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Abstract—Internet of Things (IoT) devices have proliferated
across a wide range of smart environments that generate vast
amounts of data, necessitating the emergence of distributed edge-
cloud infrastructures. However, these IoT-edge-cloud infrastruc-
tures encounter several challenges in providing efficient and
effective services to users, such as real-time service delivery,
robustness and resilience, and efficient deployment. Moreover,
recent advancements in machine learning, particularly within
the realm of deep learning, have ushered in a new era for
IoT applications. These applications increasingly lean on data-
intensive models to perform a multitude of functions, including
classification, detection, data analytics, and decision-making. A
key aspect is that many of these tasks exhibit sensitivity to latency
and hinge on the deployment of models at the network’s edge and
on how to efficiently handle data-intensive workloads, especially
when network conditions are constrained. In response to these
challenges, we present an analytical discussion that delves into the
intricacies of distributed IoT pipelines and workloads deployed
across both edge and cloud computing environments.

I. INTRODUCTION

The advent of machine learning models, particularly deep
neural networks (DNNs), has yielded substantial enhance-
ments in the performance of IoT applications, spanning a wide
array of tasks. Within these applications, sensors increasingly
rely on machine learning models to carry out functions such
as classification, detection, and decision-making. However, de-
spite notable advancements in model architecture and design,
the substantial processing power and energy requirements of
these models often exceed the capabilities of individual sensors
or sensor nodes.

To overcome this limitation, sensors frequently resort to
data offloading, transferring their data to nearby edge com-
puting sites that offer the requisite computational capacity [1].
While edge computing initially emerged as a solution primar-
ily geared toward latency-sensitive applications, it has since
evolved into a crucial IoT processing component, especially in
scenarios where privacy concern is paramount, and leveraging
public cloud infrastructure is not a viable option due to
not only performance constraints, but also regulatory. In this
context, distributed inference pipelines are used to compute
complex computations that combine data from various sources
and locations to help with decision-making queries, with
complex interrelated factors. The decision-making process is
usually defined as a multi-stage endeavor that unfolds across
different tiers within the sensor-to-decision pipeline. For the
sake of enabling real-time decision-making, it becomes imper-
ative to minimize the worst-case response time, often referred
to as tail latency, throughout this IoT pipeline. Numerous
optimization methods have emerged, focusing on individual
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Fig. 1: Common Distributed IoT-edge-cloud Pipelines.

components of the application, all with the overarching goal
of curtailing tail latency. However, it is worth noting that the
intricate nature of distributed request processing introduces
dynamic variabilities such as request reordering and potential
performance bottlenecks at various components, which can, in
turn, escalate the end-to-end tail latency.

Figure 1 illustrates a standard IoT-edge-cloud architecture in
which sensors establish connections with edge sites and trans-
fer their data to either a singular machine learning model or
a sequential pipeline of such models. These pipelines consist
of multiple stages that can span various infrastructural layers
and sites, which is particularly noteworthy in the context of
IoT platforms. For instance, a video streaming pipeline entails
four stages of processing for requests, whereas an autonomous
driving pipeline might involve even more stages. The strategic
placement of these models on edge sites is carried out with
a keen awareness of resource constraints, all while striving to
achieve the dual goals of minimal latency and meeting the
stipulated service level objectives (SLO). This complexity is
amplified by the dynamic nature of the resources available
to these applications and the stringent security measures in
place. Each layer, or tier, within these pipelines presents
distinct constraints, encompassing considerations of perfor-
mance (including latency and throughput), network bandwidth,
energy efficiency (especially concerning edge devices), and the
precision of predictions during inference processes.

Furthermore, a control plane plays a pivotal role in or-
chestrating resource allocation, determining how many re-
sources are allocated, when, and where they are allocated.
Managing these intricacies becomes especially challenging
when striving for dependable performance. Requests traversing
these pipelines traverse multiple queues, each representing a
different stage in the process. Take, for instance, the sce-
nario of image and LiDAR sensing, where requests progress
through stages like detection and pre-processing, generating



subsequent requests such as object detection and identification,
forming a cascading chain of processes. In addition to the mul-
tiplicity of queues, other variables further complicate perfor-
mance management. Workload variability, along with the array
of security measures in place, all contribute to the intricate
tapestry of challenges in optimizing end-to-end performance
within IoT distributed inferencing architectures. Finally, many
of these tasks are highly sensitive to latency, relying heavily
on the deployment of models at the network’s edge and on the
efficient management of data-intensive workloads, especially
in situations where network conditions are suboptimal.

In light of these challenges, in this paper, we present an
analytical examination that explores the complexities inherent
in distributed IoT pipelines and workloads, encompassing
deployments across both edge and cloud computing environ-
ments. Moreover, this paper presents the following contribu-
tions:

• We introduce a comprehensive set of end-to-end per-
formance requirements for a distributed IoT-edge-cloud
infrastructure, specifically designed for executing dis-
tributed pipeline applications.

• We conduct an examination of distributed pipelines un-
der various deployment settings, shedding light on their
respective advantages and disadvantages as observed in
real-world deployments.

II. BACKGROUND

This section presents background on IoT architectures and
the distributed computations involved.

A. IoT-Edge-Cloud

An IoT-Edge-Cloud architecture encompasses different
network-connected sensors embedded in various devices, such
as autonomous vehicles, weather monitoring systems, smart
appliances, wearables, and surveillance equipment [2], [3],
[4], [5]. Because of the diversity of devices and their various
sensing capabilities, applications operating over these infras-
tructures pose several challenges. Given the decentralized
nature of IoT networks, key requirements for heterogeneous
applications in dynamic environments include high scalability,
real-time processing with guaranteed response times, reliabil-
ity, and uninterrupted service delivery with zero downtime
[6], [7]. Achieving these goals can be made possible through
the implementation of a decentralized sense-compute-action
infrastructure, ensuring seamless end-to-end services, ubiq-
uitous network connectivity between subsystems, and highly
available services through the use of replication and cloud
services.

B. Distributed Workloads

Most distributed applications have transitioned away from
monolithic architectures, where all functionalities were encom-
passed within a single process. Today, developers gravitate
toward a microservices approach, fragmenting the application
into discrete services, each dedicated to a specific function and
capable of independent scaling [8]. For instance, a distributed

inference application might comprise a sensor that accepts
samples for recognition and an edge server for inference
comparisons [9]. Consequently, requests typically traverse a
network of these microservices to complete execution.

For distributed workloads, response time ranks among the
main metrics applications aim to minimize. It is not solely
about reducing average latency but also mitigating tail latency,
exemplified by metrics like the 99th percentile latency, as this
is the main metric companies often establish Service Level
Agreements with their customers [10]. This dynamic fuels
research endeavors dedicated to the exploration of distributed
applications and the formulation of systems aimed at response
time optimization. For instance, there exists a body of work
dedicated to request scheduling, orchestrating the execution
of requests to reduce latencies [11], [12]. Complementing this
effort, much research engages in mathematical modeling to
gain a comprehensive understanding of these intricate systems
[13], [14], [15].

C. Edge Processing

Edge processing is a key component of IoT architectures
because it offers access to computing and storage resources
right at the network’s proximity where applications are de-
ployed, allowing the provision of low-latency services to
users. Initially, the focus of edge computing was on streaming
services such as Content Delivery Networks (CDNs), aiming
to offer readily accessible data with minimal latency while
conserving network bandwidth [16]. In recent times, however,
the scope of edge computing has widened significantly be-
cause of the prevalence of IoT sensors. It now encompasses
computing services tailored to support resource-constrained
IoT sensors. Moreover, edge computing plays an indispensable
role in deploying sensors in remote, hard-to-reach locations
and serves as the go-to solution for privacy-sensitive services
where public cloud deployments are unfeasible.

D. Performance Adaptation

Performance adaptation is a commonly utilized strategy
when contending for resources in challenging scenarios such
as in the edge. For instance, video-streaming applications often
employ performance adaptation techniques to enhance user
experience under poor network conditions [17]. In such situ-
ations, these applications may choose to reduce video quality
or employ alternative frame encoding methods compared to
the standard or baseline settings, ensuring a smoother and
more seamless streaming experience for users. This adaptive
approach also comes into play when dealing with dynamic
workloads, such as unexpected spikes in demand. Moreover,
performance adaptation proves to be a valuable tool in achiev-
ing alternative performance settings, enabling a system to
progress even in the face of high turnaround times. Typically,
this property comes at the cost of a reduced quality of service.
An example of this is in network configurations, where a
primary high-speed route is complemented by a slower backup
route that becomes active if the primary route experiences
performance issues. Finally, performance adaptation proves
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Fig. 2: Distributed Analytics Pipelines as Tandem Queues: The overall system compromises several tiers and components, each
including different sets of resource capacity, workload rate, and dynamic availability.

to be an important factor in enhancing service reliability and
maintaining system availability even with partial failures.

III. IOT-EDGE-CLOUD: DEPLOYMENTS

In this section, we present an IoT-edge-cloud system that
will be used to study the performance tradeoffs of distributed
pipelines. We begin with an overview of the system require-
ments and subsequently describe the key components.

A. Deployments

In Distributed IoT deployments, multi-staged pipelines are
executed where different components and versions of an
application operate across distinct tiers. In this context, ”ap-
plications” refer to the business logic that includes the entirety
of the distributed end-to-end pipeline, and comprises different
layers. For simplification, Figure 1 distills it into three primary
layers: Sensors – i.e., the devices where the samples are
created –; the Edge – where certain application components
may also reside –; and the cloud – typically home to the more
resource-intensive, complex application components.

As the processing moves farther from the sensors, various
constraints come into play, including inference latency, band-
width limitations, accuracy, energy constraint, and through-
put. Particularly during the inference phase, requests in a
Distributed Machine Learning system may traverse multiple
queues, each representing a distinct stage in the distributed
inference process. This dynamic is akin to the flow of data
sensing and pre-processing, which subsequently leads to sub-
sequent types of requests, such as object detection, followed
by identification, and so forth. In addition to the intricacy of
multiple queues, other factors come into play, affecting system
performance. These include workload variability, characterized
by fluctuations in demand, and the presence of specific security
measures and features that are inherently enabled by default.

B. Splitting Request Processing

A primary research focus for reducing latency in request
processing within a distributed IoT framework involves op-
timizing processing distribution between sensors and edge
servers. Given that sensors typically have lower processing

power than edge servers, the most intuitive approach is to
route input directly to the edge for processing. Nevertheless,
due to constrained bandwidth between sensors and the edge,
the network overhead incurred in transmitting the input may
offset the processing efficiency gains at the edge, potentially
resulting in decreased performance. Various research work has
proposed a layer-wise DNN partitioning approach to distribute
the processing between sensors and edges [18], [19]. By
processing a subset of layers and transmitting the intermediate
output to the edge for further processing, it significantly
reduces network costs while preserving the same accuracy
level. Moreover, current research endeavors to further decrease
latencies by strategically balancing accuracy trade-offs. Specif-
ically, techniques including intermediate data quantization,
model compression, and vertical layer splitting, have been
proposed to further minimize the network cost and the end-
to-end latency by trading off less than 1% of overall accuracy
[20], [21], [22], [23].

C. Distributed Applications

Modern distributed applications no longer use monolithic
architectures that rely on scaling by replicating the entire
application across multiple servers. Given their widespread
geographic distribution, developers now opt for a software
architecture that divides application functionality into distinct
services, such as caching and database services. For instance,
Distributed Inference and Machine Learning workloads can be
conceptualized as pipelines, each comprising multiple stages
that can be separated into different components and deployed
across diverse infrastructural layers. For example, training
processes can take place in the cloud, where ample resources
are available, while inference tasks (i.e., predictions) can be
executed at the edge due to stringent low-latency requirements.
This architectural paradigm becomes even more significant in
the context of distributed IoT platforms, characterized by the
dynamic allocation of resources to applications. In response
to these evolving challenges, we introduce an architecture
designed to enhance and facilitate testing and experimentation
within a distributed IoT network testbed.
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IV. MODELING DISTRIBUTED PIPELINES

Effective resource allocation plays a pivotal role in en-
suring optimal application performance. However, once this
allocation is established, the strategies governing resource
distribution and request scheduling across the system be-
come equally crucial in maximizing performance. A complex
distributed IoT scenario encompasses various components,
including stream processing, seismic sensing, LiDAR fusion,
analytics pipelines, video analytics, etc., all of which require
careful attention to potential bottlenecks to meet the specified
requirements (see Figure 1). Special consideration is needed
for resource allocation in data processing-intensive tasks,
ensuring optimal resource matching, especially in resource-
constrained environments like the edge. As such, meeting the
requirements of a distributed pipeline involves several critical
aspects. A model should necessarily answer the following key
questions:

• Firstly, addressing the end-to-end throughput require-
ments of distributed pipelines is key as simultaneous
requests are submitted, necessitating sufficient processing
capacity to prevent system overload and degradation.

• Secondly, careful management of the end-to-end latency
requirements should be in place.

• Finally, an essential challenge is understanding resource
allocation within specific constraints, determining where
and how many resources to allocate to sustain throughput
while keeping latency under control.

A. Distributed Pipelines

Consider Figure 2, which illustrates several distributed
pipelines comprising multiple components. As a request pro-
gresses through such a distributed pipeline, it traverses a
sequence of k components, each responsible for processing
a specific type of request. As illustrated in Figure 1, these
components could handle various tasks such as audio packet
encoding or LiDAR sampling preprocessing. What is crucial
to note is that although each component individually performs
some partial processing before forwarding the request to the
next component in the sequence, the successful completion
of the entire execution sequence is what accomplishes the
overall pipeline operation. It is worth mentioning that different
requests may experience varying processing times at each
component and can even follow different processing paths
based on the objective of the pipeline operation, often de-
termined by a decision-making entity (Figure 1).

B. Queueing Theory

Generally, a distributed application can be treated as a
tandem G/G/c network. Here, the first G means a request
arrival process with a general distribution, like the exponential
distribution. The second G represents the service time distri-
bution, and c stands for the number of resources available
in a server. Assuming perfect load balancing within single
servers, we can model the overall performance of an end-to-
end pipeline as a G/G/1 queue and represent the c server
resources as if they were a single unit. If the server becomes

overloaded, requests start queuing up, resulting in waiting
times. The waiting time Wn+1 for a new request n + 1 can
then be expressed as:

Wn+1 = max(0,Wn + sn − an), (1)

where Wn and sn denote the waiting time and service time
for the previous request n, respectively, and an represents the
inter-arrival time between requests n and n+ 1.

The system utilization ρk for server k indicates the fraction
of time the server is occupied and can be defined as

ρk =
λk

µk
, (2)

where λk and µk represent the request arrival rate and service
rate at server k, respectively.

A tandem queue network is considered stable when ρk
is less than 1 across all tiers. If ρk exceeds 1, it indicates
insufficient server capacity, whether due to poor resource
allocation or spikes in workload rate. Either way, it results
in excessively long response times — a condition known as
saturation that should be avoided in distributed systems.

C. Implications

The model described above serves as a valuable tool for
comprehending the functioning of distributed systems on a
large scale. It is applicable to any system ranging from a
single application to a complex IoT-edge-cloud architecture
supporting various distributed pipelines. The main challenge
lies in minimizing the average and tail performance – mea-
sured as response time and overall throughput – during peak
periods to minimize wastage of resource capacity [24], [25].
This is because enforcing system-wide policies in distributed
systems is particularly challenging due to some types of
complexity. The first type is horizontal, where applications can
have hundreds of components [26]. A user request may trigger
numerous additional requests, which are served independently
by a local, single component. The second type of complex-
ity is vertical, where each component dispatches additional
requests to a thread pool, and each thread is considered as
an independent entity by the scheduler. Finally, given these
complexities, few solutions consider the distributed system
holistically, with much research using system-level optimiza-
tions to aggressively improve the tail performance.

V. EVALUATION

In this section, we showcase the untapped potential for
optimizing request execution within distributed IoT pipelines.

A. Experimental Setup

Our analysis comprises a simple application with a 2-stage
pipeline. We use an open-loop workload generator that pro-
duces requests with inter-arrival times following the Poisson
distribution. Each request’s target service time at each stage is
distributed exponentially. The generator forwards the request
to the first application stage through a client TCP connection.
On the server side, upon receiving a new request, the server
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Fig. 3: Tail Performance under different resource allocation
schemes. A naive approach can optimize system performance
but may result in resource over-allocation.

creates a thread to execute an idle loop, emulating the service
time predefined in the request. After completing the idle loop,
the request is forwarded to the next tier, continuing until it
reaches the last tier. Finally, the request is sent back along the
original path to the client, where we measure the performance
metrics.

B. Optimizing Latency and Resource Allocation

Figure 3 highlights the necessity of a model-driven
resource allocation algorithm for minimizing latency while
avoiding resource wastage. In this analysis, we vary the
number of cores at each pipeline stage and measure the
end-to-end tail latency. When each component operates with
only one core, as illustrated by the purple line, we observe a
significant spike in P99 latency at a request rate of 300 rps,
which surpasses one second at 350 rps, indicating system
saturation. To enhance performance, a naive approach is to
increase the resources of all components, for instance, to
3 cores per component, as illustrated by the orange line.
While this effectively reduces latencies, it may lead to
over-allocation of resources since real-world applications
often exhibit varying workload rates with varying service
time distributions across components, resulting in a complex
– possibly dynamic – resource allocation needs. In such
cases, a model-driven approach becomes invaluable, enabling
us to pinpoint performance bottlenecks within the pipeline
and adjust resource allocation accordingly, such that we can
navigate between the design space among the two lines in
Figure 3. For instance, we can identify and allocate more
resources to components experiencing higher queueing delays
while maintaining the current resource allocation for other
unsaturated components so long as Equation 2 does not
exceed 1.

Key Insight: Resource flexibility allow us to meet application
requirements, including mean and tail latency constraints for
requests, all while minimizing resource usage.

Fig. 4: Infrastructural Performance under resource pressure:
As the external resource pressures in the pipeline components
increase, resource contention reduces application throughput.

C. Impact of Resource Pressure

We then assess how resource pressure impacts application
throughput in typical IoT settings. Both devices and edges
in these scenarios are resource-constrained, making their
performance susceptible to external resource pressure factors
such as kernel power management threads and garbage
collection. These non-deterministic factors disrupt the normal
execution of requests, consequently reducing the overall
system throughput. We illustrate these effects in Figure 4,
where we emulate resource pressure levels while keeping the
request rate constant. We observe that the higher the resource
pressure, the lower the system throughput. This underscores
the necessity for load-balancing and routing algorithms
to determine the optimal component in the pipeline (e.g.,
which edge server) for routing the next request to avoid
and mitigate the negative effects of resource pressure. A
potential solution entails monitoring the load and detecting
queueing delay spikes at each component. This allows us to
identify and analyze the root causes pertaining to why certain
components experience resource pressure. Subsequently,
we can dynamically adjust the resource allocation, and
alternatively use re-routing techniques to divert traffic away
from the congested component until it returns to normal
operating conditions.

Key Insight: Effective management of distributed pipelines
requires seamless integration with the underlying resource
management layers. This integration is essential for mitigating
the performance impacts caused by external workloads that
exert resource pressure on the infrastructure.

D. Challenges of Proximity-Based Routing

To minimize the network delay between components
in the pipeline, the most intuitive approach is to route
the request to the closest edge server. However, existing
literature suggests that this strategy may not necessarily yield
improved performance due to workload imbalances and the
resource constraints typical of edge computing [27]. This
phenomenon is called edge-inversion. We illustrate a similar
observation in Figure 5 within a pipeline. After processing
at the first component, while forwarding the request to
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Fig. 5: The impact of edge inversion: Despite the closer
proximity of edge servers compared to the cloud server, high
system utilization can result in queueing delays that offset the
network cost savings.

the nearest component (i.e., the edge) reduces network
costs, this advantage is overshadowed by queueing delays
at the edge during periods of high utilization (e.g., at 400 rps).

Key Insight: Distributed IoT resource managers can
improve the system and application performance by utilizing
model-driven techniques that determine the optimal resource
allocation and placement while minimizing latency.

VI. CHALLENGES AND FUTURE WORK

Designing a scalable and robust system for distributed IoT
applications poses significant challenges, primarily because of
the multitude of available options and decisions to be made.

A. Challenges

First, determining the optimal placement of pipeline stages
across a distributed infrastructure, all while preserving the
quality of service is a complex challenge. This is exacerbated
by the continually shifting dynamics of the infrastructure, the
diversity and heterogeneity of the nodes involved, and the
scalability limitations of the models in use. Furthermore, the
trade-offs between accuracy, latency, and sensing rate can vary
significantly depending on the specific scenario and the use
case of the application.

As mentioned, the dynamics within the infrastructure’s re-
source availability need to be comprehended holistically. This
involves not only understanding the workload and optimizing
its resource allocation, with an emphasis on highlighting
specific distributed pipeline requirements, but also doing these
online and at runtime, which can be extremely challenging
assuming that even any two users operating similar pipelines
may – from the point of view of the infrastructure – need
different and contradicting resource requirements. Addition-
ally, the security aspect cannot be overlooked. Attackers often
induce resource pressure through hidden background tasks that
sniff and query the system for benign tasks, which directly
impacts the performance of the pipeline. Assuming that all
other factors remain balanced, including workload rate and

optimal resource allocation, the identification of such attacks
can be accomplished by monitoring pipeline tail performance.

B. Future Work

Efficiently modeling these intricate end-to-end pipelines
necessitates various approaches, including the application of
machine learning models and queueing theory. However, it
is important to note that while machine learning models are
highly effective in optimizing mean latency, their performance
tends to be less robust when it comes to addressing tail
latency issues. Some pipelined operations are very sensitive to
performance degradation. In particular, tail latency demands a
focused approach, as any degradation in this metric can have
adverse consequences for various reasons.

Queueing Theory emerges as an intuitive and extensively
researched framework for understanding these aspects, partic-
ularly within the context of multi-staged workloads in IoT.
As a modeling framework, queueing models offer valuable
insights by providing stochastic performance boundaries con-
cerning response times, encompassing metrics such as aver-
ages, variances, distributions, and tail behavior. Furthermore,
it empowers us to estimate worst-case performance scenarios,
subsequently enabling the development of policies for request
prioritization and processing. Additionally, it aids both users
and developers in making informed decisions across diverse
scenarios. As such, integrating such models into resource
managers would potentially improve the overall system per-
formance and robustness. While queueing models offer an
appealing and fundamental means of defining distributed sys-
tems that can be derived from various profilable metrics, the
majority of solutions are presented as closed-form expressions.
Consequently, it is crucial to exercise caution when proposing
adaptive solutions, as resource management systems should
be flexible enough in order to handle unknown-unknowns [28]
scenarios that may not be adequately captured by these mod-
els [29].
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