
Practical Considerations for Failure Resilient ML
Systems at the Edge

Krishna Praneet Gudipaty1, Walid A. Hanafy1, Li Wu1, Jeffrey Twigg2, Benjamin M. Marlin1,
Jesse Milzman2, Suhas Diggavi3, Tarek Abdelzaher4, Prashant Shenoy1
1University of Massachusetts Amherst, 2DEVCOM Army Research Laboratory,

3University of California Los Angeles, 4University of Illinois at Urbana-Champaign

Abstract—Machine learning at the edge is increasingly em-
bedded in our daily lives, supporting applications running on
smartphones, wearables, and industrial IoT. Prior work has
mainly focused on resource efficiency and latency optimization
through innovations in compact model design and resource-
management techniques to meet stringent performance targets.
However, edge devices and networks are inherently subject to
failures and performance fluctuations, requiring an emphasis
on failure resilience, especially in resource-constrained edge
environments. Although recent studies have proposed resource-
aware mechanisms and failure-aware models to improve the
resilience of machine learning systems at the edge, many over-
look deployment overheads that impede the adoption of these
approaches. In this paper, we highlight practical considerations
that affect failure-detection and recovery times and analyze how
these considerations shape system design. We outline future
research directions to enable practical, failure-resilient machine-
learning systems at the edge.

Index Terms—Edge Computing, ML Inference, Failure Re-
silience

I. INTRODUCTION

Machine learning (ML) systems are becoming common-
place in today’s world, from applications such as extended
reality, autonomous driving, and surveillance to Industrial IoT
and IoT analytics [1], [2]. To support the stringent latency
requirements of modern ML applications, users typically rely
on resources deployed at the edge of the network [3], [4].
Simultaneously, the rising computational intensity of modern
ML models has driven widespread adoption of hardware
accelerators (e.g., Edge TPUs and GPUs) in edge environ-
ments to deliver the throughput necessary for low-latency
inference [4]. In addition to advances in edge computing and
hardware accelerators [5], [6], the design of resource-efficient
ML models is seeing significant advances. For instance,
researchers have developed compressed/smaller ML models
for resource-constrained edge environments with minor degra-
dation in accuracy [7], [8].

Recent research in the design of ML systems on the
edge, also referred to as Edge AI, has typically focused on
performance and resource efficiency [1], [9]. For instance,
researchers have proposed ML architectures and resource
management approaches that optimize the latency and net-
work requirements of ML models [10]–[13], as well as the
efficiency and responsiveness in dynamic environments [5],
[14], [15]. However, little work has focused on the resilience
of ML applications on the edge.

Traditional approaches to optimizing failure resilience rely
on the availability of failover resources, a standby, and idle
resources that get activated when a failure occurs [16], [17].
Thus, when a failure occurs, user requests are redirected to
another resource using a mixture of proactive and reactive
techniques. Proactive techniques include running hot, denoted
as active-active, where all replicas process the requests, and
warm backups, denoted as active-passive, where replicas are
loaded but left idle in case a failure occurs. Researchers
have also explored reactive approaches (cold backups) where
replicas are only activated when a failure occurs.

However, the resource-constrained nature of the edge ren-
ders these solutions impractical or adds high overhead. To
design failure-resilient systems for resource-constrained envi-
ronments, researchers often rely on graceful degradation [17],
[18], where a subset of the applications or users is prioritized
in case of failure. For example, in [18], in the event of failures,
the authors shut down non-critical microservices. To address
the resilience of ML systems on the edge, researchers have
focused on the design of resource management techniques that
trade off performance for resilience [19]–[21], and failure-
aware distributed model architectures that can survive partial
node failures [22]–[25].

However, prior work often overlooks practical challenges
that hinder the deployment of such systems. First, failure-
resilient systems typically target crash failures and assume
stable performance otherwise. However, edge resources face a
multitude of failures and exhibit performance variability, e.g.,
due to their multi-tenant nature or network instability. Second,
many system designs presume ML models are immediately
available and can be loaded on demand; in practice, the
diversity of models required across failure scenarios and tight
storage budget limits what can be pre-positioned, constraining
feasibility. Finally, the end-to-end operational overhead of de-
ploying and managing these mechanisms at scale is frequently
neglected.

In this paper, we highlight the practical considerations
for developing failure-resilient ML systems on the edge.
We detail the technical challenges and overheads of failure-
resilience ML systems across enterprise and Internet of Bat-
tlefield Things (IoBT) edge environments. In particular, we
show how the performance metrics, such as loading time
and response time, and reliability metrics, such as failure
detection and recovery time, are affected. Lastly, we outline



future research directions to enable practical, failure-resistant
ML systems on the edge. In summary, our contributions are
threefold:

1) We describe key technical requirements and considera-
tions that affect the practicality and design of failure-
resilient ML systems.

2) We present a quantitative analysis of performance over-
heads and reliability metrics across enterprise-like and
IoBT edge settings, and show how these two environ-
ments exhibit fundamentally different considerations.

3) We conclude the paper with a discussion of these chal-
lenges and future research directions.

II. BACKGROUND

This section provides a background on model serving
on the edge, failures, and failure resilience in resource-
constrained environments.

A. Model Serving at the Edge

Edge computing brings computing and storage resources to
the network edge, enabling low-latency access [3], [4]. The
benefits of edge computing are becoming more pronounced
with the rise of machine learning (ML) and its stringent
latency requirements. Deploying ML models on the edge, also
known as model serving or inference, assumes that a sensor
or a client sends the input values, which are then processed
by an edge node or a set of edge nodes, depending on the
size and compute requirements of the ML model. To encap-
sulate the complexities of executing ML models, researchers
and practitioners often rely on model serving runtimes and
compilers such as TensorRT [26], ONNX runtime [27], or
TVM [28] that provide a unified interface to run ML models
across a wide range of general purpose compute nodes and
ML accelerators (e.g., GPU and TPUs). After processing, the
edge node then sends a model output or forwards it to another
node in case of pipelines [29], [30].

B. Failures at the Edge

Compute and network resources are susceptible to multiple
types of failures, including crash, omission, timing, partition,
and byzantine failures that impact their availability [17],
[20]. Unlike cloud resources that operate in tightly controlled
and secure environments, edge resources are often deployed
“in the wild” such as adversarial environments of IoBTs,
where communication disruptions, device compromise, and
malicious-input injection are credible risks [31]. Edge re-
sources also face power and connectivity challenges as they
may be battery-powered or rely on unreliable energy sources.
Moreover, the lack of cooling capabilities may lead to thermal
throttling or protective shutdowns [32], resulting in unpre-
dictable performance degradations. Lastly, the geographic
dispersion of edge resources and reliance on wireless access
introduce variable latency, loss, and occasional partitions [21],
[33].
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Fig. 1: Overview of failure resilient ML serving systems

C. Failure-Resilient Machine Learning at the Edge

In contrast to cloud resources, which have a high level of
redundancy and low utilization, edge resources are typically
resource-constrained. Thus, traditional failure resiliency that
utilizes failover replicas is ill-suited for edge environments,
requiring a different approach. To address the failure re-
siliency in edge environments, researchers typically employ
the concept of graceful degradation, where resilience is
achieved by sacrificing performance for non-critical applica-
tions. For instance, researchers in [19], [20] have exploited
the trade-off between resource requirements and accuracy [8],
[15] to improve the resilience and introduce the concept of
heterogeneous replication, where failover replicas are selected
as smaller variants of the same model. Moreover, researchers
have addressed the failure resiliency by designing a failure-
aware distributed model architecture that can survive partial
failures [22]–[25]. For instance, [24] designs a distributed
model architecture that leverages early exits and skip connec-
tions to ensure the resilience of ML models, and [25] proposes
an ensemble architecture that tolerates multiple failures.

III. DESIGN OVERVIEW AND CONSIDERATIONS

In this section, we provide an overview of a typical archi-
tecture of a failure-resilient machine learning system and the
design considerations and metrics for a practical deployment.

A. System Overview

Fig. 1 illustrates the architecture of a typical failure-resilient
ML serving system. As shown, failure-resilient systems aug-
ment ML serving systems with failure detection and recovery
capabilities. These runtimes often rely on a local model
repository that can be instantly loaded as well as a centralized
model repository (e.g., on a cloud server or a storage server)
that hosts all ML models and variants. Moreover, in addition
to ML serving runtime, edge servers host a monitoring agent
(e.g., Prometheus [34], NVIDIA DCGM [35]) that monitors
performance counters and systems’ liveliness.

The edge controller collects performance metrics from
edge servers and clients and implements failure detection and
recovery. Researchers have designed failure recovery systems
and policies that provide high availability and low mean time
to recovery (MTTR) guarantees based on available resources,
model sizes, and priority. For instance, in FailLite [19], the
authors proposed a failure-aware model selection and place-
ment heuristic that optimizes resilience while considering



TABLE I: Experimental Setups

SETUP NAME HARDWARE NETWORK

Enterprise Edge 5 PowerEdge R630 w NVIDIA A2 GPUs 10 Gbps Ethernet
IoBT Edge 5 NVIDIA Jetson Orin NX WiFi

resource availability. This is achieved by using a mixture of
warm backups for critical applications and cold backups for
less critical ones, thereby optimizing both performance and
availability.

Below, we highlight a set of performance considerations
and metrics that have seen less attention in earlier approaches,
as well as aspects that hinder the applicability of these
approaches.

B. Design Objectives and Considerations

Earlier research has focused on the availability of model
serving systems. However, failure resilient systems must
consider a wide range of performance and reliability metrics,
including:
Failure Detection Time: also denoted as time-to-detect, is the
elapsed time between a component’s failure (e.g., a crash) and
the time a monitoring mechanism first declares/suspects that
failure of such component [36].
Decision Time: the elapsed time between detecting failures
and making an error correction decision. For instance, in the
case of FailLite [19], this includes the time to execute the
placement heuristic or optimization approach.
Loading Time: the time it takes to load an ML model
from disk to memory and prepare it for processing requests.
This typically involves copying the model from disk to main
memory, followed by transfer to the accelerator memory.
Reconfiguration Time: the time to switch clients from the
failed application endpoint to a new endpoint.
Performance Overheads: system overheads that occur when
deploying failure-resilient systems, such as increased or fluc-
tuating response times, when executing failover backups.

In addition to the metrics, multiple aspects limit the exe-
cution of failure-resilient recovery procedures. First, systems
often assume the correctness of failure detection. However,
in practice, failure detection systems may produce False
Positives or False Negatives, initiating unnecessary changes
or not reacting appropriately [36]. Second, failure-resilience
systems typically assume that failover models are available
either locally or on a nearby server. However, in many cases,
these backups may not be available due to storage constraints,
cold backup misplacement, or only available in a remote cloud
storage, resulting in high loading and recovery times. Third,
systems have not addressed scenarios of cascading failures,
either by dependency across applications or failures caused
by fail-recovery actions themselves. Finally, researchers have
confirmed that controllers are deployed on reliable servers.
However, similar to other edge sites, controllers are prone to
failures. Moreover, most designs rely on a single node and
may present a single point of failure.
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Fig. 2: Loading time of ML models across setups.
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Fig. 3: Response Time across setups.

IV. EVALUATION

This section presents an experimental evaluation of the
considerations and metrics for failure-resilient ML systems
on the edge, as well as an end-to-end assessment of failure-
resilience systems’ performance.

A. Experimental Setup

Hardware Setup. Table I lists our two experimental testbeds
that highlight different edge scenarios, denoted as enterprise
edge and IoBT edge. The enterprise edge setup represents
highly efficient edge sites such as Akami CDN deploy-
ment [37] or AWS Edge Services [38] with higher resource
density and more stable connections. Our enterprise edge
setup features Dell PowerEdge R630 machines, equipped
with Xeon E5-2660v3 CPU, 256 GB of memory, a 400
GB Intel 730 SSD, and up to 10 Gbps networking speed.
Additionally, each server includes an NVIDIA A2 GPU with
1280 CUDA cores and 16 GB of GPU memory. In contrast,
the IoBT edge setup represents deployment in the wild
with highly constrained infrastructures and unstable network
connections [31]. This setup features NVIDIA Jetson Orin NX
with 8 Arm Cortex-A78AE CPU cores, 1024 CUDA cores,
and 16 GB of memory. These Orin nodes are interconnected
via a WiFi network, and each is equipped with a 1 TB
Samsung NVMe SSD 970 EVO Plus.
ML Models. In addition, our evaluation utilizes a wide set
of ML architectures and sizes. Our evaluation uses several
models: Including models from the PyTorch model reposi-
tory [39], Yolov8 (n,s,m) [40], and custom failure-resilient
ensemble models [25].
ML Serving System. The model serving is implemented as
a containerized service that encapsulates the model, runtime,
and dependencies. We utilize the Torch-TensorRT [41] run-
time to run all models, except for YoloV8, which directly uses
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Fig. 4: Effect of Co-location across setups.
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Fig. 5: Failover overhead and interference.

PyTorch. We utilize two deployment methodologies. First, we
use a client-server approach, where clients send requests in a
closed loop manner via gRPC [42] to the processing server, or
multiple in the case of ensemble models. Second, we utilize a
deployment based on MQTT [43], where data sources publish
inference requests (e.g., video streaming frames), and the
server publishes back the results, without direct interactions
between the client and the server.

B. Design Considerations
Below, we analyze the performance across the enterprise

and IoBT setups and highlight key system metrics that affect
the performance of failure-resilient systems.
Loading Time. Fig. 2 illustrates the loading time of ma-
chine learning models across different numbers of parameters.
Loading time affects the MTTR of failure-resilient systems,
especially in situations where the controller relies on cold
backups. As shown, the loading time is highly correlated with
the number of parameters, as it highly affects the model size.
In either setting, even though we use highly optimized storage,
the loading time can be as high as 0.5s, with an average of
0.15s and 0.17s across the enterprise and IoBT edge settings.
This high overhead not only introduces a system bottleneck
but also significantly reduces the system’s availability.
Response Time. Fig. 3 illustrates the response time of five
ML models across setups, a key aspect of model serving
systems. As shown, the response time highly changes across
setups and models. For instance, in the enterprise edge setting,
the response time is low and highly stable. In contrast, in
the IoBT setting, the response time is much higher due to
differences in accelerator performance and network speed. For
instance, for Efficientnet-B2 (Effnet B2), the inference time
and network latency are higher by 400% and around 3500%

on the IoBT edge compared to enterprise edge settings. More
importantly, the results highlight how the network affects the
entire performance, which is more pronounced in the IoBT
settings. For instance, the Coefficient of Variation (CoV) for
processing time and latency changes is 0.22, and 0.12 in
enterprise edge settings, and 0.32 and 0.14 in the IoBT edge
settings, respectively.
Effect of Co-location. Failure-resilient systems often utilize
failover replicas where models may be co-located. Fig. 4
highlights the effect of ML models’ co-location across setups
when considering EfficientNet-B2 (EffNet B2) and ResNet-
101 (Resnet101) ML models running in isolation vs together.
As shown, co-location highly increases the response time
compared to the isolated execution case, especially in the
IoBT settings. For instance, in the enterprise edge, due to the
size of the GPU, the effect of co-location is less apparent,
where the average latency only increases by 3.1% and 2.1%
for Effnet B2 and Resnet101, respectively. In contrast, in
the IoBT settings, while using more constrained devices, the
overhead is not apparent due to the highly variable network
configurations. However, our evaluation highlights that the
inference time increases by 7.8% and 11% for Effnet B2 and
Resnet101, respectively.

C. End-to-End Results
Below, we present an end-to-end evaluation of failure-

resilient systems deployment that utilizes heterogeneous repli-
cation [19], [20] and distributed ensemble models [25].
Heterogeneous Replication. We start by evaluating a system
based on heterogeneous replication [19], [20], while sending
requests using MQTT. Fig. 5 (a) presents the failure detection
and recovery times at the IoBT edge using heartbeat signals.
Heartbeats are sent to the edge controller every 50 ms. To
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Fig. 6: Ensemble model overhead across setups using warm backups.

mitigate false negatives caused by the unreliable network,
a longer confirmation window is employed, which leads to
an average detection time of 1.5s. In contrast, the recovery
time of an application backed up with a warm replica can be
significantly lower, with an average of 3ms.

Fig. 5 (b) and (c) illustrate the overhead of homogeneous
and heterogeneous replicas at the IoBT edge. We assume that
APP1 deploys a failover back on the server hosting APP2 and
vice versa. In our settings, at the 10th second, APP2 fails over
from its primary server to the backup server, which also hosts
APP1. Resource contention—primarily on the GPU—causes
APP2’s inference time to increase by 17.2%, while APP1’s
inference time rises by 9.8%. When APP2 uses a smaller
model variant as a backup, its inference time decreases by
11.8%, while increasing APP1 inference time by 8%.
Ensemble Models. Here, we show the performance of an
ensemble-based approach [25], where the failure detection
is implemented using timeouts, and clients send requests in
a closed loop. In this experiment, we utilize four servers,
one hosting the original and the other three hosting parts of
the ensemble model. We also assume one of these servers is
hosting APP2. Fig. 6 shows the response time and failover
time of the two applications across three stages: normal
operation, original failure, and partial failure (i.e., failure in
one of the upstream models), where changes are injected at
15s and 35s, respectively. As shown in Fig. 6 (a), in the
enterprise edge, the failover time is minimal ∼2s. In this
case, when the original model fails, the client switches to the
ensemble model, which is distributed across multiple nodes,
and hence increases the response time. Then, when we inject
another failure, the client switches to a single small model,
thus resulting in a lower response time. Similarly, as shown in
Fig. 6 (b), the IoBT edge setting, the client switches between
deployments, resulting in different response times. However,
the differences are less apparent, and the switching is less
smooth when compared to the enterprise edge setting. This is
due to the network latency dominating the processing latency,
as was highlighted earlier. More importantly, in this setting,
the failure detection time, which highly depends on network
latency [36], is much higher ∼6s.

V. DISCUSSION AND FUTURE DIRECTION

A. Discussion

In previous sections, we highlighted key considerations
that aid the design of failure-resilient ML systems. Our

experimental evaluation showed the performance metrics and
reliability metrics across two distinct edge classes: Enterprise
edge and IoT edge. The results highlight how the performance
overheads vary across these settings and may result in dif-
ferent reliability guarantees. For instance, while computing
presents a bottleneck in both cases, the network presents a
significant challenge in the IoBT settings, leading to highly
variable results.

B. Future Research Directions

Below, we list key future research directions:
Failure diagnostics and localization. A key direction is de-
veloping better failure detection and localization approaches.
Failure diagnostics can aid the design, and the availability
of ML systems differs based on failure types. For instance,
while a crash failure might require a failover back, network
partition failures may require a different placement strategy.
One approach is to adopt multi-point failure detection and
machine learning approaches [44].
Distributed Controllers. Another direction is designing dis-
tributed controllers that address issues in current centralized
placement and resource management approaches. For exam-
ple, the usage of a multi-agent controller and fault-tolerant
consensus control can aid in the design of future fault-tolerant
systems [45].
Navigating the trade-offs. Our analysis highlights the trade-
off between performance, accuracy, and availability. For in-
stance, the usage of small failover replicas, as in FailLite [19],
may optimize the performance and availability but affect the
accuracy. In contrast, approaches that utilize ensembles, such
as MEL, may prioritize accuracy and availability but sacrifice
performance. Thus, analyzing this three-way trade-off may be
critical for the design of future failure-resilient systems.

VI. CONCLUSION

This paper highlights key considerations and performance
metrics that affect the practicality of failure-resilient machine
learning systems. Our analysis across two distinct classes of
edge clusters highlights how the infrastructure impacts the
forecast performance, overheads, and availability. Our study
shows that compared to the enterprise settings, IoBT settings
may see lower availability and higher system overheads,
requiring a new set of approaches and techniques. In the
context of future work, we highlight directions to include the



design of multi-point failure detections, multi-agent consen-
sus protocols, and approaches to navigate the performance,
availability, and accuracy tradeoff.
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