to mitigate the effects of adversarial
inputs and environmental variability. Lastly, collaboration in
different network topologies, such as broadcast and peer-
to-peer configurations, should be investigated to evaluate
potential performance gains.
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