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ABSTRACT

As deep learning has been widely used in various application do-
mains, a diversity of GPUs are adopted to accelerate DNN inference
workloads and ensure Quality of Service (QoS). Robust prediction of
inference latency using GPUs within cloud environments facilitates
enhanced efficiency and maintains QoS in resource management
solutions, such as consolidation and autoscaling. However, latency
prediction is challenging due to the vast heterogeneity in both DNN
architectures and GPU capacities.

In this work, we present Lilou, an efficient and accurate latency
predicting system for a wide range of DNN inference tasks across
diverse GPU resource allocations. Lilou employs two techniques.
(i) Lilou represents DNNs as directed acyclic graphs (DAGs), and
utilizes a novel graph neural network (GNN) model for edge classi-
fication to detect the fusion of operators, also known as kernels. (ii)
Lilou identifies the GPU features that significantly impact infer-
ence latency and learns a predictor to estimate the latency and type
of kernels, which are detected in the preceding step. To evaluate
Lilou, we conduct comprehensive experiments across a variety of
commercial GPUs commonly utilized in public cloud environments,
employing a wide range of popular DNN architectures, including
both convolutional neural networks and transformers. Our exper-
iment results show that Lilou is robust to a wide range of DNN
architectures and GPU resource allocations. Our novel learning-
based method surpasses the state-of-the-art rule-based approach in
fusion prediction with an accuracy of 97.35%, laying a solid foun-
dation for end-to-end latency prediction that achieves a MAPE of
8.68%, also outperforming existing benchmarks.
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1 INTRODUCTION

In recent years, deep neural networks (DNNs) have undergone rapid
development and have become a fundamental building block for
a broad spectrum of AI applications such as autonomous vehicles,
video analytics, and recommendation systems. It is increasingly
common to use cloud resources to support these applications. As a
cloud workload, model serving involves hosting pre-trained models
on GPU or CPU resources and providing inference services over the
web. Examples of such web-based inference services include image
recognition services (e.g., Google Cloud Vision API), large language
model (LLM) services (e.g., ChatGPT), and recommendation systems
embedded in e-commerce platforms. As AI applications continue
to grow, inference has become an increasingly popular cloud work-
load, and these services are often deployed as web services to enable
broad accessibility and scalability. DNN models vary significantly

in their size, complexity, and computational requirements. As these
services scale, it becomes increasingly important to select the ap-
propriate GPU hardware and resources to serve these models with
high performance and cost efficiency.

DNN inference applications often have strict Service Level Ob-
jectives (SLO) needs in terms of their latency requirements. At the
same time, GPU resources in edge or cloud platforms can be expen-
sive, making cost of model serving an important consideration. For
example, Amazon Web Services (AWS)[1] offers GPUs with varied
costs ranging from $0.526 per hour to $32.77 per hour. Given the
diversity of DNNmodels and their computational complexity, it has
become increasingly challenging for a model serving platform to
choose the right GPU resources to run each DNN model. An incor-
rect choice can have cost or performance implications that directly
affect the quality of inference services. For example, choosing a
low-end GPU for a complex DNN model may not provide sufficient
computational resources to meet the desired latency SLO, resulting
in poor performance and customer dissatisfaction. Conversely, se-
lecting a high-end GPU for a less complex DNN model may lead to
resource underutilization and high cloud costs. Further, manymodel
serving platforms multiplex a single GPU across multiple DNN ser-
vices to improve utilization and amortize costs. For example, Nvidia
GPUs support GPU virtualization through its Multi-Instance GPU
(MIG)[30] feature and support fine-grained GPU resource provi-
sioning through its Multi-Process Service (MPS)[31] feature. Such
advanced features improve resource utilization and reduce costs,
but make the GPU resource provisioning problemmore challenging.

In order for a model serving platform to choose the appropri-
ate GPU hardware for a DNN inference workload, it is crucial to
estimate the expected latency of executing that DNN model on
different GPU configurations. One well-known approach for es-
timating latency is through empirical profiling, which involves
running the DNN model on the target hardware to measure the
execution time. However, profiling is a time-consuming process
since it can involve executing the model on dozens of available GPU
configurations in order to choose the best one. Further, as the num-
ber of model and device variants increase (e.g. Neural Architecture
Search (NAS)[10, 25] can produce hundreds of model variants for
each application), the overhead of exhaustive profiling can quickly
accumulate and become impractical in larger settings.

An alternative to empirical profiling is estimating DNN inference
latency through modeling. Numerous recent efforts have developed
model-driven approaches that use analytic methods or a separate
machine learning model to predict the DNN inference latency. One
class of approaches focuses on end-to-end prediction by modeling
the entire DNN and use approaches ranging from linear regression
to graph neural network (GNN)[6, 11, 14, 22, 26] to predict the
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inference latency on a specific GPU hardware. Such approaches
require training for each type of GPU and do not generalize eas-
ily for unseen hardware or model variants. For example, graph
regression methods rely heavily on the graph patterns learned
from the training data and often fail to generalize to unseen DNNs.
Consequently, other approaches have focused on modeling the
internal structure of the DNNs to estimate latency. For example,
layer-regression[5, 19, 28, 34] approaches predict the latency to ex-
ecute each layer and then estimate the total latency on the sum
of the layer-specific latencies. Since components such as layers
are often reused across models, the approach has the potential to
generalize across model variants. However, a significant limitation
of layer-based approaches is their inability to account for runtime
optimization such as layer fusion, which involves combing adjacent
layers into a single layer or operation for performance optimization
and is common in runtime frameworks for improving performance.
Layer-based approaches end up overestimate total latency since they
focus on individual layers and do not account for latency reduc-
tion from fusing layers. To overcome this drawback, kernel-based
approaches have been developed[23, 43] , where latency is esti-
mated at kernel, rather than layer granularity. Since a kernel can
include one or more layers, including fused layer it can improve
the accuracy of the latency estimations. The recent state-of-the-art
nn-Meter[43] approach partitions the model into multiple kernels
by using handcrafted fusion rules to determine which layer might
be fused at runtime, followed by building latency regressors for
each kernel to estimate total latency. However, handcrafting fusion
rules can be time-consuming and error-prone, and they may need
to be changed frequently due to rapid advances in deep learning
frameworks. Thus, existing methods suffer from many limitations
ranging from inability to handle runtime optimization or inability
to generalize to newer models or hardware.

Research contributions. In this paper, we present Lilou, a
graph model-based approach for predicting the latency of DNN
inference on both dedicated GPUs and arbitrarily provisioned GPU
resources. Lilou models the DNN structure as a directed acyclic
graph and uses the graph structure itself to automatically infer
fusion rules and fusion operations for the DNN graph. It then parti-
tions the overall DNN graph structure into fusion-aware sub-graphs
such that layers with the same sub-graph can be fused and executed
by a single kernel or operation. Lilou then predicts the latency
and kernel type for each sub-graph in a resource-aware manner.
Importantly, Lilou adopts GNNs for its sub-graph extraction and
sub-graph based latency prediction. We make these design deci-
sions based on the following key observations. 1) Given a runtime
platform, the fusion pattern of DNN layers tends to remain rela-
tively stable and consistent across different models. Although GNNs
may struggle to generalize to globally unseen graph structures (i.e.
graph-level prediction), they remain effective in capturing those
unchanged local patterns (e.g. conv-relu pattern appears in almost
every CNN-based model); 2) similarly, the structure space of the
sub-graphs is relatively small. In this case, the strengths of GNNs in
learning and representing graph-level information can be leveraged
to provide accurate latency prediction and kernel classification; 3)
by shifting from the graph-level prediction to sub-graph level, the
size of the training dataset increases significantly, which increases

the accuracy and generalizability of our models. Unlike prior meth-
ods, Lilou can predict DNN latency for both dedicated GPUs and
GPUs with arbitrary resource provision. Lilou also generalizes
well across model and device variants and overwhelms the need to
manually provide rules for layer fusion.

In designing, implementing and evaluating Lilou, we make the
following contributions:

• DNN Latency Modeling on GPU.We design Lilou, a graph
model-based latency predictor for accurately predicting a
wide range of DNN inference latencies spanning various
GPU and GPU configurations.

• Fusion Rule Learning.We propose a novel learning-based
method to learn DNN layer fusion rules and predict fusible
operators by performing edge-level binary classification
using Graph Attention Network (GAT)[39] and LSTM[17].
We show that significantly improves the precision, recall,
and accuracy of layer fusion detection. Notably, unlike tradi-
tional rule-based fusion detection methods that necessitate
the handcrafting of rules, our method is fully automatic and
can be integrated into MLOps frameworks to adapt to data
drift, including updates in DNN architectures and software
optimizations.

• Performance Datasets. To demonstrate the effectiveness
of Lilou, we create and propose two large benchmark
datasets dnnFuse and dnnKernels, which consist of ar-
chitectures and performance of 51 published and repre-
sentative DNN models, including CNNs and transform-
ers, with different graph structures on 30 different GPU
partitions. The datasets are designed for training GNNs.
dnnFuse contains 91k nodes, which represent layer fea-
tures, and 134k edge labels, which indicate if two nodes can
be fused. dnnKernels comprises 2.2 million sub-graphs,
which contain layers that can be fused and executed by
one GPU kernel. The dataset includes latency and kernel
information for these sub-graphs and the corresponding
primitive layers that make up of them. In total, dnnKernel
contains 1 million edges and 3 million nodes. To the best of
our knowledge, these datasets are the first to incorporate
DNN layer fusion data, providing comprehensive resources
for further analysis and optimization of DNN performance.

• Implementation and Evaluation.We evaluate Lilou on these
datasets and compare it with state-of-the-art approaches.
Our results show that Lilou achieves overall 98.35% accu-
racy in fusible edge prediction and 8.68% MAPE in end-
to-end latency prediction, significantly outperforming the
start-of-the-art approaches. Additionally, we conduct a com-
prehensive analysis to illustrate the reasons behind our
approach’s superior accuracy.

2 BACKGROUND

This section provides background on DNN model serving in the
cloud, DNN performance optimization, and graph neural networks.

2.1 DNN Model Serving in the Cloud

DNN model serving[8, 35] is a computational paradigm that hosts
trained DNNmodels, providing inference services via a well-defined
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Figure 1: Number of GPU cores vs. latency. Limiting cores

using MPS on Nvidia A10G GPU.

Figure 2: GPU utilization for inference tasks in Alibaba Plat-

form for Artificial Intelligence.

interface, which allows seamless integration of deep learning func-
tionality into a wide range of applications. DNN model serving
has gained popularity in cloud environments due to the increasing
availability and diversity of pre-trained models in domains, such as
computer visions[15, 18, 38] and natural language processing[9].

Cloud-based model serving often involves the use of GPUs to
accelerate the processing of DNNworkloads, and these services usu-
ally have strict SLOs to ensure high performance and low latency
for their users. In recent years, cloud providers have substantially
expanded their offerings of GPU-based instances, catering to the
growing demand for high-performance computing and machine
learningworkloads. These GPU devices, such as NVIDIA’s Tesla and
Ampere series, are available across a wide range of cloud platforms
such as AWS, Google Cloud, and Microsoft Azure. This extensive se-
lection of GPU devices in the cloud enables users to choose the most
suitable option based on their specific performance and budget re-
quirements. Moreover, emerging techniques such as MPS and MIG
provide users with even greater flexibility in resource allocation for
their workloads. MPS allows multiple applications to share a single
GPU with limited resource provisioning, while MIG partitions a
single GPU into multiple instances with dedicated resources. These
advancements contribute to more efficient resource management.
Figure 1 shows an example of serving DNNs using MPS on Nvidia
A10G GPU. It allows limiting resource allocation for each model, at
the cost of higher latency.

However, despite the growing demand for GPU in datacenters,
GPU utilization often remains low. Figure 2 shows the GPU uti-
lization distribution of inference tasks in Alibaba PAI (Platform
for Artificial Intelligence)[40]. As shown by the figure, over 80% of
tasks use less than 20% of the GPU resources requested. One of the
reasons for low GPU utilization is the lack of accurate predictions
of DNN performance under different GPU configurations. As a
result, developers often overprovision resources to ensure SLOs are
met. This conservative approach can lead to resource wastage and

increase operational costs, highlighting the need for accurate per-
formance prediction and efficient resource provisioning methods.

2.2 DNN Performance

Before deployment, DNN models usually undergo a series of op-
timization steps, shown in figure 3. These optimizations can sig-
nificantly improve their performance in production environment
and have become essential to support efficient execution of DNN
models across various hardware. Common DNN runtimes and com-
piler frameworks include TensorRT[32], TVM[7], XLA[36], and
AITemplate[4]. In the following, we briefly introduce the neural
network structure and common optimization techniques.
TrainedNeuralNetwork.The optimization pipeline takes a trained
DNN as input, which is represented as a directed acyclic computa-
tional graph in a universal format such as ONNX[3]. In the graph,
nodes correspond to the individual layers, such as convolutional
layers, fully connected layers, and batch normalization layers. Each
layer has a set of hyperparameters (e.g. the number of hidden chan-
nels) that significantly affect the computational requirements and
thus the inference latency. The edges specify the execution de-
pendencies between layers, outlining the order in which the DNN
processes information through its architecture.
Layer fusion. Layer fusion is one of the major optimization tech-
niques applied to DNN computation graphs, where multiple ad-
jacent layers in the network are combined into a single layer or
operation. For example, a convolutional layer followed by a ReLU
activation layer can be fused into a single layer by incorporating
the activation function directly into the convolution operation. By
doing so, the intermediate memory storage and additional overhead,
such as launching separate kernels, are eliminated. As a result, the
inference latencies are significantly improved.
Kernel tuning. An operation can be implemented using various
algorithms. For instance, a convolutional layer may be implemented
using GEMM, Winograd, or FFT algorithms, each of which exhibits
different performance characteristics on specific hardware. Kernel
tuning involves selecting the optimal algorithm for a given oper-
ation based on the target GPU platform, thereby improving the
overall latency.
Generate machine code and execute. Finally, the optimized
model is compiled to generate executable code for target hardware.
Although the structure of some DNNs may allow parallel layer
execution, kernels on GPUs are often executed sequentially. This
is because concurrent kernel execution might adversely interfere
with each other, resulting in higher overhead and less predictable
execution time for GPU operations[2]. As a result, summing the
latencies of individual kernels provides a reasonable approximation
of the total DNN latency.

Additional optimizations, such as precision calibration and graph
pruning, can also be applied to DNNs. However, these techniques
may involve latency-accuracy trade-offs and typically require care-
ful design by human experts. We assume these steps are completed
before the DNNs enter the runtime optimization pipelines.

2.3 Graph Neural Network

GraphNeural Networks are a class of deep learningmodels designed
to handle graph data. GNNs leverage graph-based operations, such
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Figure 3: DNN runtime optimization steps.

Figure 4: Lilou DNN latency prediction pipeline.

as message passing, graph convolutions (e.g. GCN[21]), and graph
attention (e.g. GAT[39]), to propagate information through the
network and learn meaningful representations of nodes and edges.

There are three general types of prediction tasks on graphs: 1)
graph-level, which predicts labels for the entire graph; 2) node-
level, which targets individual nodes; and 3) edge-level, which aims
to predict labels for each edge. Prior works[6, 11, 14, 22, 26] have
proposed predicting the end-to-end DNN latency by performing
graph-level prediction, and shown significant accuracy improve-
ments, compared to traditional layer-wise methods. However, these
approaches fail to generalize to unseen graphs. In Lilou, we em-
ploy both edge- and graph-level predictions, resulting in enhanced
generalizability across various graph structures.

3 DESIGN

Our main focus in designing Lilou is to accurately predict latency
across a diverse range of DNN models on various GPU configu-
rations. To do that, our method should have the following three
desired attributes: ➀ the ability to identify fusible operations, ➁

sensitivity to resource allocations, and ➂ operation without neces-
sity for manual rule crafting. We start by providing an overview
of Lilou prediction workflow and subsequently describing Lilou’s
key design components. Finally, we provide details of collecting
our benchmark and training datasets.

3.1 Lilou Workflow

Figure 4 shows the prediction pipeline of Lilou.
❶ First, the system receives a DNN in a universal format, such
as ONNX, along with the target GPU hardware configuration
as input.
❷ The graph feature extractor component of the Graph Par-
titioner converts the DNN into a general graph format and
extracts node features based on the computational semantics of
DNN layers.

Type Name Description Example
Value

Operator Operator type Operator type or layer type. Conv2d

Memory

Input size The total number of ele-
ments in input tensors.

150528 (i.e. 1×
3 × 224 × 224)

Output size The total number of ele-
ments in output tensors. 1000

Parameter
size

The total number of weights
and bias in this layer. 9472

Computation FLOPs
The total number of floating
point operations performed
by this layer.

115806208

Table 1: Node features.

❸ This encoded graph and hardware type are then fed into a
GAT-LSTM model to predict if an edge connects two fusible
nodes for all edges in the graph.
❹ Once all edges are labeled, the sub-graph extractor partitions
the origin graph into multiple sub-graphs, such that all nodes
within the same sub-graph can be fused and executed by a single
kernel or operator.
❺ To incorporate hardware semantics, the device feature ex-
tractor is used to extract performance-related features from the
hardware configuration.
❻ Then, each sub-graph output from sub-graph extractor is
then combined with the device features and fed into another
GAT to predict the latency and kernel type of the sub-graph.
❼ Finally, the aggregator reassembles the sub-graphs into an
optimized graph and sums up the latencies to calculate the total
latency of the DNN.

3.2 Lilou Design Components

There are two core components in Lilou. The Graph Partitioner an-
alyzes input DNN structures and Sub-graph Runtime Analyzer pre-
dicts their runtime performance. Both components employ learning-
based methods for prediction. We next describe the design and
functionality of each component.

3.2.1 Graph Partitioner. The goal of the graph partitioner is to
divide the input DNN into partitions, each can be executed by a
single function or GPU kernel. This design enables us to model
DNN latency by analyzing each partition independently. The graph
partitioner consists of three components — graph feature extractor,
GAT-LSTM edge predictor, and sub-graph extractor.
Graph Feature Extractor. The job of this component is to extract
layer features and convert the input DNN to a general graph format
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𝐺 = (𝑉 , 𝐸), such that 𝑉 ∈ R𝑛×𝑑 represents the layers in the DNN,
where 𝑛 is the number of layers and 𝑑 is the dimension of the layer
features. 𝐸 = {(𝑣𝑖 , 𝑣 𝑗 )} for all 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 such that the output of 𝑣𝑖
is the input of 𝑣 𝑗 . To represent the structural and computational
semantics of the DNNs, we extract an effective set of layer features
shown in table 1. The operator type indicates the computational
complexity and the optimization methods (e.g. fusion) that may
apply to it. The input, output, and parameter size of the layer can
affect the memory access, communication overhead, and fusibility.
FLOPs represents the computational requirement of the layer.
GAT-LSTM Edge Predictor. To partition a DNN by kernel, it’s
crucial to identify the layers that can be fused together. One of our
key observations is that this fusibility relationship can be represented

by labeled edges. Specifically, two layers can be fused only if they are
connected by an edge. More generally, 𝑘 layers, 𝑉 ′ = {𝑣1, · · · 𝑣𝑘 }
where 𝑣𝑖 ∈ 𝑉 , can be fused only if there exists a set of edges
𝐸′ ⊆ 𝐸 such that the sub-graph F (𝑉 ′, 𝐸′) is connected. Based on
this observation, we define the set 𝑈 =

⋃
𝐸′, for all fusible sub-

graphs F (𝑉 ′, 𝐸′) ⊆ 𝐺 as fusible edges. The primary task of the
GAT-LSTM edge predictor is to classify whether each edge in the
graph is a fusible edge or not.

We formally define the task as follows. Given a directed DNN
computational graph 𝐺 (𝑉 , 𝐸) and target hardware type 𝐻 . Let𝑚 =

|𝐸 | denotes the number of edges in the graph andB = {0, 1} denotes
the boolean domain, where 1 corresponds to a fusible edge and 0
to a non-fusible edge. Our goal is to learn a mapping function 𝑓 :

𝑓 : 𝑉 × 𝐸 × 𝐻 → B𝑚 (1)

We employ a GAT-LSTM model to learn 𝑓 . Our model consists
of one GAT layer followed by one LSTM layer. We use GATs to
extract node features because GATs are specifically designed to pro-
cess graph-structure data. GATs are capable of exploiting the local
structure and neighborhood information of nodes using message-
passing and attention mechanisms. They naturally model relational
information and dependencies between nodes, which is crucial for
our fusibility prediction task. Each GAT layer has 128 hidden chan-
nels and is designed as GAT-GraphSizeNorm-ReLU pattern, where
GraphSizeNorm[12] is used to normalize node features and defined
as:

x′ =
x′√︁
|𝑉 |

(2)

We use an LSTM layer with 128 hidden channels to encode the
edge features. The inputs of the LSTM layer are sequences with
length 2, [xi, xj], where xi, xj are node embeddings output from
the GAT layer for node 𝑣𝑖 , 𝑣 𝑗 and (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸. We make this design
decision because we want to preserve the layer order information,
which can significantly affect the fusion decision. For example,
conv-relu can be fused but relu-conv cannot. Finally, a linear
layer is used to make the final classification. Similar to many other
classifiers, cross-entropy loss is used to train this model.
Sub-graph Extractor. The job of the sub-graph extractor is to
divide the original graph into sub-graphs, based on fusible labels
of the edges. Recall that fusible edges are defined by fusible layers.
Conversely, given the predicted fusible edges, we can determine
the fusible layers. The key observation is that one layer can only be
executed by one kernel, in other words, kernels are disjoint sets of

Algorithm 1: Extract sub-graph
Input: 𝑉 a set of nodes in the origin DNN graph; 𝐸 a set of

edges in the origin DNN graph, with predicted
is_fusible label.

Output: Assign group label for all 𝑣𝑖 ∈ 𝑉 such that
𝑣𝑖.group == 𝑣 𝑗.group if and only if 𝑣𝑖 , 𝑣 𝑗 can be
fused and executed by one kernel.

1 Function Find(parents, v):

2 if parents[v] != v then

3 parents[𝑣] = Find(parents, parents[𝑣])
4 return parents[𝑣]
5 else

6 return v
7 end

8 End Function

9 Function Union(parents, 𝑣𝑖 , 𝑣 𝑗 ):

10 𝑝𝑖 = Find(parents, 𝑣𝑖 )
11 𝑝 𝑗 = Find(parents, 𝑣 𝑗 )
12 if 𝑝𝑖 != 𝑝 𝑗 then

13 parents[𝑣 𝑗 ] = 𝑝𝑖

14 end

15 End Function

16 parents[𝑣𝑖 ] = 𝑖

17 for 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 do

18 if e.is_fusible then

19 Union(𝑣𝑖 , 𝑣 𝑗 )
20 end

21 end

layers. Based on the observation, we partition the graph’s nodes into
disjoint sets, where each set represents a group of nodes connected
by predicted fusible edges. To do that, we apply Union-Find data
structure. We set up the data structure such that each node initially
belongs to its own unique set containing only itself. Then, for all
predicted fusible edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑈 , we merge nodes 𝑣𝑖 and 𝑣 𝑗 into
a single set. Consequently, the resulting sets identify sub-graphs
in which the layers can be fused together. The pseudocode for
extracting sub-graphs is shown in algorithm 1.

Through the Graph Partitioner, Lilou effectively detects the
fusion rules (goal ➀) and successfully eliminates the necessity for
manual rule crafting (goal ➂).

3.2.2 Sub-graph Runtime Analyzer. The objective of the sub-graph
runtime analyzer is to estimate the overall latency of the DNN on
target hardware by individually analyzing the sub-graphs produced
by the graph partitioner. The sub-graph runtime analyzer consists
of three components — Device Feature Extractor, GAT Latency &
Kernel Predictor, and Aggregator.
Device Feature Extractor. Similar to the graph feature extractor,
we extract an effective set of device features D shown in table 2 to
represent the memory and computational semantics of the target
hardware. These features are concatenated with the node features
in the sub-graphs in order to integrate hardware knowledge into
the prediction process.
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Type Name Description Example
Value

Version Compute capability
This feature identifies
the set of features sup-
ported by GPU.

8.6

Memory
Memory bus width

The amount of data in
bits that can be trans-
ferred at one time.

384

Memory clock rate The speed of GPU’s
memory in GHz. 6.251

Computation

Number of cores The number of GPU
cores. 10240

Number of SM The number of stream
multi-processor. 80

Compute clock rate The speed of GPU
cores in GHz 6.251

Table 2: Device features

GATLatency&Kernel Predictor.We employ another GATmodel
to estimate the latency of each sub-graph generated by graph par-
titioner. Furthermore, we also predict the specific kernel that will
execute the sub-graph. Since different kernels have different exe-
cution characteristics, knowing which kernels are used can help
identifying potential performance bottlenecks and better under-
standing the predicted latency.

We formally define the tasks as follows. Given an undirected

graph 𝐺 = (𝑉 , 𝐸), let K denotes the kernel type domains, where
𝑘 ∈ K is a specific kernel implementation. Our goal is to learn a
mapping function 𝑔:

𝑔 : 𝑉 × 𝐸 × D → R,K (3)

By incorporating device-specific attributes, Lilou achieves the abil-
ity to be cognizant of the resource allocation, thereby addressing
goal ➁. We empirically choose to use undirected graphs in this task
because the directions appear to have minimal impact on the la-
tency and kernel implementation. Our model consists of three GAT
layers followed by one linear classifier layer. Each GAT layer has
256 hidden channels and is designed as the GAT-GraphSizeNorm-
ReLU pattern. We use GlobalMeanAggregation to aggregate node
features to graph features. To train this multi-task model, we em-
ploy both root mean squared error(RMSE) and cross entropy loss(CE)
to formulate the loss function, such that:

L = 𝑅𝑀𝑆𝐸 (𝑦𝑟𝑒𝑔, 𝑦𝑟𝑒𝑔) +𝐶𝐸 (𝑦𝑐𝑙𝑠 , 𝑦𝑐𝑙𝑠 ) (4)

where 𝑦𝑟𝑒𝑔, 𝑦𝑟𝑒𝑔 are predicted values and ground truth values of
latency; 𝑦𝑐𝑙𝑠 , 𝑦𝑐𝑙𝑠 are predicted values and ground truth values of
kernel type.
Aggregator. The aggregator’s role is to combine the latencies of
all sub-graphs to predict the final end-to-end latency for the DNN.
As the execution of each sub-graph is independent and the DNN
must execute all of them, the aggregator models the end-to-end
latency as the sum of the individual sub-graph latencies. In practice,
the aggregator also reassembles the sub-graphs into an optimized
graph where each node represents a fused kernel, labeled with the
predicted kernel type. This facilitates further analysis for users
interested in understanding the optimization process.

Models # variants # nodes # edges # kernels GFLOPs Latency(ms)
min max min max min max min max min max

ConvNeXt 4 576 1080 657 1233 276 543 0.09 34.16 1.91 141.40
DenseNet 4 378 618 912 2420 723 2111 0.06 7.78 4.3 34.99
EfficientNet 8 239 815 312 1080 164 548 0.01 5.05 1.04 40.08
GoogLeNet 1 139 139 165 165 63 63 0.03 1.50 0.74 5.12
MNASNet 4 99 99 108 108 54 54 0.003 0.50 0.42 4.55
MobileNet 3 141 170 174 199 54 102 0.003 0.29 0.49 3.01
RegNet 15 121 360 136 413 55 196 0.007 91.66 1.02 402.41
ResNet 4 49 360 56 409 23 158 0.04 11.54 0.81 36.01
ResNeXt 1 241 241 273 273 107 107 0.30 14.60 3.05 61.32

SqueezeNet 2 65 65 72 72 30 30 0.004 0.82 0.23 3.15
Wide Resnet 1 241 241 273 273 107 107 0.47 22.78 4.42 61.01

GPT-2 2 686 1358 807 1599 3660 7260 240.04 707.62 13.58 1002.22
BERT 2 621 1221 730 1438 3720 7320 112.64 348.16 5.63 448.71

Table 3: DNN model characteristics in our dataset.
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Figure 5: FLOPs vs. latency for various DNNs under diverse

GPU configurations. Each data point represents a DNN tested

under a specific GPU setup within our dataset.

3.3 Dataset Collection

To train our GAT models and evaluate the effectiveness of our sys-
tem,we propose two representative datasets, dnnFuse and dnnKernels,
that include runtime optimization and performance data for a di-
verse spectrum of DNN models and GPU configurations. When
generating DNN models, our design principle is two-fold. Firstly,
we aim to demonstrate the generalizability of Lilou in handling
various DNN structures (i.e. DNNs with different number of lay-
ers and layer connections). Secondly, we aim to illustrate Lilou’s
precision in predicting latency across varying input sizes, thereby
reinforcing its robustness and accuracy. Table 3 summarizes the
DNN models included in our datasets. As shown, there are 13 dis-
tinct representative DNN families. Each family is further divided
into one or more variants, each has a unique model structure. For
example, in the DenseNet family, we have four different variants —
DenseNet121, DenseNet161, DenseNet169, and DenseNet201;
in the GPT-2 family, we have two different variants — GPT2 and
GPT2-large. As a result, we have 51 model variants in total, cover-
ing a wide spectrum of node size, edge size, kernel size, and FLOPs.
Additionally, we profile each model across varying input sizes (e.g.
image resolution) to gain insights into their performance character-
istic under different operational conditions. For example, for CNN
models, we use image dimensions with heights and widths set to
32, 64, 128, 169, 192, and 224.

When creating GPU configurations, we consider three typical
cloud GPUs—Nvidia T4, Nvidia V100, and Nvidia A10G.We employ
the MPS to configure the GPU resources provided to the DNN
execution. Specifically, we profile the DNNs’ performance across
GPU allocations ranging from 10% to 100% of the GPU capacity
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in 10% increments. Consequently, we have 30 GPU configurations
that span a broad spectrum of GPU capacities.

We create our datasets based on these DNNs and GPU configu-
rations. The dnnFuse dataset contains layer features in table 1 for
91,752 layers and edge labels for 134,346 edges. The dnnKernels
dataset contains both layer and device features shown in table 1
and 2 respectively, for 2,752,560 layers. It also contains latencies
and kernel types for 2,217,240 kernels. Figure 5 showcases the
broad spectrum of FLOPs and latency values spanning across dif-
ferent models under various GPU configurations in our datasets.
Our datasets span a substantial range, with latency varying up
to 4, 356× and FLOPs varying up to 235, 000×. Even for the same
DNN architecture with the same FLOPs, the latency can vary up
to 80× based on hardware configurations, making accurate latency
prediction challenging.

4 IMPLEMENTATION

In this section, we describe our implementation of Lilou. We im-
plement Lilou in Python with 4,315 lines of code (LOC). As shown
in figure 6, our implementation consists of three phases — data
collection, GNN training, and latency inference.
DNN Data Collection. As mentioned in §3, we collect our DNN
data on three Nvidia GPUs. The specifications of these GPUs are
shown in table 4. We use MPS to configure the GPU capabilities.
However, MPS only restricts the number of SMs and cores provided
to an application. For example, if the MPS constraint is set to 50%
for a process on Nvidia T4 GPU, the process has access to 20 SMs
and 1280 GPU cores. Other configurations, specifically the memory
bus width, clock rate, and GPU clock rate, will remain unaffected.

We collect our DNN models from torchvision[27] and Hug-
gingFace [41]. We employ TensorRT(8.4.2) with CUDA 11.7 as the
runtime for DNN inference tasks because of its detailed logging
of runtime optimization and precise profiling information, which
are crucial for our analysis. We profile our DNN models using the
trtexec tool and Nvidia Nsight Systems, which support kernel-
level profiling and logging of runtime optimization. To ensure ac-
curate profiling, we monitor the variance of measurements. If the
coefficient of variance exceeds 5%, we redo the profiling. Lastly,
since the tools do not systematically produce layer fusion data, we
implement a parser to extract them from the raw log outputs. All
our datasets are collected in a standard dataset format described in
[29].
GNN Training. We implement our GNN models using PyTorch
Geometric (2.1.0)[13] and train them using PyTorch(1.12.0)[33].
We normalize the node features by subtracting the mean of each
feature and a division by the standard deviation. We apply one-hot
encoding for categorical features, such as layer operator type. We
train our GAT-LSTM edge predictor model with a learning rate of
1e-2, a batch size of 32, and over 20 epochs. We employ the Adam
optimizer[20] and a one-cycle learning rate scheduler[37]. We store
the model weights that yield the highest accuracy on the validation
set. We train our GAT latency and kernel predictor using the same
strategy except with a learning rate of 5e-4 and batch size of 512
over 100 epochs.

Figure 6: Lilou implementation.

Hardware Architecture Memory Compute
width clock # cores # SMs clock

Nvidia T4 Turing 256 5.001 2560 40 1.56
Nvidia V100 Volta 4096 0.877 5120 80 1.53
Nvidia A10G Ampere 384 6.251 10240 80 1.71

Table 4: GPU specifications. Memory bus widths are in bits.

Clock rates are in GHz.

Lilou Inference Pipeline. In the inference stage, Lilou accepts
DNNs in ONNX[3] format and a target GPU configuration vec-
tor. The feature extractor is implemented using the ONNX(1.10.2)[3]
Python library for determining the shapes of inputs, outputs, and
parameters for each layer based on input size. The FLOPs for each
layer are computed using the thop Python library (0.1.0)][24]. Sub-
sequently, these extracted features are provided as input to the
trained models from previous stage to generate the predicted re-
sults.

5 EVALUATION

This section demonstrates the evaluations of Lilou through our
benchmark datasets (table 3) on three cloud GPUs (table 4).

5.1 Experimental Setup

Baselines. We start by describing our experimental setup. We
compare Lilou with the following baselines: (1) Linear Regression
(LR), (2) BRP-NAS[11], and (3) nn-Meter[43]. For LR, we use FLOPs
and parameter size to estimate the latency. BRP-NAS performs
graph regression for latency prediction using GNNs. nn-Meter is
the state-of-the-art method that first detects fusion kernels using
handcrafted rules and then estimates the kernel latency individually.
Since we use different hardware than they used in the original
works, we retrain the models on our datasets using their source
code.
Settings. We use a 5-fold cross-validation approach to evaluate
Lilou. The 51 DNNs, each with distinct architectures, are randomly
partitioned into 5 subsets. For each iteration, one subset is used as
test set while the remaining 4 subsets are further randomly divided
into a training set (70%) and a validation set (10%). This setting is
used to train our GNNs and all baselines.
Hardware.We evaluate Lilou using GPUs shown in table 4 and
MPS configurations described in §3.3. However, since none of the
baselines support resource-aware prediction, we only compare
Lilou with the baselines (§5.2 and §5.3) on Nvidia A10G GPU. We
demonstrate Lilou’s ability for resource-aware latency prediction
using all aforementioned GPUs in §5.4.

5.2 Fusion Prediction Evaluation

We first evaluate the effectiveness of Lilou in predicting operator
fusion, which directly affects the accuracy of end-to-end latency
prediction. Since LR and BRP-NAS do not predict operator fusion,
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Figure 7: Evaluation results for fusion prediction. Lilou achieves overall higher precision, recall, and accuracy than the

state-of-the-art handcrafted method.

Fused operations Lilou nn-Meter

conv-relu 99.83% 99.01%
sigmoid-mul 99.92% 0.00%
batchnorm-relu 100.00% 100.00%
add-sqrt-div-mul-add 100.00% 0.00%
div-erf-add-mul-mul 100.00% 0.00%
hardsigmoid-mul 100.00% 0.00%
Table 5: Prediction accuracy for various fusion patterns.

we only compare our Graph Partitioner with the state-of-the-art
nn-Meter handcrafted fusion detector by comparing their edge
prediction accuracy. Since nn-Meter does not inherently perform
edge prediction, we employ an equivalent method to evaluate its
performance in this domain.We directly run its source code for GPU
kernel detection to identify the fusible operations. Then, edges that
connect these predicted fusible operations are considered positive
predictions in our edge prediction evaluation.

Figure 7 shows a comparative analysis of precision, recall, and ac-
curacy between different predictors across various DNNmodel fam-
ilies. As shown, Lilou generally outperforms nn-Meter, demonstrat-
ing superior results across most evaluation instances. Specifically,
Lilou achieves overall 97.21% precision, 98.22% recall, and 98.35%
accuracy, significantly better than nn-Meter’s 92.02% precision,
31.66% recall, and 73.27% accuracy. The performance of nn-Meter is
fairly competitive on models like ResNet due to their well-known
and frequently-used layer patterns such as conv+relu. These com-
monly used patterns are easily identifiable by the predefined reules
of nn-Meter. However, its performance tends to diminish when
encountering models with less common or more complex layer
patterns. For instance, the current version of nn-Meter fails to rec-
ognize the conv+sigmoid+mul pattern in EfficientNet, leading
to a substantial reduction in recall. In a more extreme example, the
ConvNextmodel, characterized by numerous point-wise operations
that are not included in the predefined rules, completely stumps
nn-Meter, resulting in zero precision and recall. Additionally, while
the nn-Meter’s pre-defined rules are applicable to various CNN
models, they do not generalize well to transformer-based models
such as BERT and GPT-2. It fails to recognize many fusion pat-
terns. For instance, our findings indicate that the fusible sequence
of Matmul-Transpose-Reshape operations, which is prevalent in

transformer models, is not recognized by nn-Meter. This limitation
stems from the initial development phase, during which the rules
were crafted without considering transformer architectures.

We further confirm this observation by dissecting the accuracy
according to frequently used fusion patterns. As shown by table 5,
nn-Meter yields high accuracy for fusion patterns that it has prede-
fined, such as conv-relu. However, when encountering patterns
absent from its collection of rules, including a variety of point-wise
fusion patterns, its accuracy drops to 0. In contrast, Lilou is able to
learn various rules from large dataset and identify the patterns accu-
rately. Although it’s possible to incrementally add newly discovered
fusion rules to nn-Meter, attempting to exhaustively cover all po-
tential fusion scenarios could be prohibitively time-consuming. As
demonstrated, Lilou offers a more efficient solution by leveraging
large-scale data to learn and accurately identify these rules. Lilou’s
capability in accurately predicting the fusible operators establishes
a robust foundation for precise end-to-end latency prediction of
DNNs, as will be demonstrated in the next section.
KeyTakeaways. Lilou achieves a remarkable accuracy of 98.35%, sig-

nificantly outperforming the state-of-the-art handcrafted rule-based

nn-Meter, which attains an accuracy of 73.27% in fusion prediction

across a broad spectrum of CNN and transformer models. This su-

perior performance is attributed to Lilou’s effective learning and

identification of diverse fusion patterns.

5.3 End-to-end prediction evaluation

Next, we examine the effectiveness of Lilou in predicting the end-
to-end DNN latency by comparing its performance against all base-
lines. Given the significant variation in latency among models, even
within the same family, we compare using normalized metrics such
as Mean Absolute Percentage Error (MAPE) and Root Mean Square
Percentage Error (RMSPE).

Figure 8 illustrates the MAPE and RMSPE results obtained by
different predictors across various model families. Lilou achieves
overall better performance than all baselines. Specifically, on aver-
age, Lilou achieves a MAPE of 8.68%, which is significantly lower
than the 30.24% of nn-Meter, the 130.90% of LR, and the 93.42% of
BRP-NAS. The performance of BRP-NAS is notably inferior, as it
struggles to generalize the graph representation it learned to unseen
graphs. LR also performs poorly because it is agnostic of DNN ar-
chitectures and fusion optimization. The latency error of nn-Meter
is closely tied to the accuracy of its fusion prediction. For models
where it accurately predicts fusion (e.g. ResNet), it can achieve
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Figure 8: End-to-end DNN latency prediction comparison for all baselines.
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Figure 10: Mean DNN latency prediction error on all GPU

configurations.

comparable latency error of Lilou. However, for models with low
fusion prediction accuracy (e.g. EfficientNet), the latency error
increases significantly. Notably, for models like ConvNext, where
nn-Meter achieves zero precision and recall in fusion prediction, it
performs even worse than LR and BRP-NAS.

We now take a step further to evaluate the predicted latency
error with respect to varying input sizes. We group the DNNs by
the height and width of the input ranging from 32 to 224. As shown
in figure 9, all predictors tend to have higher latency errors on
small input sizes. Prediction errors of LR and BRP-NAS fluctuate
significantly across input sizes. In contrast, Lilou shows minimum
variation in prediction error, shedding light on the consistency of
Lilou across diverse input sizes.
Key Takeaways. Lilou demonstrates remarkable generalizability

and accuracy in DNN latency prediction, achieving a MAPE of 8.68%,

which is a substantial improvement over the 30.24% achieved by

existing state-of-the-art baseline.

5.4 Resource-aware Prediction

In this section, we evaluate the effectiveness of Lilou in predicting
DNN latency under different GPU and GPU partitions, which is
crucial for efficient and QoS-aware resource management. To the

Models
A10G T4 V100

MAPE RMSPE MAPE RMSPE MAPE RMSPE
(%) (%) (%) (%) (%) (%)

BERT 3.44 4.48 4.84 6.30 4.38 5.66
ConvNeXt 8.68 9.92 8.81 11.23 7.94 9.52
DenseNet 7.51 9.84 8.71 10.21 6.66 8.92
EfficientNet 4.11 5.44 5.68 7.12 4.82 6.04

GPT2 8.17 10.91 11.25 12.92 7.84 10.51
GoogLeNet 8.17 10.91 11.25 12.92 7.84 10.50
MNASNet 7.53 6.66 13.04 16.30 9.40 12.02
MobileNet 4.21 5.31 8.31 10.28 6.00 8.01
RegNet 11.11 14.97 11.19 14.71 9.20 12.65
ResNet 14.81 17.32 9.08 12.00 14.43 19.06
ResNeXt 4.75 6.06 7.47 8.62 6.92 8.45

SqueezeNet 13.87 17.01 12.79 14.95 15.32 18.64
Wide Resnet 6.91 8.85 9.18 10.76 8.15 10.17

Table 6: End-to-end latency prediction error on different

GPUs.

best of our knowledge, Lilou is the first system to provide DNN
latency prediction under custom hardware configuration. Although
nn-Meter allows predicting DNN latency on different devices, it
requires building separate predictors, while Lilou employs one
predictor for all models and hardware configurations.

Table 6 presents the results of latency prediction error for each
model family on the three GPUs shown in table 4. As shown, the
system achieves accurate and robust prediction across all evaluated
GPUs, which have vastly different architectures and capability.
Specifically, on average, Lilou achieves 8.66%, 10.33%, and 8.76% of
MAPE on Nvidia A10G, T4, and V100 GPUs respectively.

To further show the flexibility and generalizability of Lilou, we
customize GPU capability using MPS as described in §4. Figure 10
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Operations Time

Data collection 1 week
Train Graph Partitioner 10 minutes
Train Sub-graph runtime analyzer 1 hour

Table 7: Time cost for building Lilou.

shows the MAPE for all MPS configurations on all GPUs. Impres-
sively, although the resource allocation varies significantly, Lilou
maintains stable latency errors across all GPU configurations. We
observe a minor increase in error rate at 10% MPS configuration.
This can be attributed to the substantial fluctuations in latency
when the provisioned resources are relatively limited (figure 1).
Key Takeaways. Lilou consistently delivers accurate and robust

DNN latency predictions across diverse GPU architectures and resource

allocations.

5.5 Kernel Prediction Evaluation

In this section, we examine the effectiveness of Lilou in predict-
ing specific kernels that will be used to execute the sub-graphs at
runtime. In Lilou, each sub-graph is designed to be executed by
a single kernel, while different kernels can implement the same
sub-graph. The kernel selection depends on the hardware, resource
allocation, and graph structures. There are 140 unique GPU kernels
that are involved for executing the 51 DNNs in our datasets. We
group these kernels by the layers they implement and their under-
lying libraries and show the prediction accuracy in figure 11. On
average, Lilou achieves overall 88.63% top-1 accuracy. We achieve
high accuracy for ElementWise, PointWiseV2, Reformat, Scale, and
Shuffle operations. However, the accuracies for Convolution and
Pooling operations are relatively low. The reason is that TensorRT
selects kernels based on runtime latency profiling. Specifically, it
measures the latencies of all kernel candidates and selects the one
with the lowest latency. However, because many kernels share sim-
ilar implementations, their latency differences are minor, leading to
potentially inconsistent ranking across different runs. We relax our
evaluation metric by considering top-5 accuracy. Lilou can reach
overall 98.84% accuracy and a minimum of 93.82% accuracy across
all operations.
Key Takeaways. Lilou is able to accurately predict runtime ker-

nels for various DNNs across diverse GPU architectures and resource

allocations.

5.6 System overhead

Finally, we evaluate the system overhead. The main overhead comes
from the time cost for data collection and training the GNN models.
As shown in table 7, collecting data from different GPUs takes
approximately one week. Training the Graph Partitioner takes less
than 10 minutes and training the Sub-graph runtime analyzer takes
about 1 hour on Nvidia A10G GPU. Notably, these processes are
fully automated, which simplifies the extension to new devices.

6 RELATEDWORK

DNN latency prediction is an open research research problem. Be-
cause of the complexity and diversity of DNN architectures, early
works[16, 42] simply employ traditional metrics used in perfor-
mance evaluation of computational systems, such as FLOPs, to

build regressors for DNN latency prediction. FLOPs-based DNN la-
tency regression is widely used because of its simplicity and strong
correlation between FLOPs and execution time. Specifically, FLOPs
in a DNN is a simple metric that can be easily calculated from the
architecture without executing the network, and networks with
more FLOPs will often require more time to execute. However,
FLOPs-based DNN latency regressors do not account for the char-
acteristics of different layers. Therefore, while they can provide a
useful first approximation, more sophisticated methods are needed
for accurate DNN latency prediction.

To address the layer- or operator-agnostic problem of FLOPs-
based regressors, layer-level modeling methods[5, 19, 28, 34] are
proposed. The key observation of these methods is despite the
huge amount of different DNN variations, all these DNN architec-
tures consist of basic underlying building blocks/primitives, such
as convolutional and fully connected layers, which show similar
execution characteristics per type of layer. Given this observation,
these works model the latency of the basic layers and sum them
up as the model latency. However, layer-level modeling does not
take into account runtime optimization factors such as operator
fusion, which can significantly impact actual latency. Consequently,
compared to Lilou which explicitly considers the effect of operator
fusion, layer-level modeling yields less accurate predictions.

The recent advancements in GraphNeural Networks have opened
up new possibilities for DNN latency prediction. The inherent
graph structure of DNN provides an ideal scenario to leverage
GNNs for modeling and predicting their latency. BRP-NAS[11]
and DNNPerf[14] take computation graph of DNNs as input of
the GNNs and predict the latency of the DNNs at graph-level.
Sectum[22] employs GNNs to detect if a given model would trig-
ger memory over-commitment, which can significantly affect the
inference latency, under a certain hardware configuration. These
works have shown that GNNs can learn both layer characteristics
and fusion optimizations. However, the generalizability of graph-
level GNN predictors is poor. When applied to unseen models, their
accuracy drops significantly. While Lilou also leverages GNNs,
it employs them in a distinct manner. Instead of learning fusion
operations implicitly and conducting graph-level predictions, we ex-
plicitly harness GNNs to learn fusion operations through edge-level
predictions.

The recent state-of-the-art nn-Meter[43] proposes dividing a
whole model inference into kernels, the execution units on a device,
and conducting kernel-level prediction. It performs kernel detec-
tion by applying handcrafted fusion rules. However, as we have
shown, rule-based kernel detection can be time-consuming and
error-prone. The error in fusion prediction could directly translate
to error in latency, resulting in inaccurate predictions. In contrast,
Lilou applies learning-based method to detect fusion operations,
offering a more efficient and accurate solution.

7 CONCLUSION

In this paper, we propose Lilou, a learning-based system designed
for predicting latency across diverse GPU resource allocations for a
wide range of DNN inference tasks. Lilou innovatively utilizes edge
classification on DNN computation graphs to learn operation fusion
rules. We build resource-aware latency predictor by incorporating
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Figure 11: Kernel type classification accuracy.

GPU hardware features, enabling latency prediction even under
custom GPU resource allocations. We evaluate Lilou by compar-
ing it with state-of-the-art methods on a large dataset containing
a wide range of DNN models. We also show Lilou’s robustness
and generalizability by evaluating it under different GPU resource
allocations.
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