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Abstract—Smart meter deployments are spurring renewed in-
terest in analysis techniques for electricity usage data. However,
an important prerequisite for data analysis is characterizing and
modeling how electrical loads use power. While prior work has
made significant progress in deriving insights from electricity data,
one issue that limits accuracy is the use of general and often
simplistic load models. Prior models often associate a fixed power
level with an ‘“on” state and either no power, or some minimal
amount, with an “off” state. This paper’s goal is to develop a
new methodology for modeling electric loads that is both simple
and accurate. Our approach is empirical in nature: we monitor
a wide variety of common loads to distill a small number of
common usage characteristics, which we then leverage to con-
struct accurate load-specific models. We show that our models are
significantly more accurate than binary on—off models, decreasing
the root mean square error by as much as 8x for representative
loads. Finally, we demonstrate three novel applications that use
our empirical load models to analyze and derive insights from
smart meter data, including i) generating device-accurate syn-
thetic traces of building electricity usage; ii) filtering out loads that
generate rapid and random power variations in smart meter data;
and iii) detecting the presence of specific load models in time-series
power data.

Index Terms—Power system measurements, meter reading
power system modeling, load modeling home automation, smart
homes.

I. INTRODUCTION

OMPUTING for sustainability—where real-world phys-

ical infrastructure leverages sensing, networking, and
computation to mitigate the negative environmental and eco-
nomic effects of society’s energy use—has emerged as an im-
portant new research area. As a result, in addition to improving
the energy efficiency of information technology (IT) infras-
tructure, such as smartphones, servers, network devices, and
data centers, computing researchers are now expanding their
focus to include building energy efficiency. Since buildings
account for nearly 40% of society’s energy use [1], compared
to an estimated 1-2% for IT infrastructure [2], this research
has the potential to make a significant impact. In particular,
efficiently managing electricity is critical because buildings
consume the vast majority (73%) of their energy in the form
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of electricity [1]. Existing management techniques typically
employ sense-analyze-respond control loops: various sensors
monitor the building’s environment (including electricity) via a
smart meter, and transmit collected data in real-time to servers,
which analyze it to reveal detailed building usage and occu-
pancy patterns, and finally respond by automatically controlling
electrical loads! to optimize energy consumption.

Research challenges exist at each stage of this control loop.
For example, despite much prior research [3]-[6] accurate, fine-
grained, e.g., > 1 Hz, in situ sensing of electricity use in real
time at large scales remains impractical, as it is prohibitively
expensive, invasive, and unreliable. Unfortunately, timely and
detailed knowledge of per-load electricity use is a prerequisite
for implementing many sophisticated automated load control
policies that increase energy efficiency. Since, even modest-
sized, residential homes operate hundreds of individual loads,
providing per-load data using existing sensors would require a
large-scale sensing system [7]. One promising approach to ad-
dress this problem is to use fewer sensors that generate less data,
and compensate by employing more intelligence in the analysis
phase to infer rich information from the data. For example,
prior research indicates that analyzing changes in a building’s
aggregate electricity usage at small time granularities, e.g.,
every 15 minutes or less, reveals a wealth of information: Non-
Intrusive Load Monitoring (NILM) techniques use the data to
infer electricity usage for individual loads [8], while recent
systems use it to infer building occupancy patterns [9], [10].
These inferences then inform control policies: NILM might
enable buildings to identify opportunities for reducing peak
demand by scheduling elastic background loads [11], such
as air conditioners and heaters, while occupancy patterns are
critical in determining when to turn loads off without disturbing
people’s lives [12].

Since electric utilities are rapidly deploying digital smart
meters capable of measuring and transmitting a building’s
aggregate electricity usage in real time, a substantial amount of
fine-grained electricity data for buildings is already available.
For example, Pacific Gas and Electric now operates over nine
million smart meters in California [13]. While today’s deployed
smart meters typically measure average power usage at inter-
vals ranging from fifteen minutes to an hour, the granularity of
data is trending downwards (e.g., some utilities already provide
5-minute data [14]), and commodity meters are available that
measure and transmit, via the Internet, energy usage at intervals

"'We use the term electrical load, or simply load, to refer to any distinct, self-
contained appliance or device that consumes electricity.
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Fig. 1. An LCD TV’s power usage varies rapidly, significantly, and unpre-
dictably while on, and does not conform to a simple on-off load model.

as small as every second [15], [16]. Combined with the emer-
gence of “big data” cloud storage systems, these smart meter
deployments are spurring renewed interest in analysis tech-
niques for smart meter data. While prior research has made
significant progress in deriving insights from smart meter data
[17], one issue that often limits accuracy is the use of general,
and often simplistic, load models. In particular, many prior
techniques for analyzing and modeling building electricity data
characterize loads using simple on-off models, which associate
a small number of fixed power levels with the “on” state (often
just one) and either no power usage, or some minimal amount,
with the “off” state.

On-off models do have a number of advantages. For in-
stance, they exactly capture many simple loads, including light
bulbs and other low-power resistive devices with mechanical
switches. In addition, on-off models allow researchers to de-
scribe buildings as state machines that associate each building
state with a fixed power level (implying the set of loads that
are on), and where state transitions occur whenever a load
turns on or off. Characterizing buildings as state machines
admits a plethora of analysis techniques. For instance, much
prior work maps building state machines to Hidden Markov
Models (HMMs), and applies HMM-based techniques, such as
Viterbi’s algorithm [18], [19], to determine which loads are on
in each state. In this case, using only a few (often two) power
states per load is advantageous, since it minimizes the number
of distinct power states for the entire building and reduces
the complexity of analyzing the resulting state machine. Of
course, even with only two power states per load, the number
of building power states is still exponential in the number of
loads, i.e., 2" for n loads. Thus, even assuming simplistic on-
off load models, precise analysis may still be intractable, i.e.,
require enumerating an exponential number of states.

Unfortunately, while on-off load models are simple, they are
often inaccurate, since they fail to capture the complex power
usage patterns common to many loads. As a simple motivating
example, Fig. 1 shows a time-series of an LCD TV’s electricity
usage each second. In this case, the TV’s switched mode power
supply (SMPS) causes power variations as large as 120 watts
(W) by rapidly switching between a full-on and full-off state to
minimize wasted energy. The magnitude of these variations is
effectively random—determined by the color and intensity of
the TV’s pixels. An on-off model clearly does not accurately
capture the TV’s power usage. As a result, modeling the TV as
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an on-off load may complicate higher-level analysis techniques
for smart meter data. For example, the TV may obscure the use
of low-power loads, such as a 60 W light bulb, since its power
usage varies rapidly by > 60 W.

Our premise is that simple on-off models discard a significant
amount of information that is potentially useful in analyz-
ing data. As a result, in this paper, we focus explicitly on
accurately characterizing and modeling a variety of common
household loads. Our methodology is empirical: we i) gather
fine-grained electricity usage data from dozens of loads across
multiple homes, ii) characterize their behavior by distilling a
small number of common usage attributes, and then iii) derive
accurate load-specific models based on these attributes. One of
our contributions is to show that a small number of model types,
stemming from basic knowledge of power systems, accurately
describe nearly all household loads. Thus, one of our goals is to
highlight how many identifiable load attributes, which are well-
known in power systems, manifest themselves in electricity
data collected by smart meters. Our hypothesis is that accurate
load models, which leverage domain knowledge from power
systems, provide a foundation for designing new electricity data
analysis techniques. In evaluating our hypothesis, this paper
makes the following contributions.

Empirical Data Collection and Characterization. We in-
strument a wide variety of common electrical loads in multiple
homes, and collect electricity usage data for each load, every
second, for over two years. We show empirically that homes
operate similar types of loads, e.g., lighting, AC motors, heating
elements, electronic devices, etc., which results in significant
commonality in power usage profiles across loads. We then
characterize the data to identify distinguishing attributes in per-
load power usage, forming the building blocks of our models.
While many of these attributes are well-known in power sys-
tems, we show how they manifest in sensor data.

Data Modeling Methodology. We use our empirical char-
acterization to construct a small number of load-specific model
types. We show that our basic models, or a composition of them,
capture nearly all household loads. Our models go beyond
on-off models, by capturing power usage characteristics that
1) decay or grow over time, ii) have frequent variations (as with
the TV in Fig. 1), iii) exhibit complex repetitive patterns of
simpler internal loads, and iv) are composites of two or more
simpler loads. We show that our models are significantly more
accurate than on-off models, decreasing the root mean square
error by as much as 8x for representative loads. Since our
methodology is general, it applicable to modeling other types
of loads beyond those in this paper.

Model-based Data Analysis. Finally, while we expect our
models to have numerous uses, we illustrate three specific
examples of novel applications using these models. First, we
consider generating device-accurate synthetic traces of building
electricity usage for use by NILM researchers. One barrier to
evaluating NILM techniques is ground-truth data collection,
which requires deploying sensors to every building load. Using
our models, NILM researchers can quickly generate different
types of synthetic building traces by composing collections of
load models, and the resulting synthetic trace is more repre-
sentative of real-world data (e.g., in terms of number and sizes
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of power steps) than when using trivial models. Second, we
design simple filters capable of identifying and removing loads
that exhibit rapid power variations (such as an LCD TV). Since
these loads introduce numerous spurious building power states,
removing them improves the accuracy of analysis techniques
that describe buildings as state machines (e.g., by 25% in
our experiments). Finally, we use our models as queries to a
variable-length subsequence matching algorithm to detect the
presence of specific loads in smart meter data.

II. EMPIRICAL DATA COLLECTION AND
CHARACTERIZATION

A typical home consists of dozens of electrical loads, includ-
ing heating and cooling equipment, lights, various appliances
and electronic equipment. A partial list includes:

* Heating, cooling, and climate control equipment such as

a central air conditioner, window air conditioner, space

heater, electric water heater, dehumidifier, fan, air purifier;
 Kitchen appliances such as an electric range, microwave,

refrigerator, coffee maker, toaster, blender, dishwasher;

e Laundry appliances such as a washer and dryer;

» Lighting including incandescent and fluorescent lights;

e Miscellaneous electronic devices such as a television, bat-

tery charger, computer, and gaming console; and

e Other appliances such as a vacuum and carpet cleaner.

Below, we briefly describe the data collection infrastructure
we use to gather data from these common household loads.
We then derive several insights from our data, which we use
to design different types of load models in the next section.

A. Data Collection Infrastructure

Since our methodology is empirical, we instrument three
homes with a large number of energy monitoring sensors to
gather ground truth electricity usage data from a wide variety
of loads. Each instrumented home consists of a smart home
gateway in the form of an embedded Linux server that queries
each sensor to collect data. We have deployed several different
types of energy monitoring sensors, as described below.

We use current transducer (CT) sensors to monitor electricity
usage for large loads wired to dedicated circuits, such as
air conditioners, washing machines, dryers, dishwashers, and
refrigerators. These sensors connect to power meters installed
in the homes’ electrical panel, such as The Energy Detective
(TED) [16] or eGauge [15], which sample per-circuit electricity
usage each second. The sensors transmit data from inside the
electrical panel using powerline networking protocols, such as
X10, Insteon, and HomePlug Ethernet-over-Powerline. We use
the eGauge in our testbeds due to its support for HomePlug,
which provides multiple orders of magnitude higher bandwidth
(> 100 Mbit/s) than X10 and supports reliable transport pro-
tocols, including TCP. We use plug-level energy sensors to
track energy use for smaller loads plugged into wall outlets.
Our plug-level sensors are commodity Insteon iMeters [20] and
Z-Wave Smart Energy Switch meters [21], which use powerline
and wireless communication, respectively, to transmit readings
to our smart home gateway.
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The iMeter plug meters do not support the higher band-
width HomePlug powerline protocol, which severely limits the
frequency at which our gateway is able to poll outlet power
usage. To prevent saturating the powerline (at the Insteon
transmit frequency), our initial prototype polled each iMeter-
connected outlet’s power usage once every 10 seconds. Since
our testbed homes employ more than 30 iMeters, a naive round-
robin polling strategy results in a power reading once every
300 seconds [22]. As a result, we designed a smart polling
strategy [22] that monitors the per-second eGauge circuit data
and only polls outlets on a selected circuit if the eGauge
circuit registers a change in power. Thus, we now only poll
the iMeters to see which outlet’s power changed. We also
use Insteon-enabled wall switches to monitor switched loads
wired directly into the electrical system. These switches replace
normal wall switches, and transmit on-off-dim events to the
gateway whenever a user manually toggles the switch.

The Z-Wave meters enable more rapid polling of power
data every second from each outlet, although we have experi-
enced numerous issues in our testbed with wireless range and
coverage. For example, many sensors must be placed behind
large metal appliances that severely attenuates wireless signals.
Further, even though our testbed homes are not large (roughly
1700 ft?), ensuring that each sensor is within range of the gate-
way is challenging, and requires careful gateway placement.
Larger homes would likely require multiple wireless receivers
or mesh networking protocols, both of which significantly
increase the complexity and cost of the deployment.

While there have been numerous challenges in deploying
our measurement testbeds, as described above, they have now
been continually monitoring hundreds of individual loads for
nearly two years in each of our three instrumented homes.
Since the level of instrumentation in our measurement testbed
is time-consuming and expensive to replicate, we have made
much of our collected data available to benefit other researchers
[7]. More details about our testbed deployment and multi-year
data collection efforts are available in recent work [7]. We
leverage our data to characterize various loads based on a few
elemental types, described below. In addition, the challenges
in deploying and operating our measurement testbed serve as
important motivation for the modeling and analysis techniques
we describe in Sections III and IV. These techniques enable
users to analyze smart meter data to infer information about
individual loads without requiring a power meter attached to
each load. One attractive scenario is for all manufacturers to
release load models once at design time, thereby enabling
anyone to employ the type of model-based analysis techniques
we propose in Section IV.

B. Characterizing Different Types of Loads

Despite their tremendous variety, most residential loads fall
into one of a few elemental load types based on how they con-
sume power in an alternating current (AC) system. In particular,
loads are categorized as either resistive, inductive, capacitive,
or non-linear based on how they draw current in relation to
voltage, which in an AC system varies along a smooth sinu-
soidal pattern. These categories reveal properties of the loads
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Fig. 2. Example resistive loads, demonstrating “step” behavior with a possible initial surge and slow decay to a stable power level. (a) Light bulb. (b) Toaster.
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that we leverage in our models. Since many researchers outside
of power systems may be unfamiliar with these load types, for
each type of load we first review its salient characteristics. We
then empirically characterize data from multiple representative
loads of each type to observe how their specific characteristics
manifest themselves in the data.

Resistive Loads. Loads that consist of any type of heating
element are resistive. Incandescent lights, toasters, ovens, space
heaters, coffee makers, etc., are examples of common resistive
loads in a home. Formally, if a load draws current along a
sinusoidal pattern in the same phase as the voltage, i.e., the
maximum, minimum, and zero points of the voltage and current
sine waves align, then the load is purely resistive.

Fig. 2 depicts a time-series of the power usage for five
different resistive loads with heating elements: an incandescent
light bulb, a toaster oven, a coffee maker, a sandwich press,
and a pod coffee maker, e.g., a Keurig or Tassimo. In general,
the power usage of these loads resembles a “step” when turned
on, with usage that remains relatively stable and flat. The
incandescent light acts as a nearly perfect resistive load with a
power usage equal to the bulb’s wattage. While the toaster oven,
coffee maker, sandwich press, and pod coffee maker act similar
to the light bulb, they experience an initial higher power usage
that slowly decays to a relatively stable usage, highlighted in
Fig. 2. The initial high power is due to the large inrush (or surge)
current that occurs as the device warms up and the resistance
decreases, after which it stabilizes.

Observation 1: Resistive loads exhibit stable power usage
when turned on, with high-power heating elements exhibiting
an initial surge followed by a slow decay to stable power.

Inductive Loads. AC motors are the most common and
widely-used examples of inductive loads. Motors are the pri-
mary component of many household devices, including fans,
vacuum cleaners, dishwashers, washing machines, and com-
pressors in refrigerators and air conditioners. Formally, if a load
draws current along a sinusoidal pattern that peaks after the
voltage sine wave, i.e., the current waveform lags the voltage
waveform, then the load is purely inductive.
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Example inductive loads, demonstrating significant surge current followed by steady power growth or decay. (a) Refrigerator. (b) Freezer. (c) Central

Fig. 3 depicts a time-series of the power usage for five
inductive loads: a refrigerator, a freezer, a central air conditioner
(A/C), a vacuum cleaner, and a window A/C unit. All five
loads operate AC motors. Unlike the resistive loads above,
each inductive load experiences a significant, but brief, initial
power usage. The surge is also due to inrush current that occurs
when starting an AC motor, although it is typically much higher
than for heating elements. Intuitively, the underlying reason is
that, while heating elements heat up slowly, the rotor inside a
motor must transition from completely idle to full speed within
seconds. Power usage then exhibits either a decay or growth,
depending on the motor’s operation, that eventually stabilizes.
In contrast to resistive loads, motors exhibit small variations
even during this “stable” phase. For instance, the refrigerator
shown in Fig. 3(a) exhibits small fluctuations that repeat during
each cycle of the compressor. The freezer, central A/C, vacuum
cleaner, and window A/C depicted in Figs. 3(b), (c), (d), and (e)
all show an initial spike followed by a sharper, smoother growth
(central and window A/C) or decay (freezer and vacuum),
with small variations as the usage stabilizes. These patterns
demonstrate that, unlike resistive loads, modeling inductive
loads using simple on-off step functions is problematic.

Observation 2: Inductive loads with AC motors exhibit an
initial power spike followed by a growth or decay to a stable
power level. The growth/decay rate is load-dependent, with the
stable power level also exhibiting fine-grained variations.

Capacitive Loads. Capacitive loads are the dual of inductive
loads. Formally, if a load draws current along a sinusoidal
pattern that peaks before the voltage sine wave, i.e., the current
waveform leads the voltage waveform, then the load is purely
capacitive. While many loads have capacitive elements, they
generally occur in addition to other resistive and inductive
elements which dominate their overall behavior. Thus, there are
no significant capacitive loads in buildings, particularly when
considering real (as opposed to reactive) power.

Non-linear Loads. Finally, any load that does not draw
current along a sinusoidal pattern is called non-linear. Non-
linear loads may also be resistive, inductive, or capacitive based
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on when their current waveform peaks. The most predominant
non-linear (and largely inductive) loads are electronic devices,
including computers and TVs. The non-linear nature of these
loads is primarily due to the use of switched-mode power
supplies (SMPSs). Fluorescent lights are another example of
a non-linear (inductive) load. Smaller electronic devices that
convert AC to low-voltage DC, such as battery chargers for
portable devices and digital clocks, are also non-linear.

Fig. 4 shows the power usage of five different non-linear
loads: an LCD TV, a Mac Mini desktop computer, a microwave
oven, a duct heater for a heat recovery ventilator (HRV), and
a computer monitor. These loads exhibit significant power
fluctuations when active, but also have a stable floor or ceiling
from which these fluctuations derive. The LCD TV shown in
Fig. 4(a) exhibits a stable maximum usage with random power
reductions from this ceiling. These fluctuations result from dis-
playing a variety of color and pixel intensities on the screen. Not
surprisingly, the computer monitor in Fig. 4(e) has a similar pat-
tern of power usage. In contrast, the desktop computer shown in
Fig. 4(b) has a stable minimum power draw, with random power
spikes above this floor depending on its workload, e.g., causing
the CPU to ramp up, etc. Both the TV and desktop computer
consist of a switched mode power supply (SMPS) that regulate
the power usage of the device and switch between a full-on and
full-off state to minimize wasted energy. The duct heater shown
in Fig. 4(c) demonstrates two regular modes of operation; an
active heating mode—with instantaneous intensity managed
by the HRV controller—and a passive mode. In both modes,
there are large, random variations in power usage. In the active
state, there is also a clear stable maximum usage. Finally, the
microwave shown in Fig. 4(d) has what initially appears to be
a straightforward step, similar to the resistive loads. However,
zooming in shows the microwave’s non-linear behavior, with
rapid, albeit small, variations in the second-to-second usage,
along with larger periodic power shifts. These examples show
that on-off models are inappropriate for non-linear loads, since
two power states cannot capture their wide range of power
variations.
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Example composite loads, demonstrating combinations of the simpler loads above arranged in phases. (a) Washing machine. (b) Dryer. (c) Dishwasher 1.

Observation 3: Non-linear loads exhibit significant random
variations in power usage. These fluctuations are often range-
bound and capped by a floor or ceiling in the power level.

C. Composite Loads and Reactive Power

Composite Loads. Many household loads, particularly large
appliances, are not purely resistive, inductive or non-linear.
Instead, these loads consist of multiple components, each of
which may be one of the simpler load types. For instance,
a central air conditioner may consist of a compressor, a fan
to blow air into ducts, duct dampeners to control air flow,
and central humidifiers to control humidity. A refrigerator,
which has a compressor that is an inductive load, may also
consist of door lights, an ice maker, and a water dispenser.
Similarly, electric dryers, washing machines, and dishwashers
also consist of a motor—to spin clothes and circulate water
via a pump—and a heating element—to dry clothes or warm
water. In addition, these appliances often operate in repetitive
cycles that activate each of their constituent loads differently,
such as washing, draining, and then drying for a dishwasher.
Fig. 5 depicts the power usage of a washing machine, a dryer,
two dishwashers, and the HRV. As shown, these loads exhibit
distinct behavior in different parts of their cycle depending on
which appliance component is in use. For example, based on the
observations above, distinguishing when a complex load, such
as the dryer, activates its heating element versus its motor is
straightforward. Finally, an appliance may activate its various
components in sequence, in parallel, or both. For instance, a
central air conditioner may operate the compressor, the fan and
the dampeners concurrently, while a dishwasher may operate its
motor, pump and heater in sequence.

Observation 4: Composite loads consist of simpler resistive,
inductive and non-linear loads that operate in parallel, in se-
quence, or both. As a result, composite loads exhibit distinct
behaviors in different operating regions of their active cycle.

Reactive Power. Finally, another important characteristic of
the elemental load types above is how they consume reactive
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power. While real power is the amount of power delivered to
a load, and is often referred to as simply electricity or power
(without the qualifier), reactive power is the amount of power
generated, but not delivered, to the load; it is also measured in
units of watts, but written as voltage-amperes reactive (VAR)
to distinguish it from real power. Reactive power arises when a
load draws current out of phase with the voltage. Thus, only
non-resistive loads generate reactive power. At a high level,
reactive power is the result of the instantaneous power (the
product of current and voltage) occasionally becoming negative
within each AC cycle, due to out-of-phase current and voltage.
This state causes power to flow towards the generator and away
from the load. Reactive power is typically dissipated as heat in
power lines. For our purposes, reactive power provides addi-
tional useful information for modeling, and many commodity
power meters are capable of measuring it. As a result, our
models include both real and reactive power.

Fig. 6 depicts companion graphs for selected loads that
shows their reactive, rather than real, power usage. Fig. 6(a)
shows that, similar to real power, a resistive dimmable incan-
descent light produces a stable—zero if not dimmed—amount
of reactive power when on, although the magnitude of the draw
peaks at 50% dim level and decreases as the light approaches
either 0% or 100% dim level. Likewise, an inductive load like
the refrigerator in Fig. 6(b) exhibits a spike followed by a
flat reactive draw; a non-linear load like the duct heater in
Fig. 6(c) has a rapidly varying power usage; and composite load
like dishwasher 1 in Fig. 6(d) operates a sequence of simpler
internal loads. In each case, the pattern of a load’s reactive
power usage follows its pattern of real power usage.

Observation 5: While the magnitude of reactive power dif-
fers from real power, a load’s pattern of reactive power con-
sumption is qualitatively similar to its real power consumption.

D. Summary

In classifying loads in terms of the elemental load types
above, we observe that nearly every common household electric
load is a composition of one or more of the small number
of resistive, inductive, and non-linear loads described above,
with heating elements and AC motors consuming the majority
of electricity in homes. Further, each type of elemental load
exhibits similar characteristics when active: heating elements
have a stable power usage or one that decays slowly over time,
AC motors have a spike in power on startup and then vary
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and can help in identifying different types of electrical loads. (a) Dimmable light

their power usage smoothly over time, while SMPSs exhibit
rapid and significant power variations. As we discuss in the
next section, the presence of only a few elemental load types
in homes simplifies model design, enabling us to accurately
capture their behavior using a few basic types of models.

III. LOAD MODELING METHODOLOGY

Based on our empirical observations from the previous sec-
tion, we develop models to capture key characteristics of each
load type. We first present four basic model types—on-off,
on-off growth/decay, stable min-max, and random range— to
describe simple loads, and then use these models as building
blocks to form compound cyclic and composite models that
describe more complex loads. Ideal models describe i) how
much real and reactive power a load uses when active, ii) how
long aload is active, and iii) when a load is active. However, in
many cases, users manually control loads, such that when a load
is active and for how long is non-deterministic. For example,
a user may run a microwave any time for either ten seconds
or ten minutes. For these loads, we assume a random variable
captures this non-determinism, and focus our efforts, instead,
on modeling how each load behaves when active.

Given each model type, we employ an empirical methodol-
ogy to construct accurate load-specific models: we leverage our
observations of the load’s power usage as a training set, and
employ curve-fitting methods to map one of the model types
onto the time-series data. If the best model type is not clearly
evident a priori, we fit multiple models and then choose the
one that yields the best fit. As described below, depending on
the model type, we may employ simple regression or more
complex curve-fitting methods, such as LMA [23], to construct
a load-specific model for a given model type. As discussed in
Section II, reactive power for loads exhibits similar behavior as
real power, and thus constructing a model of a load’s reactive
power consumption uses the same methodology as above.

A. Basic Model Types

On-off Model. As discussed in Section I, prior work often
uses simple on-off load models. An on-off model includes two
states—an on state that draws some fixed power pyctive and an
off state that draws zero, or some minimal amount of, power
Doy f- Conventional, non-dimmable incandescent lights are the
canonical example of an on-off load. Dimmable lights also
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conform to on-off models, although p,.tive depends on the
dim level. As shown in Fig. 6(a), a N% dim level yields a
proportionate reduction in real power usage. In addition, while
real power is a simple linear function of dim level, reactive
power is a quadratic function that peaks at 50% dim level.
Constructing an on-off model is simple—we use regression to
determine appropriate values pytive and p, s . In particular, we
partition the time series of load power usage into two mutually
exclusive time-series, with data for the on and off periods, to
determine the best values of pactive and poy .

On-off Growth/Decay Model. An on-off growth/decay
model is a variant of the on-off model that accounts for an
initial power surge when a load starts, followed by a smooth
increase or decrease in power usage over time. As discussed in
Section II, AC motors are the most common example of a load
exhibiting this behavior, e.g., refrigerator, central A/C, vacuum.
Resistive loads with high-power heating elements, such as the
toaster or coffee maker, also conform to an on-off growth/decay
model, although the surge and the decay in these devices is far
less prominent than in AC motors. We characterize on-off decay
models using four parameters: Pactives Pof f» Ppeaks and A. The
first two parameters are the same as in on-off models, while
Dpeak Tepresents the level of inrush current when a device starts
up and A represents the rate of growth or decay to the stable
Dactive power level. We model decay using an exponential
function as follows, where t,.ve 1S the length of the active
interval.

p(t) = {pactive + (ppeak - pactive)ei)\ty 0 S t< tactive
Poffs t> toctive-

Similarly, we model on-off growth as a logarithmic function
(i.e., the inverse of the exponential function) using starting
power level ppqse and growth parameter A:

p(t) _ {pbase + )\lnt, 0<t< tactive

Poffs t> tactive-

We can optionally augment the growth model with an addi-
tional parameter p..;; to prevent unbounded growth that simply
caps the maximum output of the model. In the growth model,
the surge current must also be modeled separately (such as in
the central A/C shown in Fig. 7(d)). Here, we can simply add a
parameter pgy;k. specifying the power at ¢ = 0.

As with the on-off models above, the length of the active
interval for on-off growth/decay models is often not known

200 | Growth/Decay &sxsxy
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On-off

150 - On-off (first 30s)

100 -
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o
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Fig. 8. On-off growth/decay models are more accurate than on-off models.
a priori since it may depend on user behavior. However, we
have observed that in many cases users repeatedly operate
devices in the same way, e.g., a toaster that toasts a bagel
every morning. In many cases, the device determines %,ctive
automatically, e.g., the compressor for a refrigerator or freezer
may turn on for an average of 20 minutes in each cycle. In
these cases, we incorporate the mean value of 4.4y into the
model. Constructing an on-off growth/decay model requires
fitting an exponentially decaying (or logarithmically growing)
function onto the time-series data, in addition to determining
Dpeak> Pactives ad poyr. We employ the LMA algorithm [23]
to numerically find the exponential or logarithmic function that
best fits the data, i.e., based on a least-squares nonlinear fit.

Fig. 7(a) shows the specific on-off decay model for a cof-
fee maker in parallel with its real power data. The figure
demonstrates that the exponential decay is a highly accurate
approximation of the coffee maker’s power usage. In this
case, Pactive = 905, Ppeak = 990, pory = 0, and A = 0.045.
Likewise, Fig. 7(b) and (c) show on-off decay models and real
power data for a toaster and a portion of a dryer cycle. Finally,
Fig. 7(d) shows how well an on-off growth model fits the real
power data for the central A/C from Fig. 3(c). For comparison,
we also fitted the lowest-error on-off model for each of the
four representative device cycles pictured in Fig. 7. We then
calculated the root mean square error (RMSE) for both the on-
off and on-off decay models for (a) each load’s duration, and
(b) its first 30 seconds of activity (including the “on” event). As
seen in Fig. 8, the growth/decay model decreases the error in
the on-off model by as much as 8, particularly in the first 30
seconds where the on-off model is unable to capture the rapid
decay behavior.

Stable Min-Max Model. While on-off and on-off de-
cay models accurately capture the behavior of resistive and



BARKER et al.: EMPIRICAL CHARACTERIZATION, MODELING, AND ANALYSIS OF SMART METER DATA

1801 TV model
160

140
120 -
100 -
80

Power (W)

60 -
40r
20+

0

0 é 4‘1 é é 1IO 1I2 1I4 1I6
Time (min)
(pactivevpspik& /\) = (1607 1207 1082)

Fig. 9. A stable-max model of the LCD TV from Fig. 1.

inductive loads, they are inadequate for modeling non-linear
loads. As seen in Section II, many non-linear loads maintain
a stable maximum or minimum power draw when active, but
often vary randomly and frequently from this stable state.
These variations are due to the device rapidly regulating their
electricity usage to “match” the current needs of the device. Our
stable min-max model captures this behavior by first specifying
a stable maximum or minimum power when active, denoted by
Pactive- The power usage then deviates, or “spikes,” up or down
from this stable value at some frequency. The magnitude of
each spike is chosen uniformly at random between pg .ty and a
specified maximum deviation, denoted pgp;xe. The inter-arrival
times of the spikes are exponentially distributed with mean A.
Thus, the stable min-max model is specified by the choice of
Dactives Pspike> and A (as well as whether pgctive denotes a
stable minimum or a stable maximum).

Empirically constructing a load-specific stable min-max
model requires determining the stable power level pyctive
and characterizing the magnitude and frequency of the power
spikes. We employ simple regression to determine the stable
power level p,.1ive from the data, e.g., after filtering out the data
for spikes and finding the fit for p,ctive. The mean observed
duration between spikes then yields the parameter A. Fig. 9
shows our stable-max model for the LCD TV (from Fig. 1)
using a maximum pgetive of 160 W and a A of 10.82, which
we derive from the TV’s real power usage data. Importantly, as
we discuss in Section IV, both the model and the raw data have
similar statistical properties, which simple filters can recognize
by detecting when power variations are significant, frequent,
and symmetric, e.g., a decrease and then immediate increase in
power of similar magnitude.

Random Range. Finally, we found that some devices draw
a seemingly random amount of power within a fixed range
when active. This is likely due to the fact that taking aver-
age power readings each second is too coarse a frequency to
capture the device’s repetitive behavior. We model such loads
by determining upper and lower power usage bounds, denoted
by Pmax and puin. When active, our model randomly varies
power within these bounds using a random walk. Note that the
random range model is similar to the stable min-max model
in that both employ upper and lower bounds on power usage.
However, while the deviations in the stable min-max model are
spikes from a stable value, those in the random range model are
power variations within a range. The microwave is an example
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of a load that exhibits this behavior. As shown in Fig. 4(d),
when turned on, the power usage of the microwave fluctuates
continuously between 1400 W and 1480 W.

Random range models require determining the minimum and
maximum of the load’s range of power usage. We determine
these values by simply choosing the minimum and maximum
power values observed in training data, or by deriving a dis-
tribution of power values from the data and choosing a high
and low percentile of the distribution to be the minimum and
maximum, Py, and pmax. We then model the variations with a
random walk within the range.

B. Compound Model Types

While the models above accurately capture the behavior of
simple loads, many loads, including large appliances, exhibit
complex behavior from operating a variety of smaller con-
stituent loads. We devise two types of compound models for
complex loads that use the basic building blocks above.

Cyclic Model. Cyclic loads repeat one of the basic model
types in a regular pattern, often driven by timers or sensors.
For example, the HRV heater employs a timer that activates
for 20 minutes each hour. Similarly, a refrigerator duty-cycle is
based on sensing its internal temperature, which rises and falls
at regular intervals and fits our model well, as shown in Fig. 3(a)
and (b). A cyclic model augments a basic model by specifying
the length of the active and inactive period, ¢4ctive and Lipactives
each cycle. Constructing cyclic models is straightforward, since
it only requires extracting the duration of the active and inactive
periods from the empirical data. We currently use the mean of
the active and inactive periods from the time-series observations
to model tactive and tinactive~

Composite Model. Composite loads exhibit characteristics
of multiple basic model types either in sequence or parallel.
Example composite loads include dryers, washing machines,
and dishwashers, as shown in Fig. 5. Sequential composite
loads operate a set of basic load types in sequence; we model
them as simple piecewise functions that encode the sequence
of basic load models, including how long each load operates.
For instance, a model for a dishwasher is a sequence of stages:
modeled as the operation of the motor (wash stage), pump
(drain stage), motor (rinse stage), pump (drain stage) and heater
(dry stage), where each individual stage uses an inductive or
resistive load. Some loads also exhibit characteristics of two
or more basic models in parallel if two basic loads operate
simultaneously. For example, a refrigerator may simultaneously
activate both a compressor and an interior light. We model
parallel composite loads by summing the power usage for two
or more of the basic model types. Finally, composite loads may
also be cyclic, referred to as cyclic composite loads, which
repeat a pattern of individual model types at regular intervals.
Our methodology permits arbitrary compositions of sequential,
parallel or cyclic loads.

Constructing load-specific composite models is more com-
plex and requires additional manual inputs. For example,
constructing a sequential composite model requires manually
partitioning and isolating load time-series data into individ-
ual sequences that reflect the activation of the various load



1320

600 washing machine

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 7, JULY 2014

on-off decay, cyclic f__J_\

500 random range, cyclic on-off decay
A (growth)
400 -~ random —*—\

Power (W)
8
o

200 -on-off decay,
cyclic
100

stable min range

0 5 10 15 20

25

Time (min)

Fig. 10. A single complete cycle of a washing machinenannotated with the model types for the operation of simpler internal loads.

components. Each individual component of the composite load
is modeled using a basic model type. The composite model
is then simply a concatenation of these piecewise models in
sequence (the duration of each component may be specified in
the model or left as a variable).

As an example, Fig. 10 shows an extended operating cycle
of the washing machine with the annotations for different basic
load model types in the sequence. We represent these models as
large piecewise functions of the basic models describing each
constituent load. In addition, many of the large appliances that
have composite models also have numerous operating states.
For example, the washing machine and dryer in one of our
homes has over 25 different types of cycles. Ideally, a model
includes a different piecewise function for each cycle type.
However, in the homes we monitor we have found that most
residents operate devices using only a few states—in most
cases one.

Constructing parallel composite models poses additional
challenges. Since the time-series data for a load captures the
power usage for all components that are concurrently active,
there is no straightforward general-purpose technique to ex-
tract individual models from the composite time-series data.
In practice, however, extracting basic models is often possible
through exogenous means. For instance, many loads permit
operating individual components to isolate them for profiling,
e.g., such as a running a dryer on tumble mode without any
heat or using an air conditioner’s fan without any cooling. After
separately profiling a constituent load, such as the tumbler or
fan, it is possible to operate the compressor and the fan, and
then infer the compressor power usage by “filtering out” the
tumbler or fan usage from the aggregate. In some devices, such
as a refrigerator, it also might be possible to deploy additional
sensors that monitor important events, such as a door opening
that triggers lights, to filter them out. Ideally, the model of a
complex composite device would be provided by the device
manufacturer, as the problem of identifying the components
of a composite device is largely orthogonal to the problem
of modeling each component. However, using the techniques
described previously, it is generally possible to identify the key
components even without detailed knowledge of the internals of
the device (though for many devices, substantial information on
the components and operation of the device is readily available,
e.g., in an owner’s manual).

IV. MODEL-BASED DATA ANALYSIS

While we expect our models to have numerous uses in a
variety of analysis and optimization tasks in building energy
management, below, we illustrate three examples of novel
applications we have designed: i) generating device-accurate
synthetic data of a building’s aggregate electricity usage, ii) de-
signing filters to identify and remove random and frequent
power variations from stable min-max loads, and iii) detecting
the presence of specific load models in filtered power data using
an existing variable-length subsequence matching algorithm for
time-series data. Each of these applications focuses on improv-
ing the analysis of smart meter data that records a residential
home’s average electricity usage each second. We assume the
smart meter not only transmits data to the utility for billing pur-
poses, but also provides home users an interface to access the
data. In this architecture, similar to our measurement testbeds,
home users may employ a programmable gateway (either on-
site or cloud-based) under their control to record and analyze
the data to inform either manual or automated energy-efficiency
improvements, e.g., via programmatic load control and schedul-
ing. As we show, our applications should prove useful in both
i) developing new techniques for analyzing smart meter data
and ii) supplementing existing well-studied techniques, e.g.,
NILM, already developed by researchers and in broad use.

A. Device-Accurate Synthetic Building Data

Evaluating new techniques for analyzing electricity data
requires actual building data for testing. Unfortunately, while
recording a building’s aggregate electricity usage is simple,
requiring only a single smart meter, recording detailed aspects
of the building’s environment is not. For instance, evaluating the
accuracy of a NILM algorithm, which disaggregates building
electricity data into power data for individual loads, requires
power data from both the entire building and each of its con-
stituent loads. However, NILM’s entire purpose is to prevent the
need for recording such ground truth data at each load. As our
own experience from Section II-A indicates, setting up even a
test infrastructure for collecting ground truth data is expensive,
invasive, and time-consuming, since it requires a power meter
attached to each load in the home. While there are a few data
sets for select buildings available for NILM researchers to use
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in evaluation [7], [24], [25], they typically do not instrument
every load nor do they cover a wide range of building types or
load characteristics.

To address this problem, our first application uses our models
to automatically generate device-accurate synthetic electricity
data for buildings. Being device-accurate means that the syn-
thetic trace data includes both the synthetic aggregate time-
series power data for a building, as well as time-series power
data for each of the constituent loads in the building generated
using our models. While prior work targets generating synthetic
traces of the power usage for entire buildings [26], we are
not aware of any previous work that focuses on being device-
accurate. Unlike real-world trace data collected from specific
buildings, the synthetic traces generated using our models will
provide researchers explicit control over the number and types
of loads present in the data, enabling them to control the sta-
tistical properties of the dataset and discover which properties
have the most influence on their results. Importantly, synthetic
data does not not require researchers to deploy a large number
of per-load power meters.

Fig. 11 shows an example of how our device-accurate syn-
thetic building data compares with data collected from a real
building. To generate the synthetic trace shown in Fig. 11(b),
we replace each occurrence of a given device in the ground-
truth data shown in Fig. 11(a) (i.e., each period when a device
is using power) with our model of that device over the same
time period. Fig. 11(c) shows a zoomed-in comparison of the
two traces over a 15 minute period to graphically illustrate their
similarity. The ground-truth and model-based traces look quali-
tatively similar, but they also have similar statistical properties:
the real data (a) has an average power of 1200 W, a standard
deviation of 1072 W, and 5591 changes in power > 15 W, while
the synthetic data (b) has an average power of 1165 W, a stan-
dard deviation of 1073 W, and 5833 changes in power > 15 W.
Since the synthetic data is composed of data from models of
individual loads, it is useful for analysis techniques that look
for patterns in the aggregate usage data. By comparison, if we
generate on-off models that include at most 4 power states per
load (as in recent work [24]), there are only 1985 changes
in power > 15 W, which eliminates many identifiable load-
specific characteristics useful in analysis.

In addition to comparing our model-based trace data with
the real building data, we also show that a state-of-the-art
NILM disaggregation algorithm produces similar results using
both datasets. Formally, a NILM algorithm analyzes changes in
smart meter time-series power data, P(t), to compute a separate
power time-series p;(t) for each i = 1...n loads in a home.

NILM is a well-studied problem first proposed over 20 years
ago [27]. We use the same NILM algorithm as Kolter and
Johnson [24] to evaluate their Reference Energy Disaggrega-
tion Dataset (REDD), which was based on the technique by
Kim et al. [28] and models building power data as a Factorial
Hidden Markov Model (FHMM). We quantify the algorithm’s
accuracy using the dissaggregation error factor. For n loads
with predicted power pi and actual power p! at time ¢ for all
times 7, the disaggregation error factor is computed as follows:

23:1 Z:‘L:I |pff - 13“
T -
Zt:l Z?:l Di

The numerator is the sum of the absolute value of the
difference between the predicted and actual power for each
load for all time periods 7', while the denominator is two
times the aggregate energy. An error factor of zero indicates
precise second-to-second disaggregation, while an error factor
of one indicates that the second-to-second errors equal the
energy use of the home. Thus, simply predicting power for all
loads to be zero every second results in an error factor of one.
Note that, since we monitor average power each second, the
numerator and the denominator are in units of watt-seconds or
joules. Based on the equation above, we can also compute a
disaggregation error factor for each individual load, called the
load error factor. In this case, the numerator and denominator
do not sum over all n loads, but only over the single load.

The FHMM-based NILM algorithm requires a training phase
that uses data from each load to learn a power usage model for
each load. Unlike our empirical models, the per-load models
used by the FHMM include only 4 power states, although we do
not explore how our models might apply to NILM in this paper.
We train the FHMM on the same per-load data to generate the
4-state models, and then run the NILM algorithm on both the
real building data and our synthetically generated trace data.
Our results show that the NILM algorithm has a disaggregation
error factor of 0.796 when using the real building data and 0.735
when using our synthetically generated data—a difference of
only 7.5%. This similarity in error factors demonstrates that
our synthetic data produces similar results for NILM algorithms
as real data. In addition, Fig. 12 shows both the disaggregated
refrigerator and actual refrigerator trace using the real building
data (a) and the disaggregated refrigerator and model-derived
refrigerator trace using our synthetic trace data (b). The figure
graphically illustrates the similarity in results from the NILM
algorithm operating on the real versus the synthetic data, and
demonstrates that our synthetic traces are device-accurate.

Error Factor =

(D
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Fig. 13. A few highly variable (non-linear) loads are responsible for the vast

majority of power variations in a home’s per-second smart meter data.

Result: Our load models are useful in generating device-
accurate synthetic datasets that enable researchers to test and
validate new analysis techniques for smart meter data.

B. Stable Min-Max Filters

Since stable min-max loads account for the large majority
of power variations in a home, filtering out their variations
can significantly improve subsequent data analysis techniques,
including the HMM-based NILM algorithms above that models
a building as a state machine composed of on-off loads. To
illustrate this point, Fig. 13 shows a bar graph of the number
of second-to-second power variations in a single day for each
of 19 active circuits in one of the homes we monitor. The graph
demonstrates that a small number of circuits account for the
vast majority of the power variations in the home—notably
resulting from two non-linear loads (the HRV’s duct heater and
the living room TV) and two composite loads with non-linear
components (the washing machine and dryer), each of which
is highlighted in Fig. 4. In total, there were 61958 variations
in power (> 1 W) out of a total of 86400 data points over the
24-hour period, out of which 49827 (or 80.4%) were caused by
the HRV’s non-linear duct heater from Fig. 4(c). The washing
machine and dryer, combined, caused another 8486 variations
(or 13.7%), followed by the living room TV, which caused 2432

variations (or 3.9%). Collectively, 98% of the second-to-second
power variations over the course of the day derived from the
four loads above, while only 2% of the variations derived from
the home’s other 90 loads.

The large number of power variations caused by non-linear
loads makes data analysis challenging. For instance, it may
be difficult to discern if a 60 W increase in power is due to
a light bulb turning on or simply one of many random varia-
tions caused by a large non-linear load. Unfortunately, existing
techniques, such as the NILM algorithm from the previous
section, that model loads using a few discrete power states
are not equipped to detect these rapid and seemingly random
variations. However, our modeling indicates that these loads
exhibit highly identifiable features, namely by maintaining
stable minimum or maximum power levels. Thus, we design a
simple filter to identify rapid variations from a stable minimum
or maximum power level and remove them from the aggregate
trace. Filtering these loads out of the smart meter data not
only enables a new way to identify this special class of load,
it also simplifies the data by removing a large number of power
variations, which, as we show below, improves the results of the
existing NILM algorithm from the previous section.

Our stable min-max filter works by simply scanning through
the power data time-series for a home and maintaining a stable
power parameter, which only updates if power deviates from
the current parameter setting for more than time 7" by some
threshold power Pjpreshoid, both of which are chosen based
on the load’s model. The idea is to update the stable power
when other devices operate (e.g., a lamp that is turned on) and
leave these steps unchanged. Power steps that do not update
the stable power are attributed to the stable min-max device
and filtered—the settings of Pjpyeshorq and T' determine how
large and how long a power change may be to be considered a
transient change stemming from the stable min-max device.

To clearly illustrate the filter’s effect, Fig. 14 applies the filter
to aggregate power data that includes only the TV and duct
heater (from Fig. 4) combined with a 60 W light bulb. Since the
TV and the duct heater exhibit rapid power variations every few
seconds (see Fig. 4), the value of T need only be slightly greater
than the typical frequency of the variations. In both cases we
set 7' = 5 seconds. In addition, we select a value of 10 W for
Pihresholqa since both loads have a narrow maximum power
usage that varies by less than 10 W. As the figure shows, the
filter makes the duct heater and TV appear to be simpler loads
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Fig. 14. The stable maximum power enables a filter that removes power
variations in smart meter data, making it easier to detect on-off transitions.

with discrete power states, making it possible to easily identify
a 60 W light bulb turning on or off by observing changes in
power in the filtered data. However, without filtering, any data
analysis technique, e.g., using HMMs, that uses changes in
aggregate power usage to identify when the light bulb turns on
or off would have difficulty, since operating either the TV or
duct heater obscures changes in the light bulb’s power by in-
troducing significant and frequent power variations. In fact, the
duct heater’s power variations alone are large enough—greater
than 800 W in some cases—to obscure all but the largest loads
in the home.

Finally, we also ran the NILM algorithm described in
the previous subsection on the unfiltered smart meter data and
the data with the duct heater filtered out. We then computed the
load error factor for each load in both cases, and found that they
were generally less when the duct heater had been filtered out.
As an example, Fig. 15 shows time-series power data for the
home’s refrigerator (a), as well as the disaggregated refrigerator
power trace using the unfiltered (b) and filtered (c) smart meter
data. The figures illustrate that the refrigerator power trace
disaggregated after filtering the smart meter data more closely
resembles the ground truth power usage of the refrigerator.
The load error factor for the disaggregated refrigerator trace
quantifies this resemblance to ground truth: it is 1.328 from
the unfiltered data (b), while it is 0.987 (or 25% less) from the
filtered data (c).

Result: Uniquely identifiable properties in our load models
enable new analysis techniques, such as our filter, and improves
existing techniques, such as the NILM algorithm above.

C. Load Detection

Finally, a third use of our models is detecting the presence of
specific loads within a building’s aggregate power trace. Load
detection can reveal many useful pieces of information, such
as when devices turn on, how long they tend to operate, and
how much power they consume. Load detection is distinct from
the well-studied NILM (or load disaggregation) problem [8],
[29], in that the latter attempts to attribute a building’s entire
power usage across a known set of loads, while the former only
attempts to detect the presence of a single load. Here, we study a
simple distance-based matching technique as one representative
example of using our models for load detection.
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The core idea in distance-based matching is to use load-
specific models to generate representative time-series of
devices, which can then be compared against real-world
usage data. By computing the “distance” between the model-
generated time-series and the observed data, we can identify
close “matches” corresponding to the operation of specific
devices. Performing this matching requires the use of a spe-
cific distance measure. The most natural distance measure is
standard Euclidean distance, computed as the square root of
the sum of squared differences between energy values (i.e.,
predicted and actual) at the same times—i.e., for time-series
a and b each with N points, the Euclidean distance is given by
Dguclidean = \/ (>~ la; — b;]?). The primary advantage of
Euclidean distance is simplicity and computational efficiency
(i.e., O(N) complexity). However, matching accuracy may
suffer when two time-series are similar in shape, but are not
well-aligned in time. This issue tends to arise with devices
where the length of the active period is not known a priori, but
rather determined by users at runtime, such as a light bulb that
might be active either for ten minutes or an hour.

Results of matching model-generated time-series against ag-
gregate data with Euclidean distance are shown in Figs. 16, 17,
and 18, for three different devices. Here we simply construct
models of each device and specify the model parameters (e.g.,
magnitudes) manually, though we envision a better scenario
in which models are drawn from a global database containing
(known) models for many devices. Note that we match second-
to-second power deltas, i.e., changes in power, rather than
absolute power values. The absolute values of the aggregate
energy trace are typically much greater than the power usage
of a specific device, which makes them largely meaningless
when comparing with a model for a specific device. Matches
are observed when the distance measure experiences a drop,
indicating a closer similarity to the device model time-series.
For example, the distance measure in Fig. 16(b) experiences
significant drops (circled) whenever the refrigerator compressor
cycles on. These drops are due to the close similarity of the
refrigerator model to the actual refrigerator operating within
the aggregate trace. Furthermore, the drops make it relatively
straightforward to closely approximate the actual refrigerator
operation; for example, we can simply insert the refrigerator
model when specified by local minima in the distance mea-
sure. Circled in Fig. 16 are drops exceeding a fixed thresh-
old, which is a simple but concrete way to detect device
“on” events.

We see similar drops in Figs. 17(c) and 18(b); however, using
our naive threshold-based method to identify device operation
leads to a significant number of false positives, e.g., roughly
200 false positives for the washing machine for only three
actual device cycles. However, most of these false positives
are clustered around the true positives, so simple locality-
based heuristics, e.g., such as averaging within a window and
accounting for knowledge of the approximate cycle length, can
still result in accurate load detection.

Some of the shortcomings above with using Euclidean dis-
tance matching can also be mitigated by incorporating a no-
tion of temporal stretching and amplitude transformation when
matching traces. For example, we may know the consistent
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Fig. 15.

included. (c) With duct heater filtered out.
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Disaggregating refrigerator trace with the duct heater included and with the duct heater filtered out. (a) Actual refrigerator trace. (b) With duct heater

4000 grid — 2500 refrigerator —— 1 .

3500 distance ——— 1200 r—*—]__P—A
__ 3000 _ I = 1000 r
s s b ol s
< 2500 2 1500 M ol 2 800
g 2000 g W Wt vkt 8 556 )
S 1500 S 1000 3 refrigerator ——
o [l O 400 distance -~

1000 500

500 200

00 200 400 600 800 1000 1200 o0 200 400 600 800 1000 1200 0 120 140 160 180 200 220
Time (min) Time (min) Time (min)
(€Y) (b ©

Fig. 16. Refrigerator matches using Euclidean distances. (a) Aggregate trace. (b) Refrigerator Euclidean distances. (¢) Zoomed-in.
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Fig. 17.

Washing Machine matches using Euclidean distances where the model used is one entire cycle of the washing machine turning on. (a) Aggregate trace.
(b) Washing machine Euclidean distances. (¢) Zoomed-in.
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Fig. 18.

shape of a given device’s usage, but not how long it operates
(i.e., the temporal dimension) or exactly how much power it
uses at a given time (i.e., its amplitude). Despite the ease with
which we may be able to visually identify such devices within
a trace (based on their shape alone), Euclidean distance may
perform quite poorly on these devices due to slight differences
between measured data and the device’s model.

We explore an alternate matching technique detailed in [30]
that aims to account for these issues, which we refer to as “aug-
mented Euclidean matching.” The idea behind this technique
is to account for amplitude scaling by searching for matches

Dishwasher matches using Euclidean distances. (a) Aggregate trace. (b) Dishwasher Euclidean distances. (¢c) Zoomed-in.

of a linear function of the input, i.e., searching for a and b
such that aX + b matches the aggregate, and to account for
temporal scaling by averaging consecutive points, i.e. changing
the effective length of the time-series. After applying these
changes, multiple candidate time-series windows are searched
to determine matches, using an optimization to limit the number
of windows that must be searched. Detailed discussion of this
technique is omitted for brevity’s sake but can be found in [30].
The technique is one of many within the time-series database
community that looks for patterns in time-series data that are
similar to a query time-series.
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Fig. 19. Refrigerator matches using augmented Euclidean matching. (a) Aggregate trace. (b) Zoomed-in aggregate. (c) Refrigerator matches.
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Fig. 20. Washing Machine matches using augmented Euclidean matching where the model used to match is the on-off decay cyclic part at the end. (a) Aggregate

trace. (b) Zoomed-in aggregate. (c) Washing machine matches.
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Fig. 21.

Fig. 19 shows the aggregate trace (a) and the refrigerator
trace (b) with matches marked as before when given by the
augmented Euclidean technique. We see that the technique
accurately identifies matches towards the start and end of the
trace when fewer devices are operating (and thus the device to
match is least obscured) but has difficulty in the interim time
periods when many other devices are operating. This is not
surprising, since this technique, as with most in the time-series
database community, was not designed for matching against
data with variable amounts of noise from other sources. One
interesting area of future research is applying these techniques
to load detection by adapting them to account for such noise.

Similarly, Fig. 20 shows the results of matching the on-off
decay and cyclic components of the washing machine trace
shown in Fig. 10(a). We see in Fig. 20(c) that matches are
found in the initial as well as latter cyclic phases of the washing
machine, despite the multiple amplitudes and durations of the
device. However, we see that the initial phases of the third
device cycle are not matched, as the match is obscured by
another large device operating during this period, which we can
see around ¢t = 480 min in Fig. 20(a).

Finally, we tried the augmented Euclidean matching on the
dishwasher cycle as shown in Fig. 21, but here, no real matches

Dishwasher matches using augmented Euclidean matching. (a) Aggregate trace. (b) Zoomed-in aggregate. (c) Dishwasher matches.

were located at all—the technique simply “matches” the entire
trace, which provides no useful information. This behavior
is likely due to the fact that the dishwasher exhibits fairly
simple stepping behavior between static states as shown in
Fig. 5(c)—as a result, it can be morphed in the time and ampli-
tude domains to match the entire aggregate trace. Despite this,
augmented Euclidean matching tends to be more conservative
in matching than straight Euclidean distance, which tends to
result in more false positives.

Both strategies demonstrate that matching within aggregate
traces is a difficult problem given the noisiness and complexity
of typical aggregate traces. Despite this, we believe that our
models can be useful across a variety of matching techniques,
as demonstrated in the examples above.

Result: Our models are useful in detecting the presence of
specific loads in smart meter data by matching them against a
home’s aggregate time-series power data.

V. RELATED WORK

In this paper, we focus explicitly on modeling the power
usage of common electrical loads. While recent work targets
modeling for specific appliances, e.g., a particular brand of
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refrigerator [31], it does not generalize to a broad range of de-
vices. Much of the prior research on modeling power usage for
individual loads has been done in the context of Non-Intrusive
Load Monitoring (NILM). While we expect our models to be
broadly useful for data analysis, including, but not limited to,
NILM, we survey related work in NILM below.

NILM techniques differ significantly based on the granularity
of the current, voltage, and power readings. For instance, fine-
grain readings that sample current or voltage frequently within
each cycle, e.g., > 60 Hz, differ significantly from the models
we present, since they attempt to capture the behavior of the
AC current and voltage waveform. In addition, gathering data at
such high frequencies presents challenges: it requires expensive
and highly calibrated equipment, while storing and transmitting
the data in real time is beyond the capabilities of today’s
embedded power meters. While other types of device models
may be supported by higher-frequency data (such as turn-on
transient power signatures in [32]), our models target a data
granularity of one reading per second, since this is the finest
granularity that commodity low-cost power meters support. We
could also build load models using the coarse-grain data, e.g.,
5 minutes to an hour, supported by today’s utility-installed
smart meters [33]. Unfortunately, coarse-grain data measured
every minute or more eliminates important details of each
load’s operation that are useful in analysis.

Recently, a number of researchers have focused on NILM
approaches for the per-second power data we use to build our
models. Most of these approaches employ generic on-off load
models that, as we show, are not accurate. The techniques gen-
erally use these simple models to either i) detect changes in load
power states by observing changes in building power, [8] or
ii) use Viterbi-style algorithms [18] to determine the most likely
set of “hidden” states, e.g., combinations of power states for
multiple loads, from a sequence of changes in building power
[28]. These prior techniques generally do not scale to the large
numbers of, often low-power, loads found in typical buildings.
For instance, we are not aware of any prior approach that
focuses on large-scale scenarios—> 100 loads—with many
low-power loads < 50 W, which is a common characteristic of
many homes. The lack of research may be due to the inaccuracy
of the underlying load models.

VI. CONCLUSION

This paper presents a new methodology for modeling com-
mon electric loads. We derive our methodology empirically
by collecting data from a variety of loads and showing the
commonalities between them. Finally, we illustrate examples
of how to use our models for data analysis.
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