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ABSTRACT
Buildings consume over 40% of the total energy in modern societies
and improving their energy e�ciency can signi�cantly reduce our
energy footprint. In this paper, we presentWattHome, a data-driven
approach to identify the least energy e�cient buildings from a large
population of buildings in a city or a region. Unlike previous ap-
proaches such as least squares that use point estimates, WattHome
uses Bayesian inference to capture the stochasticity in the daily
energy usage by estimating the parameter distribution of a building.
Further, it compares them with similar homes in a given population
using widely available datasets. WattHome also incorporates a fault
detection algorithm to identify the underlying causes of energy
ine�ciency. We validate our approach using ground truth data from
di�erent geographical locations, which showcases its applicability
in di�erent settings. Moreover, we present results from a case study
from a city containing >10,000 buildings and show that more than
half of the buildings are ine�cient in one way or another indicating
a signi�cant potential from energy improvement measures. Addi-
tionally, we provide probable cause of ine�ciency and �nd that
41%, 23.73%, and 0.51% homes have poor building envelope, heating,
and cooling system faults respectively.

CCS CONCEPTS
•Mathematics of computing→ Bayesian computation; Markov-
chain Monte Carlo methods; • Computing methodologies →
Anomaly detection; • Hardware → Energy metering;
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1 INTRODUCTION
Buildings constitute around 40% of total energy and 70% of the
overall electricity usage in the United States [1]. Consequently,
building energy-e�ciency has emerged as a signi�cant area of re-
search in smart grids. A typical city comprises a large number of
buildings of di�erent sizes and age. In general, the building stock
in many North American and European cities tend to be old—while
some are recently constructed, the majority were built decades
ago. Moreover, it is not uncommon for buildings to be over a hun-
dred years old [1]. Technological advances in building construction
have yielded better-insulated envelopes as well as more energy-
e�cient air-conditioning, heating furnaces, and appliances, which
can reduce the total energy consumption of a building. While newer
buildings, as well as older ones that have undergone renovations,
have adopted such e�ciency measures, most are yet to bene�t from
such e�ciency improvements. Since roughly half of a building’s en-
ergy usage results from heating and cooling, opportunities abound
for making e�ciency improvements in cities around the world.

Since a city may consist of thousands of buildings, an essential
�rst step for implementing energy-e�ciency measures is to identify
those that are the least e�cient and thus have the greatest need for
energy-e�ciency improvements. Interestingly, naive approaches
such as using the age of the building or its total energy bill to iden-
tify ine�cient buildings do not work well. While older buildings
are usually less e�cient than newer ones, the correlation is shown
to be weak [11]. Thus, age alone is not an accurate indicator of ef-
�ciency, since older buildings may have undergone renovations
and energy improvements. Similarly, the total energy usage is not
directly correlated to energy ine�ciency. First, larger buildings will
consume more energy than smaller ones. Even normalizing for size,
greater energy usage does not necessarily point to ine�ciencies.
For example, a single-family home will have a higher energy de-
mand (possibly due to the in-house washer, dryer, and water heater)
compared to an identically sized apartment home. Thus, �nding
truly ine�cient buildings requires more sophisticated methods.

In this paper, we present a data-driven approach for determining
the least e�cient buildings from a large population of buildings
within a city or a region using energy data in association with
other external public data sources. Such buildings can then be-
come candidates for energy e�ciency measures including targeted
energy incentives for improvements or upgrades. So far, lack of
granular city-wide datasets prevented large-scale energy e�ciency
analysis of buildings. However, with increasing smart meter instal-
lations across a utilities’ customer base, energy usage information
of buildings is readily available. By 2016, the US had more than 70
million installed smart meters (>700M worldwide) [2]. Also, real
estate information describing a building’s age, size, and other char-
acteristic are public records in many countries. Further, weather
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conditions can be accessed through REST APIs. Reliance on such
readily available datasets make our approach broadly applicable.

Given these datasets, our approach assumes it is possible to
model a building’s total energy usage as a sum ofweather-dependent
andweather-independent energy components. Theweather-dependent
component captures the heating and cooling energy usage, which is
typically a function of the external temperature, while the weather-
independent component captures the energy use from all other
activities. Using this approach, we can then extract the parameter
distributions that govern these energy components and identify
causes of energy ine�ciency by comparing them to those of other
homes in a given population. For example, a model’s parameter that
is more sensitive to external temperature is indicative of ine�cient
heating or cooling. We also develop algorithms that use these com-
parisons to determine the probable causes of energy ine�ciency.

While building energy models have been extensively studied
in the energy science research for many decades [6, 15, 28], and
practitioners such as energy auditors routinely use them to analyze
a building’s energy performance, there are important di�erences
between current approaches and our technique. First, current mod-
els employ several important parameters that are often chosen
manually, based on rules of thumb [21]. However, using manually
chosen parameters may lead to incorrect analysis [10]. On the other
hand, our technique determines a custom parameter distribution of
the building model, and we experimentally show its e�cacy over
manual approaches. Second, the current energy models are based
on least square regression analysis that provides point estimates. In
contrast, our approach provides Bayesian estimates to determine
building parameter distribution that captures the stochasticity in
energy use. Third, current approaches need manual intervention
to varying degrees to interpret model parameters and determine
likely e�ciency issues. Clearly, this does not scale to thousands of
buildings across a city. Our technique automates this process by
comparing model parameters with similar homes from the popu-
lation and makes it feasible to perform large-scale analysis. Thus,
we go beyond determining which buildings are ine�cient by also
designing algorithms that determine its probable causes.

In this paper, we introduce WattHome, a data-driven approach
to determine the most ine�cient buildings present in a city or a
region. Our contributions are as follows:
Bayesian Estimation Approach.WattHome improves over prior
work that provides point estimates and uses bayesian inference to
capture the building model parameter distributions that governs the
energy usage of a building. These building parameter distributions
are compared using second-order stochastic dominance to create a
partial order among buildings. Further, we propose a fault analysis
algorithm that utilizes these partial orders to report outlier buildings
and their probable causes. Moreover, we implement our approach
as an open source tool that enables determining ine�cient buildings
at scale and is applicable to other regions or cities.
Model Validation and Analysis.We evaluate WattHome using
energy data from two di�erent cities in geographically diverse
regions of the US. In particular, we show that our approach can
disaggregate the buildings’ energy usage into di�erent components
with high accuracy and tighter bounds on the model parameters
— an improvement over the two popular baselines. In addition to
disaggregation, our approach identi�es buildings that have possible

(a) Winter Months (b) Summer Months

Figure 1: Linear relationship between energy consumption
and ambient temperature for a Single Family home.

energy ine�ciencies. In comparison to manual audit reports our
approach correctly identi�ed faults in nearly 95% of the cases.
Real-world case study analysis. We examine our approach on
energy usage from smart meters deployed in 10,107 buildings in
a city. WattHome reported more than half of the buildings in our
dataset as ine�cient, which indicates a signi�cant scope for making
energy improvements in several cities. Further, our results indicate
poor building envelope as a major cause of ine�ciency, which
accounts for around 41% of all homes. Heating and cooling system
faults comprises 23.73%, and 0.51% of all homes respectively.

2 BACKGROUND
In this section, we present background on energy e�ciency in
buildings and techniques used to model a building’s energy usage.

2.1 Energy E�ciency in Buildings
Energy usage in residential buildings has di�erent sources such
as heating and cooling, lighting, household appliances etc. There
can be many causes of ine�ciencies in each of these components,
such as the use of ine�cient incandescent lighting and the use of
ine�cient (e.g., non-energy star) appliances. Studies have shown
that heating and cooling is the dominant portion of a building’s
energy usage, comprising over half of the total usage [1, 24], and it
follows that the most signi�cant cause of ine�ciency lies in prob-
lems with heating and cooling. Two factors determine heating and
cooling e�ciency of a building: (1) the insulation of the building’s
external walls and roof ("building envelope") and their ability to
minimize thermal leakage, and (2) the e�ciency of the heating and
cooling equipment. Recent technology improvements have seen
advancements on both fronts. New buildings are constructed us-
ing modern methods and better construction materials that yield a
building envelope that minimizes air leaks and thermal loss through
better-insulated walls and roofs and high-e�ciency windows and
doors. Similarly, new high-e�ciency heating and AC equipment are
typically 20-30% more e�cient than equipment typically installed
in the late 1990s and early 2000s.

Unfortunately, older residential buildings and even ones built
two decades ago do not incorporate such energy e�cient features.
Further, the building envelope can deteriorate over time due to
age and weather and so can mechanical HVAC equipment. Conse-
quently, an analysis of a building’s heat and cooling energy use can
point to the leading causes of a building’s energy ine�ciency.
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2.2 Inferring a Building Energy Model
One approach to modeling a building’s heating and cooling usage
is to model its dependence on weather [31]. For example, a build-
ing’s heating and cooling usage can be modeled as a linear function
of external temperature. To intuitively understand why, consider
cooling energy usage during the summer. The higher the outside
temperature on hot summer days, the higher the AC energy usage.
Since the di�erence between outside and inside temperatures is
large, there is more thermal gain, which requires longer duration
of cooling to maintain a set indoor temperature. Thus, there is a
linear relationship between heating/cooling energy use and outside
temperature (see Figure 1(a) and (b)). Given the linear dependence,
linear models are commonly used within the energy science re-
search [15, 25], to capture the relationship between energy use and
outside temperature. However, most of the prior approaches do
not consider uncertainties that are associated with indicators of
building performance. Primarily, these models do not capture the
stochastic variations in heating and cooling as well as the weather-
independent energy usage resulting from day to day variations in
human activities inside a home. As seen in Figure 1, such energy
variations exist and our approach uses Bayesian inference to deter-
mine the distributions of the building parameter that models these
uncertainties in energy use.

2.3 Problem Formulation
Consider a large population of buildings in a city. We assume that
a trace of the total daily energy usage is available for each building.
We also assume building characteristics, such as age, size, and type
(Single Family, Apartment etc.) for each building along with the
daily outdoor temperature data are available.

Let B be the set of all residential buildings containing information
on building characteristics in a city. Further, bi 2 B denotes the ith
residential building de�ned by a tuple hEtotali,[1...D],A�ei , Sizei ,T�pei i.
Here, Etotali,[1...D] is the energy usage recorded by smart meters for a
period ofD days. Moreover,T[1...D] is the external ambient tempera-
ture for the city during theD days. Thus, givenbi 2 B andTd8d 2 D,
our problem is to determine (a1, ...,am )i 2 {False,True}m , where
a1, ...,am are them possible faults associated with the residential
buildings.

3 WATTHOME: OUR APPROACH
In this section, we describe the details of our data-driven approach.
WattHome’s approach is depicted in Figure 2 and it involves three
key steps: (i) Learn a building energy model for each home from
energy usage data, (ii) Create a partial order of buildings using
its parameter distribution from the building model, and �nally (iii)
Detect building faults causing energy ine�ciency. Below, we discuss
each step in detail.

3.1 Building Energy Model
We �rst provide the intuition behind our approach. Heating and
cooling costs for a building can be understood using elementary
thermodynamics. Typically, in colder months, the outside ambient
temperature is colder than the inside building temperature, result-
ing in a net thermal loss where the inside heat �ows outside through
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Figure 2: Overview of WattHome approach.
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Figure 3: Energy usage versus outdoor temperature.

the building envelope, causing the inside temperature to drop. In
warmer months, the opposite is true. The building experiences a
net heat gain where the heat �ows inside, causing the building
temperature to rise.

It follows that every home has a speci�c temperature Tb , where
there is neither thermal loss nor thermal gain i.e. the thermody-
namic equilibrium.When the outside temperature is aboveTb , there
is a need for AC to cool the home. Conversely, when the temper-
ature is below Tb , there is a need for a heater to heat the home.
This temperature Tb is called the balance point temperature of the
building. The rate of thermal loss or thermal gain depends on the
degree of insulation, airtightness of the building envelope and sur-
face area exposed to outside elements. Better the insulation and
airtightness, smaller the rate of loss or gain for a given tempera-
ture di�erential relative to Tb . The di�erence between the outside
temperature and the balance point temperature Tb is also referred
as the degree-days — an indication of how many degrees warmer
or colder is the outside weather relative to the building’s balance
point.

Based on this intuition, we now describe our building energy
model. Any energy load in a building can be classi�ed as weather
independent and dependent. A weather independent load is one
where the energy consumed by the device is uncorrelated to the
outside temperature — consumption from loads such as lighting,
electronic devices, and household appliances depend on human ac-
tivity rather than outside weather. Heating and cooling equipment
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constitute weather dependent loads, as their consumption linearly
dependent on the outside temperature relative to the balance point.

If we assume that weather independent loads are distributed
around a constant value (also called the base load); then the total
energy consumed is the sum of the base load and the weather
dependent loads (heating and cooling loads) and de�ned as:

E

total
d = E

heat
d + Ecoold + Ebase 8d 2 D (1)

where Etotald denotes the total energy used by a building on day
d 2 D. Eheatd and E

cool
d denote the energy used for heating and

cooling, respectively, on day d , while E

base denotes the energy
usage of base load appliances. Thus, given a series of observations
of the total energy usage and the outside ambient temperature, it is
possible to �t a regression and learn the �xed weather independent
component (base load) and the temperature dependent component
(heating and cooling). This forms the basis for inferring ourweather-
aware building energy model.

Figure 3 illustrates the relationship between outdoor temper-
ature and the energy consumption of a building. The individual
data points represent the daily energy usage (along the Y-axis) for a
given average outdoor temperature (along the X-axis) of a building.
The �gure shows that the building has two balance point tempera-
tures — a heating balance point temperature Theat , below which
heating units are turned on, and a cooling balance point temper-
ature T cool , above which air-conditioning is turned on. Further,
the �gure also shows a piecewise linear �t over the daily energy
usage. When the outdoor temperature is between the two balance
points, the building consumes energy that is distributed around
a constant value de�ned as the base load E

base energy consump-
tion. The weather dependent components, i.e. the heating E

heat

and cooling Ecool energy consumption, are a function of ambient
outdoor temperature Td and are de�ned as:

E

heat
d = �heat (Theat �Td )+ 8d 2 D (2)

E

cool
d = � cool (Td �T cool )+ 8d 2 D (3)

where �heat and �

cool are the heating and the cooling slope in
the above linear equations and represent a positive constant factor
indicating the sensitivity of the building to temperature changes;
and ()+ indicates the value is zero if negative and ensures either
energy from heating or cooling is considered. Using (2) and (3),
energy model in (1) can be represented as a piecewise linear model:

E

total
d =Ebase + �heat (Theat �Td )+ + � cool (Td �T cool )+8d 2 D

(4)

Themodel in (4) is known as the degree-daymodel [25] and forms
our base energy model for estimating the building parameters.

3.1.1 Bayesian Inference Parameter Estimation. While methods
like Maximum Likelihood Estimation (MLE) or Maximum a poste-
riori estimation (MAP) can be used for determining the building
parameters, they provide point estimates that can hide relevant
information (such as not capturing the uncertainties in human en-
ergy usage). To capture human variations, we require probability
density function of the parameters. Thus, we use Bayesian inference
approach, which provides the posterior distribution of parameters.

Prior
E

base ⇠ N(20, 20), �heat ⇠ N(0, 4), � cool ⇠ N(0, 4)
T

heat ⇠ U(32, 100), T cool ⇠ U(32, 100), � ⇠ Cauch�(0, 5)
Regression Equation
µd = E

base + �heat (Theat �Td )+ + � cool (Td �T cool )+ 8d 2 D
Model Likelihood
E

total
d ⇠ N(µd ,� 2)

Parameter Bounds
E

base ,�heat ,� cool >= 0 and T

heat <= T cool

Table 1: Bayesian formulation of our building energymodel.

We model (4) using a bayesian approach and assume the error
process to be normally distributed (N (0, � 2)). Thus, the daily en-
ergy consumption E

total
d is normally distributed with parameters

mean (µ) and variance (� 2), where µ is equal to the right hand side
of (4). Note that energy consumption E

total
d is known and so is

the independent variable i.e. ambient temperature Td . However,
the building parameters (�heat , � cool ,Theat ,T cool , and Ebase ) are
unknown. Using Bayesian inference, we can then compute a pos-
terior distribution for each of these parameters that best explains
the evidence (i.e. the known values for Etotald and Td8d 2 D) from
initially assuming a prior distribution.

To determine the posterior distribution of the individual param-
eters, we use the Markov chain Monte Carlo (MCMC) method that
generates samples from the posterior distribution by forming a
reversible Markov-chain with the same equilibrium distribution.
We introduce a prior distribution that represents the initial belief
regarding the building parameters. For example, the two balance
point temperatures will be between a wide range of 32°F and 100°F.
This belief can be represented using a uniform prior with the said
range. Similarly, the baseload, heating slope and cooling slope can
be drawn from a weakly informative gaussian prior having non-
zero values. This is because baseload, a unit of energy, cannot be
negative. Similarly, slope values must be positive as they represent
increase in energy per unit temperature. The parameters of the
gaussian priors are scaled to our setting and selected based on the
recommendations provided by Gelman et al. [17]. To simplify our
building model, we assume that the parameters are independent,
i.e., the heating, cooling and the baseload parameters do not a�ect
one another.

Several MCMCmethods leverage di�erent strategies to lead from
these priors towards the target posterior distribution. We employed
No-U-turn sampler, a sophisticated MCMC method, which has
shown to converge quickly towards the target distribution. Thus,
after an initial burn in samples, we can draw samples approximating
the true posterior distribution. From these post-burn-in samples, a
posterior distribution for the individual building parameters can be
formed. Our complete Bayesian model is de�ned in Table 1.

Since buildings are of di�erent sizes, simply comparing the pa-
rameters in absolute terms is not meaningful. To enable such com-
parison, we initially normalize the energy usage by building size
before the Bayesian inference. Hence, in our case, Ebase represents
base load energy use per unit area. Similarly, heating slope �heat
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and cooling slope � cool gives change in energy per degree tem-
perature per unit area. Thus, the balance point parameters (Theat
and T cool ) are not normalized as they are una�ected by the size of
the house. We construct a cumulative distribution (F� heat , F� cool ,
FEbase ) for each of the building model parameter (�heat , � cool ,
E

base ) from their respective density functions (posterior) obtained
after the inference. For the balance point parameters (Theat and
T

cool ), we only use its mean values as they tend to remain �xed for
a given building irrespective of human variation. This completes
our approach for creating the building energy model.

3.2 Partial Order Creation
Rather than relying on rule-of-thumb measures to interpret model
parameters that change with geography and many other building
characteristics, we propose comparing them with those of similar
homes from a given population. Given the above model, we create
a partial order of buildings as follows. We �rst create peer groups
using the building’s physical attributes (e.g., age of the building,
building type etc.). Next, within each peer group we create a partial
order of the buildings for each building parameter distribution.
Below, we describe each step in detail.

3.2.1 Peer groups creation. To enable a meaningful comparison,
we compare the building model parameters only within their cohort.
We use three building attributes for peer group creation namely:
(i) property class (e.g., single family, apartment, etc.), (ii) built area
(e.g., 2000 to 300 sq.ft.), and (iii) year built (e.g.1945 to 1965). For
instance, buildings constructed in di�erent years adhere to di�erent
energy regulations and standards, and thus, it is not meaningful
to compare them. Similarly, building types and age group have
di�erent characteristics and it would be unreasonable to compare
them. Hence, our approach allows the creation of peer groups to
enable comparison within a cohort to determine ine�cient homes.

3.2.2 Stochastic order of building parameters. Since the building
model parameters are probabilistic distributions, we cannot simply
compare these uncertain quantities and create a total ordering. Sta-
tistics, such as mean, median or mode, provide a single number to
capture the behavior of the whole distribution. While these point
estimates can be used to compare two distributions, they typically
hide useful information regarding their shape and may not account
for any heavy-tailed nature that is present in a building parameter
distribution. Hence, we use second order stochastic dominance, a
well-known concept in decision theory for comparing two distri-
butions [26], to create a partial order of the building parameters
within a peer group.

The main idea behind determining second order stochastic domi-
nance is that for a given building model parameter p, if distribution
Fp dominatesGp i.e., Fp ⌫2 Gp , then the area enclosed between Fp
and Gp distribution should be non-negative up to every point in x :π x

a
(Gp (t) � Fp (t))dt � 0 8x 2 [a,b] (5)

Figure 4 depicts stochastic ordering of two distribution Fp and
Gp where; (i) Fp does not dominate Gp i.e. Fp ✏2 Gp and (ii) Fp
dominates Gp i.e., Fp ⌫2 Gp . The area shaded in green shows
the region where Fp dominates Gp , and the red region shows Gp

x x x 

cd
f 

a b c 
Fp 

Gp 

Figure 4: Stochastic ordering of two distributions Fp and Gp .
(a) Fp does not dominate Gp . In (b) and (c) Fp dominates Gp .

Indicator Characteristics Probable Building Faults
High Heating Slope Ine�cient Heater, Building Envelope
High Cooling Slope Ine�cient AC, Building Envelope
High Heating Balance Point High Set point, Poor Building Envelope
Low Cooling Balance Point Low Set point, Poor Building Envelope
High Base load Ine�cient Appliances

Table 2: Indicator building model characteristics and associ-
ated probable building faults.

dominates Fp . In Figure 4(a), we observe that Fp ✏2 Gp , since there
are no green area greater or equal to the left of the red area. In
contrast, Figure 4(b) and (c) shows Fp dominates Gp because for
every red area, there exists a larger green area located to its left.

To intuitively understand the implications of stochastic domi-
nance in our scenario, let us consider two distributions Fp and Gp
of a building parameter p from two separate buildings A and B re-
spectively. As noted earlier, building parameters in�uences energy
usage, such that higher parameter values implies higher energy
usage, and vice-versa. Let us assume that building A’s normalized
energy usage is greater than buildingG’s normalized energy usage,
such that distribution Fp dominatesGp i.e., Fp ⌫ Gp . Clearly, the
building parameter distribution Fp for building A will lie on the
right-side of distribution Gp as A has higher energy usage. In fact,
since Fp ⌫ Gp , by de�nition, the distribution Fp will be on the
right ofGp for a majority of the region. However, homes may have
similar building parameter distribution, i.e the distribution has sim-
ilar shape and tendency. In such cases, it is possible that neither
home will dominate the other. Stochastic dominance thus enables
interpretation of the building parameter distribution with respect to
one another, with higher energy usage buildings having a tendency
to lie on the right side of the population. This allows separation of
homes with dominant distributions from non-dominant ones. We
run a pair-wise comparison of all buildings within a cohort for each
building model parameter p. This gives us the partial order for all
pairs and parameters, which we use to detect ine�cient homes.

3.3 Fault Detection and Analysis
We �rst discuss the causes of ine�ciencies associated with the
di�erent model parameters. Later, we present our algorithm that
identi�es ine�cient homes and its potential cause.

3.3.1 Parameter relationship with building faults. Heating slope
�heat and heating balance point temperature Theat are the two
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parameters that enable our model to interpret the heating ine�cien-
cies of a home. Buildings with high �heat lose heat at a higher rate,
which in turn a�ects heating unit usage (i.e., consumes more power)
to compensate for the high loss rate. A high energy loss rate can
be attributed to poor building insulation, air leakages, or ine�cient
or heating unit. Separately, heating balance point temperature also
indicates ine�ciencies in the heating component of a home. A high
balance point temperature suggests two possible ine�ciencies: (i)
high thermostat set-point temperature1 and (ii) poor building insu-
lation. If the set-point temperature is high during winters, heating
units turn on more frequently to maintain the indoor temperature
at set-point. In contrast, if building insulation is poor, more heat
is lost through the building envelope. Thus, heating units will be
turned on frequently to sustain the high heating balance point tem-
perature. Similarly, we can interpret the cooling slopes � cool and
cooling balance point temperature, which points to ine�ciencies
in cooling units or building envelope.

Homes with high E

base indicate high appliance usage or inef-
�cient appliances. In such homes, energy retro�ts may not help
reduce energy consumption. However, these homes may bene�t
from replacing old appliances (water heater, dryer) with newer
energy star rated ones. We summarize the association between
probable causes of building faults and model parameter in Table 2.

3.3.2 Fault Analysis Algorithm. We �rst use the partially or-
dered set of buildings to determine the outliers for each parameter
and then use the mapping in Table 2 to assign building faults. To
determine outliers, note that the energy usage of an ine�cient
home would be high. Thus, the building parameter distribution of
an ine�cient home will tend to be stochastically dominant with
respect to others in their peer group. However, among ine�cient
homes, the building parameter distribution may be similar, and
thus their distributions may not be stochastically dominant to one
another. Similarly, within energy e�cient homes this distinction
of dominance may not be apparent, as their distribution may be
identical to one another. We use this insight to de�ne a building as
ine�cient in a given model parameter, if it is stochastically dom-
inant compared to a majority of the homes within its cohort. For
instance, if a building’s heating parameter distribution F�̂ heat is
dominant across more than �% of the buildings, we conclude that
the building is ine�cient and has a high heating slope. Here, � is the
sensitivity threshold for WattHome and provides the �exibility to
control the number of ine�cient homes. The higher the threshold
value, the higher the possibility of identifying an ine�cient home.
For all experiments, we chose this to be 75%. Thus, for each parame-
ter, we determine whether a building is ine�cient if its distribution
is dominant beyond a certain threshold. We use a balance point
threshold to determine buildings with high balance point tempera-
ture. We �ag buildings as ine�cient if the mean value obtained after
inference for heating (or cooling) balance point temperature Theat
(or T cool ) is greater than (less than) speci�c heating (or cooling)
balance point threshold 70°F (55°F) — a common choice employed
by expert auditors. We present the pseudo-code to determine ine�-
cient buildings in Algorithm 1.

1Set point temperature and balance point temperature have a linear relationship

Algorithm 1 Fault Analysis Algorithm
1: Inputs: Sensitivity (� ), buildings (B)
2: procedure F���I����������H����(� , B)
3: count = {}; homes = {}
4: for p in [�heat ,� cool ,Ebase ] do
5: for (b1, b2) |B |

P2 do // all-pairs permutation
6: if Fp (b1) ⌫2 Fp (b2) then
7: count[p, b1] +=1
8: for b  B do homes[p, b] = count[p, b] � �
9: for b  B do homes[Theat , b] = Theatb > 70�F

10: for b  B do homes[T cool , b] = T coolb < 55�F

11: return homes
1: Inputs: building (b), parameters (P ), fault_map (M)
2: procedure G��R���C����(h, P ,M)
3: faults = []
4: for p P do
5: if homes[p, b] then
6: faults +=M[p] // append list
7: return faults

As noted earlier, each parameter in the building model a�ects an
energy component de�ned in (4). Any irregularity in the building
parameter, in comparison to its peer group, points to possible ine�-
ciency in the said energy component. We outline our pseudo-code
for �nding root cause in Algorithm 1. First, we create a mapping of
indicators of deviations in building model parameters to possible
faults using Table 2. We provide the mapping as an input to our
algorithm. Next, we associate a fault to a home if it was �agged in-
e�cient for the given parameter p. For instance, if a home is �agged
as high base load, we say that the home has ine�cient appliances.
Similarly, an ine�cient home with high heating slope is assigned
faults related to heating ine�ciencies. We then generate a report
of the list of potential faults in a given home.

4 IMPLEMENTATION
We implemented WattHome as an open source tool. WattHome is
split into two components — (i) a Unix-like command line tool 2
that uses PyStan, a statistical modeling library, to implement our
bayesian model, and (ii) a web-based application interface imple-
mented using Django framework for interacting with the command
line tool. Users can interact with either component, and provide
their energy traces and building information, to determine likely
reasons of ine�ciency.

Our system works as follows. When users provide their energy
traces and building information (such as zip code, year built, etc.),
WattHome builds a custom bayesian model of the home using
the local weather data and the details provided by the user. The
weather data of a nearby airport is used as a proxy for local weather
conditions, and WattHome periodically fetches and updates this
data from public APIs. Next, users provide a sensitivity threshold
that is used to create a partially ordered set of ine�cient homes.
As utility companies may have a limited audit budget to manually

2We have publicly released the code and the tool. http://bit.ly/2nU7kA5
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(a) Find Ine�cient homes (b) Ine�ciency Report

Figure 5: Screenshot of our implementation of WattHome.

Charactersitics Dataset 1 Dataset 2
# of Homes 163 10,107
Duration 2013 2015

Built Area Range (sq.ft.) 758-6516 250-10,000
Year Built Range 1912-2014 1760-2013

Location Austin, TX A city in New England

Table 3: Key characteristics of Dataport and New England-
based utility smart meter dataset

inspect homes, the threshold provides user the �exibility to control
the list of least e�cient home. Figure 5(a) shows how users can
adjust the sensitivity parameter to get ine�cient homes. Finally,
ourWattHome generates a report listing ine�cient homes and their
likely faults. Figure 5(b) shows the ine�ciency report for a single
home listing likely faults.

5 EXPERIMENTAL VALIDATION
We �rst validate our model estimates against ground truth data
from two cities and evaluate its e�cacy.

5.1 Dataset Description
5.1.1 Dataset 1: Dataport (Austin, Texas). Our �rst dataset con-

tains energy consumption information fromhomes located inAustin,
Texas from the Dataport Research Program [3]. The dataset con-
tains energy breakdown at an appliance level, which serves as
ground truth to understand how our approach disaggregates en-
ergy components. We select a subset of homes (163 in total) from
this dataset having HVAC, baseload appliances along withthe total
energy usage information. Since most homes enrolled in the Dat-
aport research program are energy-conscious homeowners, and
have energy e�cient homes, we use this dataset only for validating
our energy disaggregation process.

5.1.2 Dataset 2: Utility smart meter data (New England). This
dataset contains smart meter data for 10,107 homes from a small city
in the New England region of the United States [20]. The dataset
has energy usage (in kWh) from both electricity and gas meters.
Each home may have more than one smart meter — such as a
meter to report gas usage and another to report electricity usage.
For homes with multiple meters (gas and electric), we combine

Figure 6: Validation of en-
ergy split using the two base-
lines and our model.

Figure 7: Comparison of the
standard deviation of param-
eters.

their energy usage to determine the building’s daily energy con-
sumption for an entire year (2015). Apart from energy usage, the
dataset also contains real estate information that includes building’s
size, the number of rooms, bedrooms, property type (single family,
apartment, etc.). We also have manual audit reports for some of
the homes. We use this as our ground truth data for validating
our approach. Further, we have weather information of the city
containing average daily outdoor temperature. We summarize the
characteristics of both the datasets in Table 3.

5.2 Energy Split Validation
We now validate the e�cacy of our model in disaggregating the
overall energy usage into distinct energy components, i.e., heating,
cooling, and baseload. For this experiment, we restrict our analysis
to the 163 homes from the Dataport dataset.

We compare our technique with two baseline techniques (LS 65F
and LS Range), commonly used in prior work, which use the degree-
days model to provide point estimates of the individual building
model parameters. Our �rst baseline technique, LS 65F, estimates
the three building energy parameters (�heat , � cool , � , Ebase ) us-
ing least-squares �t and assumes the balance point temperature
to be constant (65�F). This is a widely used approach by energy
practitioners around the US and recommended by o�cial bodies
such as ASHRAE [7]. Our second baseline technique, LS Range, esti-
mates all the �ve building energy parameters (�heat , � cool , Theat ,
T

cool , and E

base ) using the least-squares �t. Unlike the baseline
approaches, WattHome estimates the parameter distribution and
thus to compare we use the mean of the posterior distribution of
the parameters to get the �xed proportion of the energy splits.

Figure 6 shows the distribution of percentage di�erence in the
energy usage with the ground truth for each energy component.
While LS Range and WattHome have median error of ⇡-1.6%, LS
65F have a median error of 10% for baseload energy. Unlike LS
65F, LS Range and WattHome do not assume a constant balance
point temperature and thus have lower error. Figure 7 compares
the standard deviation of the building parameters from the two
approaches. In WattHome, the standard deviations are obtained
from the parameter posterior distributions. Whereas, in case of LS
Range, the standard deviations are calculated from the covariance
matrix outputted by the least-squares routine. While the results for
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the four parameters are similar, the spread of standard deviation for
the lower balance point is much smaller in WattHome compared to
LS Range. Thus,WattHome provides an equivalent or tighter bound
compared to LS Range.
Summary: Fixed parameters provide poor estimate of the building
parameter. WattHome provides lower error and tighter parameter
estimates compared to other baseline techniques.

5.3 Faulty Homes Validation
We now examine the accuracy of our model in reporting homes
with likely faults. We ran our algorithm on all homes in the New
England dataset to generate a list of outlier homes for each of the
parameter and then compare our results with �ndings from manual
energy audits (ground truth). Since manual audit reports contain
faults related to building envelope and HVAC devices only, we only
report these results and ine�ciencies arising from base energy
usage and faulty set points were not analyzed.

To determine the accuracy, we compare an ine�cient building’s
parameter to the audit report conducted in the past and verify
whether it has any building faults. The audit reports were manually
compiled by an expert on-�eld auditor identifying and suggesting
energy e�ciency improvement measures. We �nd that WattHome
reported 59 homes with building envelope faults, out of which 56
buildings were in the audit report, an accuracy of 95%. Moreover,
we �nd that 46 of the 56 homes with building envelope faults also
had faulty HVAC systems.
Summary: WattHome identi�ed parameter related faults in a build-
ing with high accuracy. In particular, our approach correctly identi�ed
95% of the homes that were �agged by expert auditors as having either
faulty building envelope or HVAC systems.

6 CASE STUDY: IDENTIFYING INEFFICIENT
HOMES IN A CITY

We conduct a case study on the New England dataset to determine
the least e�cient residential buildings in the city. In particular, we
seek to gain insights on the following questions: (i)What percentage
of the homes are energy ine�cient? (ii) Which groups of homes
are the most energy ine�cient? (iii) What are the most common
causes of energy ine�ciency? We �rst provide a brief analysis of
the distribution of the energy split.

6.1 Energy Split Distribution Analysis
To get the �xed proportion of the energy split, we use the mean of
the posterior estimates to compute the disaggregated energy usage
i.e. heating, cooling and base load components. To compare the
energy components, we compute the Energy Usage Intensity (EUI),
by normalizing the energy component with the building’s built
area. Figure 8(a) shows the heating, cooling, base load and total
EUI distribution grouped by property type across all homes. The
�gure shows that the base load is the highest component of energy
usage in most Mixed Use and Apartment property types followed
by heating and cooling. However, for Single family homes, the
heating cost is usually higher. The high base load can be attributed
to lighting, water heating, and other appliances. Further, since the
New England region has more winter days, homes require more
heating, and thus expected to have a higher heating energy footprint

Heating Cooling Base load Overall
Outliers Outliers Outliers Outliers
3162 1033 2016 5079

Table 4: Summary of all ine�cient homes in the data set.

compared to cooling. In particular, the average heating energy
required is almost 20⇥ that of average cooling energy. We also
observe that the normalized total energy usage of single and multi
family homes is the highest — presumably due to more number
of appliances. The median energy EUI of the Single family home
is ⇡53 kBtu/sq.ft. (1 kW=3.412kBtu), which is almost twice that of
Apartment homes (⇡26.8 kBtu/sq.ft.).

Observation: Heating energy consumption is 20⇥ that of cooling
energy on an average. Energy consumption among Single and Multi
family homes is much higher than Apartment or Mixed use homes.

6.2 E�ciency Analysis
In this section, we analyze the results of our approach on the utility
company’s dataset described earlier. We created peer groups to
identify ine�cient homes in their respective cohort. To do so, we
used three building attributes (property type, age, and area), which
created 120 peer groups in total. Among these peer groups, we
discarded groups with less than 20 homes, as it didn’t have enough
population size for a meaningful analysis. In all, 67 peer groups
containing a total of 186 homes were discarded. Below, we present
our analysis on the remaining 9,921 homes.

6.2.1 Identifying ine�icient homes. We examine the number of
homes that are �agged as ine�cient for each of the energy compo-
nents using our approach. Table 4 shows the summary of ine�cient
homes across all peer groups. We note that a home may have mul-
tiple ine�ciencies, such as ine�cient heating and high base load
and thus may be ine�cient in several of the energy components.
Our results show that the overall percentage of ine�cient homes
across all residential homes is 50.25%. Further, almost 62.25% of all
ine�cient homes have either ine�cient heater or poor building en-
velope, and 4144 homes have either ine�cient heating or cooling.
Observation: More than half of the buildings in our dataset are
likely to be energy ine�cient, of which almost 62.25% homes have
ine�cient heating as a probable cause.

6.2.2 Identifying faults in ine�icient homes. We now analyze
the cause for ine�ciency in these ine�cient homes. Figure 8(b)
shows the percentage of ine�cient homes within each building age
group across all faults. Note that a home may have multiple faults.
We observe that the building envelope fault is the major cause of
ine�ciency, followed by ine�ciency in heaters and other base load
appliances. Across all age groups, nearly 41% of the homes have
building envelope faults, while 23.73% and 0.51% homes have heat-
ing and cooling system faults respectively. The �gure also shows
that some homes might have set point faults. In particular, 18.06%
of the homes have issues with either high heating or low cooling
set point temperature. These faults indicate likely issues with ther-
mostat setting. Adjusting the thermostat set point temperature in
these home may likely improve its e�ciency. As shown, homes



Wa�Home: A Data-driven Approach for Energy E�iciency Analytics at City-scale KDD ’18, August 19–23, 2018, London, United Kingdom

(a) Total Energy Split (b) By Building Age (c) By Property Type

Figure 8: (a) Disaggregated energy usage for all homes. (b) and (c) Possible fault types in di�erent building groups.

built/altered before 1945 have a higher proportion of ine�cient
homes. However, the percentage di�erence with other age groups
is <15%.

Figure 8(c) shows the percentage of ine�cient homes within each
building property type and faults. We observe that the building
envelope faults are the most common faults across all building types.
Further, we �nd that except for HVAC appliance related faults,
mixed use property type has the highest percentage of ine�ciency
in the remaining fault categories. After mixed use property type,
apartments tend to have a higher percentage of ine�cient homes
followed by multi family and single family property types.
Observation: Building envelope faults is one of the major cause for
ine�ciency and present in nearly 41% of homes. However, 18.06% of
homes have thermostat set point faults. Changing their set-point may
likely improve e�ciency in these homes.

7 RELATEDWORK
Diagnosing and reducing energy consumption in buildings is an im-
portant problem [9, 16, 23, 32]. Variousmethods have been proposed
to detect abnormal energy consumption in a building [13, 23, 27].
However, these methods focused on commercial buildings that
require expensive building management systems [13, 27] or re-
quires costly instrumentation using sensors for monitoring pur-
poses [9, 22]. Sensors allow �ne-grained monitoring of energy
usage but are not scalable due to high installation costs. Unlike
prior approaches, our model does not require building management
systems or costly instrumentation and use ubiquitous smart meter
data to determine energy ine�ciency in buildings.

Prior work have also proposed automatic modeling of residential
loads [5]. Studies have shown that compound loads can be disaggre-
gated into basic load patterns. Separately, there has been studies on
non-intrusive load monitoring (NILM), which allow disaggregation
of a household’s total energy into its contributing appliances, and
does not require building instrumentation [8, 18]. However, most
NILM techniques require �ne-grained datasets for training pur-
poses and assume energy consumption patterns are similar across
homes [8]. On the other hand, our approach makes no such as-
sumption on energy consumption patterns and is applicable across
multiple homes as it uses coarse-grained energy usage data that
are readily available from utility companies [4].

Various energy performance assessment methods exist to quan-
tify energy use in buildings and identify energy ine�ciency [19,

29, 30]. A common approach is to use degree-days method, a lin-
ear regression model, for calculating building energy consump-
tion [14, 15, 25]. However, these approaches do not consider uncer-
tainties that are associated with indicators of building performance.
The idea of modeling uncertainties in thermal comfort is studied in
[12]. However, it is restricted to a single o�ce building with cooling
and heating systems. Unlike previous studies, our approach can be
used to identify least energy e�cient home at scale without manual
expert intervention. Further, we propose a novel Bayesian model to
account for uncertainties arising from human factors. Finally, we
use actual ground truth data to validate our approach and show its
e�cacy on a large scale city-wide data.

8 CONCLUSIONS
Improving e�ciency of buildings is an important problem, and
the �rst step is to identify ine�cient buildings. In this paper, we
proposed WattHome, a data-drive approach to identify the least
energy e�cient homes in a city or region. We also implemented our
approach as an open source tool, which we used to evaluate datasets
from di�erent geographical locations. We validated our approach
on ground truth data and showed that our model correctly identi�ed
95% of the homes with ine�ciencies. Our case study on a city-scale
dataset showed that more than half of the buildings in our dataset
are energy ine�cient in one way or another, of which almost 62.25%
of homes with heating related ine�ciencies as probable cause. This
shows that a lot of buildings can bene�t from energy e�ciency
improvements.

As part of future work, we intend to deliver individual ine�-
ciency report generated from our web application to the di�erent
homeowners. These nudges can be used to motivate and incentivize
homeowners towards energy e�ciency measures.
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