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Abstract—With recent innovations in machine learning (ML)
technologies, especially deep learning, many IoT applications
have increasingly relied on ML models for various tasks, such as
classification, detection, and decision-making. Most of these tasks
are latency-sensitive and depend on models deployed at the edge
of the network. Network and edge devices are prone to various
kinds of failures, such as transient, crash, or Byzantine failures.
Such failures can impact the IoT device’s ability to offload tasks,
affecting the system’s reliability. A traditional solution involves
replicating the underlying resources and deploying a failover
replica of the ML model. However, edge resources are typically
limited, and increasing their size incurs significant computational
and infrastructure cost overheads.

This paper proposes a range of failover strategies for resource-
constrained edge environments, leveraging the flexibility offered
by ML models. We explore various approaches for graceful
service degradation, such as degraded accuracy, latency, and
sampling rate, and highlight their potential benefits and trade-
offs. Furthermore, we discuss the challenges associated with these
techniques and outline future directions.

Index Terms—Edge computing, ML inference, Resilience,
Replication, Graceful degradation

I. INTRODUCTION

Machine learning (ML) models, especially deep neural net-
works (DNNs), have significantly improved the performance
of IoT applications across various tasks, such as classification,
detection, and decision-making. However, despite advances in
the architecture and design of ML models, they still require
significant processing capacity and power, which is typically
not available in IoT devices. To overcome this limitation,
computational tasks are offloaded to nearby edge sites that
offer higher computing capacity.

Figure 1 shows a typical edge architecture where sensors
connect to edge sites and offload their data to a single or a
pipeline of ML models. These models are placed on edge sites
in a resource-aware manner while aiming to achieve minimal
latency or meet the required service level objective (SLO) [1],
[2]. However, failures, such as transient, crash, and Byzantine
failures, are more frequently observed at the edge due to
the increasing system complexity and growing environmental
uncertainties. Especially in the adversarial environment of
IoBTs, disruptions in communication, attacks on battlefield
intelligent devices, and injections of malicious inputs are
possible [3]. These failures hinder model availability and can
have significant implications. As shown in Figure 1, a motion

Fig. 1: Edge Architecture.

sensor might fail to detect passengers in a restricted area if
the edge site it runs on crashes.

Designing a failure-resilient system can be challenging, es-
pecially for edge sites that are typically resource-constrained.
Traditional solutions involve introducing redundancy in hard-
ware and placed ML models. In this case, each edge server
will have one or more failover backups that are activated in
case of failures. However, this can be difficult to implement at
edge sites with limited space, power, and resources. Edge sites
typically span only a few servers and accelerators, making it
infeasible to replicate the number of ML models. Additionally,
increasing the number of servers or edge sites is not always
viable due to significant cost increases and feasibility con-
straints.

Deep learning models are known for their design and
runtime trade-offs between latency, resource requirements, and
accuracy. Researchers have pointed out that picking the right-
sized DNN model [4], [5], and compression techniques, such
as quantization and pruning [6], [7], can significantly decrease
resource requirements and latency with a minor reduction in
accuracy. This flexibility has encouraged researchers to design
systems that adjust their execution and model selection to han-
dle various workload dynamics by trading latency requirement
guarantees for a minor accuracy loss [5], [8]–[10]. We ask the
following question: How can this flexibility be leveraged to
enable failure-resilient execution in resource-constrained edge
environments?

This paper addresses the issue of failure-resilient ML infer-
ence at resource-constrained edge environments by leveraging
the flexibility offered by ML models. We explore a range
of strategies for ensuring the resilient execution of the ML



inference tasks, which involve introducing a failover replica
with a degraded quality of service (known as graceful service
degradation [11]). For instance, in the event of an edge node
crash, the affected ML models would fail over to their backup
counterparts. Still, they would operate with reduced accuracy,
a lower sampling rate, or increased latency. Furthermore,
we describe the key system components for failure-resilient
ML inference incorporating these graceful service degrada-
tion techniques. Lastly, we present the preliminary results of
replicating ML models with the degradation techniques and
outline the challenges and future directions. In summary, our
contributions are threefold:

• We define the notion of graceful service degradation for
resilient ML inference, encompassing accuracy, latency,
and sampling rate degradation, and explore key mecha-
nisms and their trade-offs (Section III).

• We describe key system components for failure-resilient
ML inference that incorporates the explored graceful
service degradation techniques (Section IV), and demon-
strate the practicality of graceful service degradation
(Section V).

• We discuss the challenges associated with deploying such
techniques and outline future directions (Section VI).

II. BACKGROUND

This section provides background information on edge
inference, resilient execution via failover backups, and graceful
degradation of ML inference services.

A. Edge ML Inference

Edge computing enables the deployment of computing and
storage resources at the network’s edge to provide users with
low-latency services. Initially, edge computing focused on
storage services, such as CDNs, which serve frequently used
data, reduce latency, and conserve network bandwidth. More
recently, edge computing has expanded to provide computing
services [12], particularly to support resource-limited IoT
sensors. Edge computing also plays a crucial role in deploying
sensors in remote areas and for privacy-sensitive services
where public cloud deployments are not feasible.

The overall edge offloading procedure can be described as
follows: An IoT sensor sends input data xi to an edge facility
for a specific service, and the service responds with output
data yi, where yi = f(xi). For ML applications, the function
f () may represent a single model inference or a pipeline of
different ML models typically placed to minimize latency [1],
[13]. For example, as shown in Figure 1, a camera sends
its current view to the nearest edge site. The edge site uses
advanced machine learning algorithms to identify and classify
objects before sending the results back to the sensor.

B. Failover Replication

Resilient execution focuses on ensuring service availability
in the event of faults and aims to minimize metrics such
as downtime or mean time to recovery (MTTR). One key
technique for implementing resilient execution is introducing

(a) Heterogeneous replication (b) Communication flexibility

Fig. 2: Accuracy degradation mechanisms.
TABLE I: Speedup and memory savings of pruned and quan-
tized models.

Model DataSet Pruning% Speedup Mem. Saving Accuracy loss
Yolov 8 (Large) COCO 85% 2.6× 11.4× 2.4 mAP@0.5

ResNet 50 ImageNet 90% 4.2× 8.35× 0.1%
oBERTa (Medium) SST-2 90% 6.7× 8.6× 2%

a failover replica, where one server acts as the primary and
others as backups. Clients send requests to the backup node
if the primary fails or becomes inaccessible [14]. However,
implementing failover replication can be challenging in edge
computing due to several constraints. Edge resources are
typically limited, making it challenging to deploy full-fledged
replicas. Moreover, adding extra servers to edge sites may
not be feasible due to space and power constraints. Even
when adding additional servers is possible, it can significantly
increase costs. The next section introduces strategies for
graceful service degradation in failover replicas as a solution
for resource-constrained environments.

C. Graceful Degradation

Graceful degradation is a commonly used technique in
scenarios with resource contention. For example, internet
applications may lower streaming quality or use progressive
JPEG images to serve clients with poor network conditions.
Graceful degradation is also employed to handle workload
dynamics, such as sudden demand spikes. To prevent higher-
order failures that are challenging to recover from, the system
can gracefully reduce the available, less-critical features or
quality of service for a subset of users [15]. Additionally,
graceful degradation is a common technique for achieving fault
tolerance, allowing a system to continue operating, typically
at a reduced quality of service, even when experiencing a
partial failure. For instance, networks often have a primary
high-speed route and a slower backup if the primary route
becomes unreliable [11].

III. ML INFERENCE GRACEFUL DEGRADATION

The definition of graceful degradation can vary depending
on the application. In ML inference applications, we define
three primary types of degradation to maintain operation in
the event of a failure, namely: 1) Accuracy degradation where
the failover replica provides less accuracy than the primary
replica, 2) Latency degradation where the failover replica
is executed at a higher latency SLO, and 3) Sampling rate
reduction where a failover replica accepts a lower sampling
rate than the primary one. In this section, we explore key
mechanisms and tradeoffs for each type of degradation.
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Fig. 3: Memory and Accuracy tradeoffs across DNN families.

A. Accuracy Degradation

Figure 2 depicts key mechanisms to achieve accuracy degra-
dation by running a smaller/compressed model trained on the
same task, which we denote as heterogeneous replication, or
by adjusting the sample quality, which we denote as communi-
cation flexibility. As shown in Figure 2a, a server can act as a
failover replica for a peer node by deploying a compressed or
smaller version of the initial model. The failover model can be
selected by training smaller models or applying post-training
methods such as pruning and quantization [5]–[7].

Figure 3 shows the tradeoff between memory requirements
and the accuracy of different models trained on the ImageNet
classification from Pytroch model library1. The figure shows
that deploying a small failover backup that is an order of
magnitude smaller can come at the cost of a few percent
accuracy loss. Compression techniques can also decrease the
computational requirements by an order of magnitude for
limited accuracy loss. Table I shows the speedup and memory
savings, as well as the accuracy loss of different ML models
collected from sparsezoo2 and executed using the DeepSparse
machine learning framework on a C6i.12xlarge AWS instance.
As shown, pruning and quantization can speed up ML models
by 6.7× and reduce the memory requirement to 11.4× with
minor accuracy loss.

In addition to the limitations imposed by the resource
capacity of edge sites, the bandwidth of the edge network can
also become a bottleneck due to network failures. In such case,
as shown in Figure 2b, the client might only be allowed to send
low-quality or highly compressed samples. Fortunately, ML
models have shown robustness against different compression
methods where they tolerate information loss with minor
accuracy loss [16], [17]. For example, the authors of [16]
showed that compression and channel selection techniques
can reduce the transmitted data by 2.4× without accuracy
reduction and by 7× for 0.03 mAP loss.

Key Insight: Utilizing less accurate failover techniques with
low resource requirements, can increase the reliability of ML
inference systems without the need for additional resources.

(a) Distant failover replica (b) Low-priority failover replica

Fig. 4: Latency degradation mechanisms.

B. Latency Degradation

Another degradation dimension is the application latency,
where the latency requirements are relaxed for a subset of the
affected applications due to failures, e.g., non-critical machine
learning tasks. Figure 4 highlights key techniques to ensure
resilient execution in cases of failure. Figure 4a shows a
scenario where the camera feed is offloaded to the closest
edge site. The camera also connects to an edge site further
away, serving as a failover backup. The scheme has another
benefit of reduced correlation between failures at distant sites,
thereby enhancing overall resiliency. Figure 4b depicts another
way of degrading the latency by deploying failover replicas at
a low priority. This allows the system to harvest available free
processing cycles with negligible effects on high-priority tasks
[2].
Key Insight: Relaxing the latency of low criticality tasks can
increase the reliability of ML inference systems without the
need for additional resources.

C. Sampling Rate Degradation

The sampling rate determines the ML system quality and
its ability to promptly detect incidents or uncommon events.
Typically, the sampling rate is adjusted dynamically based on
the current situation or operation objectives. It defines the
system utilization and expected latency, whereas the worst-
case sampling rate determines the maximum number of de-
ployed ML applications [1]. The relation between utilization
ρ and sampling rate λ can be described by Little’s theorem,
ρ = λ/µ, where µ is the service rate, i.e., maximum through-
put. To ensure the system stability (ρ < 1), operators usually
place applications in a way that guarantees the service rate
(throughput) exceeds the sampling rates. Although an edge
server might not accommodate the full load of another server,
it might be able to accommodate a partial load by accepting a
lower sampling rate that suits its utilization. Applications can
also distribute their load among multiple servers based on each
server’s utilization. Finally, operators can use sophisticated
analytical models such as queueing theory to determine the
best sampling rate and sample spreading ratios in failure
scenarios [1].
Key Insight: Lowering the sampling rate decreases the
server’s utilization, allowing higher application packing rates

1https://pytorch.org/vision/stable/models.html
2https://sparsezoo.neuralmagic.com/
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Fig. 5: System overview.

and increasing the reliability of ML inference systems without
the need for additional resources.

IV. SYSTEM DESIGN

This section presents key artifacts required to design failure-
resilient ML inference systems at the edge. We begin with an
overview of the architecture and subsequently describe the key
components.

A. System Overview

Figure 5 illustrates the architecture of the system. It com-
prises four main components: ML model library and profile
engine are for storing and analyzing the ML inference models,
while monitoring and fault detector is for detecting failures
in the edge network and measuring the performance of ap-
plications and edge nodes. Resource Manager leverages the
information mentioned above to determine how to place and
configures models to ensure failure resiliency.

B. ML Model Library

This component stores models for edge ML inference tasks.
For each task, users can upload multiple versions of the
same model. The model library offers flexibility in selecting a
suitable model to match the available resources at edge sites,
reducing the time required to load and start selected models
after node failures are detected.

C. Profile Engine

The profiling engine provides information about the models
stored in the library, assisting the model placement component
in decision-making. It collects three types of profiling data
for each model: (i) FLOPS and memory usage, indicating the
number of floating-point operations and memory required to
load the model, (ii) model accuracy, and (iii) model inference
latency. Profiling data is stored as metadata in the ML model
library and can be updated with runtime monitoring metrics
to adapt to dynamic and heterogeneous edge environments.

D. Monitoring and Fault Detector

This component continuously monitors the status of edge
sites and detects node failures in real-time. Metrics for both
edge nodes and inference tasks are collected. Metrics such as
uptime and resource utilization of edge nodes are gathered,
while resource usage and execution time metrics are collected
for inference tasks. The uptime metric is used to detect node
failures, and the metrics related to inference tasks aid in
updating model profiling data. These metrics, along with the

(a) Worst-case accuracy (b) Models with a backup (%)

Fig. 6: Evaluating traditional and heterogeneous replication for
providing failover backups in terms of worst case accuracy and
% of applications with a backup.

resource utilization of edge nodes, contribute to decision-
making in the model placement component. Once a node
failure is detected, it triggers the failover procedure.

E. Resource Manager

This module serves as the core of our system, enhancing
the resilience of ML inference at the edge by placing and
configuring failover models with graceful service degradation
techniques. The primary problem in this component is de-
termining how to select the ML models and distribute them
across multiple edge sites given the limited resources and
the models provided in the library? The techniques described
in Section III, which consider resource constraints and bal-
ance accuracy, latency, and sampling rate, are critical to this
decision-making process.

V. RESULTS

This section demonstrates the effectiveness of graceful
service degradation in enhancing the system’s resiliency. We
profile the memory requirements and latency for many pre-
trained models from the torchvision library on a Jetson Nano
4G node and use simulation-based analysis to demonstrate
the benefits of accuracy and sampling graceful degradation
in providing failure resiliency.

Figure 6 evaluates the benefits of accuracy degradation
using heterogeneous replication by comparing it to traditional
replication. In this case, we simulate a cluster of 10 Jetson
Nano nodes, deploy different numbers of applications, and
try to deploy a failover replica for each. We place both
applications and replicas based on a greedy worst-fit approach.
We also sample different combinations of models as primary
and backups and repeat the experiment 100 times to ensure
the result’s stability. Figure 6a shows the worst-case accuracy
of both methods, where we assume that accuracy drops to
zero when the application does not have a failover replica. As
shown, heterogeneous replication can retain a high accuracy
with negligible drops for up to 17 applications. However, tradi-
tional replication can only support 10 applications, leading to
a rapid decrease in accuracy. The reasons for this are depicted
in figure 6b, which shows the percentage of applications with
a backup. In the worst case, 80% of applications can have a
backup model. We note that for more than 19 replicas, hosting
the initial replicas became unfeasible.

Next, we evaluate the capacity of sampling degradation
to provide resilience. Figure 7 depicts a scenario where a
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Fig. 7: Evaluating sampling degradation for providing failover
backups.

node hosts a ResNet50 model processing samples at 24 FPS,
denoted as the initial placement. To ensure failure-resilient
execution, we try to deploy a failover replica with the least
possible degradation. We follow the methods in [1] to com-
pute the utilization and service rate when deploying multiple
models. For simplicity, we assumed that the failover replica
for the other application was also a ResNet50 model. As
shown, in the case of traditional replication, the expected
utilization exceeded 1, indicating that the system could not
process all incoming requests, potentially resulting in queuing
or dropping of requests. However, by degrading the sampling
rate to 10FPS, the system can host the replica without any
issues. In the last column, we show that the user can utilize
both accuracy and sampling degradation, retaining most of the
sampling rate when employing a smaller (less accurate) model.

VI. CHALLENGES AND FUTURE DIRECTIONS

In this section, we explore the crucial challenges faced in
enabling failure-resilient ML inference at the edge through
graceful degradation and provide research directions for future
work.

A. Challenges

Determining the optimal placement of primary and backup
models at the edge sites with quality of service degraded,
presents a formidable challenge. One one hand, the placement
problem is complicated by the dynamics, heterogeneity, and
quantity of nodes and ML models. On the other hand, the
trade-offs between accuracy, latency, and sampling rate might
vary with scenarios. An adaptive approach becomes imperative
to identify the most suitable trade-offs for degradation.

Furthermore, the dispersion of edge sites across geographic
locations introduces complexities that render a centralized
system inadequate for meeting the low-latency requirements
of edge ML inference tasks. Latency increases due to data
transmission, the retrieval of pretrained models from the ML
model library, and global optimization across multiple edge
sites. Consequently, devising strategies for deploying a fault-
tolerance system across widely distributed edge sites becomes
a demanding endeavor.

B. Limiting Degradation

This paper addresses the challenge of achieving resilient
ML inference at the edge by replicating ML models while
introducing service degradation. However, the introduced ser-
vice degradation can have negative consequences in certain
scenarios (e.g., the degraded accuracy of object detection in
autonomous driving can be life-threatening). This limitation
presents excellent opportunities for future research. One po-
tential direction is to employ a larger number of failover
replicas and utilize model cascades and ensembles to reduce
the runtime resource requirements without sacrificing accuracy
[18].

C. Byzantine Sensors

In addition to resilience against crash and transient failures
that can lead to insufficient resources in the edge network,
the system should also be capable of withstanding byzantine
failures due to faulty sensors and malicious inputs. One way
to address byzantine failures is by utilizing complementary in-
formation from multiple vantage points and multiple heteroge-
neous sensors and applying ML-based consensus algorithms,
generally referred to as information or sensor fusion. Applying
such techniques in resource-constrained environments remains
an open research question.
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