
Understanding the Benefits of Hardware-Accelerated
Communication in Model-Serving Applications

Walid A. Hanafya, Limin Wangb, Hyunseok Changb, Sarit Mukherjeeb, T. V. Lakshmanb, and Prashant Shenoya

aUniversity of Massachusetts Amherst
bNokia Bell Labs

Abstract—It is commonly assumed that the end-to-end net-
working performance of edge offloading is purely dictated by
that of the network connectivity between end devices and edge
computing facilities, where ongoing innovation in 5G/6G net-
working can help. However, with the growing complexity of edge-
offloaded computation and dynamic load balancing requirements,
an offloaded task often goes through a multi-stage pipeline that
spans across multiple compute nodes and proxies interconnected
via a dedicated network fabric within a given edge computing
facility. As the latest hardware-accelerated transport technologies
such as RDMA and GPUDirect RDMA are adopted to build
such network fabric, there is a need for good understanding
of the full potential of these technologies in the context of
computation offload and the effect of different factors such
as GPU scheduling and characteristics of computation on the
net performance gain achievable by these technologies. This
paper unveils detailed insights into the latency overhead in
typical machine learning (ML)-based computation pipelines and
analyzes the potential benefits of adopting hardware-accelerated
communication. To this end, we build a model-serving framework
that supports various communication mechanisms. Using the
framework, we identify performance bottlenecks in state-of-the-
art model-serving pipelines and show how hardware-accelerated
communication can alleviate them. For example, we show that
GPUDirect RDMA can save 15–50% of model-serving latency,
which amounts to 70–160 ms.

Index Terms—GPUDirect RDMA, model-serving, low-latency
communication, edge computing

I. INTRODUCTION

The concept of edge computing was pioneered more than a
decade ago [1], [2], and yet the role of edge computing remains
critical even today because functional requirements and user
expectations for applications have constantly been surpassing
even the most sophisticated on-device capabilities [3]. For
example, multi-user cloud gaming, machine learning (ML)-
based wearable cognitive assistance, immersive 360-degree
point cloud video streaming, industrial robot control, etc.
heavily rely on geographically close-by compute resources,
accessible to end devices via low-latency, high-throughput
interconnects. In making edge computing a reality, there have
been two important industry trends. On the networking side,
the advances in 5G/6G technologies have been instrumental in
enabling offloaded computation and associated data delivery
to meet stringent latency/throughput requirements. On the
computation side, the arrival of new chip technologies (e.g.,

GPU, TPU) has been a catalyst for accelerating and scaling
required computation within server hardware.

As more and more practical use cases of edge offloading
are emerging, driven by these trends, the research community
has been dedicating significant research efforts to optimize
the latency performance of edge offloading within a given
edge computing infrastructure. There have been works on
utilizing adaptive computation for low latency [4]–[6], and
proposing intelligent workload scheduling in compute clusters
or a single node [7]–[9]. Although the existing works differ in
their approaches and scopes, one commonality they share is
that the primary focus is on compute resources or computation
itself, but not on the underlying networking, in particular,
the network fabric within an edge computing infrastructure.
A common assumption is that the end-to-end networking
performance of edge offloading is purely dictated by that of the
network connectivity between end devices and edge computing
facilities, where ongoing innovation in 5G/6G networking can
help. However, with the growing complexity of offloaded
computation and dynamic load balancing requirements within
a single edge domain, an offloaded task often goes through
a multi-stage pipeline which spans across multiple compute
nodes and proxies interconnected via a dedicated network
fabric within a given edge computing infrastructure. There-
fore, the performance of such internal network fabric and its
interaction with task execution can also play a nontrivial role
in the end-to-end latency of edge offloading.

The latest hardware-accelerated transport technologies such
as Remote Direct Memory Access (RDMA) and GPUDirect
are suitable for building the network fabric for interconnecting
compute nodes in current edge computing environments [10].
Unlike TCP/IP-based communication, where a server CPU is
involved in packetizing and transferring data via the operating
system’s protocol stack, RDMA and GPUDirect bypass the
server CPU and the operating system, and directly write
data into a destination processor’s memory (it could be CPU
memory or GPU memory). This remote zero-copy mechanism
allows these technologies to decrease data transfer latency
and increase service throughput, presenting a “lower-bound”
latency to other remote computation offloading techniques.
However, there is still a lack of understanding on the full
potential of the existing hardware-based transport technologies
in the context of computation offload and the effect of different
factors (e.g., GPU scheduling, computation type and size) on979-8-3503-9973-8/23/$31.00 ©2023 IEEE

the net performance gain achievable by them.
This paper aims to unveil detailed insights into the per-

formance overhead of typical model-serving pipelines, which
are often hard to get from existing feature-rich model-serving
systems, and in turn, to highlight potential performance gains
that could be achieved by adopting hardware-accelerated trans-
port in different deployment scenarios. To achieve this goal,
we build a model-serving application framework with support
for different communication mechanisms (e.g., TCP, RDMA)
and with the capability to provide fine-grained visibility into
model-serving pipeline stages.1 Such exploratory features are
not available in existing off-the-shelf model-serving systems.
We use the framework to explore a wide-range of scenarios
that resemble real-world edge deployments.

Our systematic evaluation demonstrates that hardware-
accelerated transport, in particular GPUDirect RDMA (GDR),
presents a promising approach to build low-latency edge
offloading infrastructures, saving 15–50% of model-serving
latency, which translates to 70–160ms, compared to TCP-
based transport in a wide range of setups. This study helps
us understand the benefits of hardware-accelerated communi-
cation in model-serving applications, as summarized below.
(1) Communication fraction matters. Hardware-accelerated
transport provides the most benefit when communication takes
a significant fraction of time in a given model-serving pipeline.
With increasing GPU processing capabilities and application
network I/O requirements, the proportion of communication
overhead is expected to become more significant.
(2) Protocol translation is worthwhile. Adopting hardware-
accelerated transport within a given compute cluster can pro-
vide substantial latency benefit compared to end-to-end TCP
pipelines, even at the cost of protocol translation.
(3) Data copies are bottlenecks. Host-to-device (H2D) and
device-to-host (D2H) copies can quickly become a bottleneck
as concurrency increases within a GPU. Issuing copy com-
mands interferes with execution in a GPU. GDR can alleviate
these problems by skipping the GPU copy queues all along.
(4) Effectiveness of prioritization is limited due to copy-
engine’s coarse granular interleaving. GPU copy-engine’s
coarse granular interleaving limits the ability of high-priority
clients to prioritize their execution over other clients.

II. BACKGROUND

In this section, we provide an overview of the technologies
we evaluate in this paper.

A. Edge Offloading

In a typical edge offloading architecture (Figure 1), end
devices offload computational tasks (e.g., object recognition
in a camera view, collision-free robot navigation) to a nearby
edge computing facility via request/response transactions.
When an end device requests for an offloading service, it
submits corresponding data to a frontend gateway of an edge
computing facility over existing access networks. The gateway

1The source code for the model-serving system is available at https://github.
com/nokia/accelerated-offloading.

Fig. 1: Edge offloading architecture.
GPU Server

RNIC

PCIe Bus

RAM00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
..

GPU MemoryE0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
..

G
PU

CPU

H2D Copy

D2H Copy
Process

Request1 2

3

4

5

6
7

4 5

Data Plane

Ctrl Plane

3 6

Response

(a) RDMA

GPU Server

RNIC

PCIe Bus

RAM00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
..

GPU MemoryE0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
..

G
PU

Request

Response

Process

1 2

3

4

5 CPU

3 4

Data Plane

Ctrl Plane

(b) GDR
Fig. 2: Request-response transaction over RDMA/GDR.

then dispatches the request to compute servers available at
the facility over an internal network fabric. Once the required
computation gets executed on the data, a response is generated
and sent back to the requesting device via the gateway. Unlike
the external access networks interconnecting end devices and
edge computing facilities, the edge-internal network fabric is
under the control of a given edge computing facility, and
can be enhanced by leveraging the latest hardware-accelerated
network fabric technologies such as RDMA and GPUDirect.
In the following, we describe how an edge offloading task
can be accelerated within a given edge computing facility via
RDMA and GPUDirect RDMA.

B. Edge Offloading over RDMA

RDMA is a hardware mechanism through which a local
peer can directly access a remote peer’s memory without
the intervention of the remote peer’s CPUs and the network
stack traversal overhead. RDMA was originally designed to
interconnect high-performance computing (HPC) clusters on
specialized high-throughput, low-latency InfiniBand (IB) net-
works. Many of today’s RDMA deployments are based on
RoCEv2 (RDMA over Converged Ethernet), where packets
are encapsulated in UDP/IP packets and carried over the com-
modity Ethernet fabric. Figure 2(a) depicts a typical workflow
of a compute-intensive request utilizing a GPU on a remote
server over RDMA. When the request along with necessary
data arrives at the server’s RDMA-capable NIC (RNIC) as
RDMA traffic, it gets DMAed to the server’s RAM (steps
1–2). Then it gets copied from RAM to GPU memory and
serviced in the GPU, after which the result gets copied back
to RAM (steps 3–5). As a response, the result is DMAed from
RAM to the RNIC and sent out as outgoing RDMA traffic by
the RNIC (steps 6–7). Throughout the workflow, the CPUs of
the server may issue control plane instructions at certain steps
(e.g., steps 3–6), but is not directly involved in data movement.

C. Edge Offloading over GPUDirect RDMA

GPUDirect is a suite of technologies introduced by NVIDIA
to enhance data movement and access for their GPUs. In par-

https://github.com/nokia/accelerated-offloading
https://github.com/nokia/accelerated-offloading

ticular, GPUDirect RDMA (GDR) enables PCIe devices like
RNICs to directly access GPU device memory. This eliminates
the involvement of CPUs and the staging buffer copies of data
via main memory for inter-node GPU communication, thereby
reducing CPU overhead and improving latency. To support
GDR, NVIDIA provides an operating system extension that
enables DMA bus mapping of GPU device memory to allow
GPU memory to be directly used as RDMA target memory
regions just like normal main memory. With GDR, leveraging
a remote GPU for an edge offloading task can be substantially
simplified, as shown in Figure 2(b). Since GPU device memory
can be directly employed as RDMA target memory regions,
an incoming service request and its data can be DMAed by
the RNIC to GPU memory without going through system
RAM (steps 1–2), and GPU processing can take place right
away (step 3). Similarly, the service result can also be directly
DMAed from GPU memory to RNIC for output (steps 4–5).
The copy in/out of data between RAM and GPU memory in
Figure 2(a) is completely avoided.

D. GPU Scheduling

Typical GPU hardware contains an array of multi-threaded
execution engines called Streaming Multiprocessors (SMs),
as well as a multi-level memory system and dedicated copy
engines that copy data to and from host memory over the PCIe
bus, in parallel to execution engines. Each SM comprises a
large number of processing cores known as CUDA cores in the
case of NVIDIA GPUs. NVIDIA GPUs are programmed on
the CUDA platform, which presents a programming model and
easy-to-use APIs for utilizing available CUDA cores. A typical
CUDA program is composed of multiple kernels (functions)
designed to exploit the parallel processing of CUDA cores.
Kernels are grouped into blocks, where each block contains
multiple threads.

Although GPU scheduling algorithms on NVIDIA hardware
platforms are proprietary, researchers have been trying to gain
insights on them [11], [12]. In summary, to issue kernels or
to allocate memory, programs create a CUDA context which
communicates with the GPU driver and holds the execution
state. CUDA contexts issue kernels to a default stream called
NULL stream. For higher GPU utilization and faster execution,
it is possible to use multiple streams. With multiple streams,
the execution engine schedules kernels’ blocks across streams
in a priority-accommodating round-robin fashion [11], [12].
Once kernels are in the execution engine queue, their blocks
are scheduled in an FCFS fashion, where each block is
launched based on the availability of CUDA cores and mem-
ory. CUDA streams also support priority-based scheduling,
where different CUDA streams have different priorities. The
priorities affect the execution on the block level in a non-
preemptive way. Another way of sharing GPUs is by using
multiple contexts over multiple threads or processes. In this
case, GPU execution engines are shared among contexts in
a time-sliced fashion. Finally, NVIDIA GPUs support Multi-
Process Service (MPS), which allows packing threads from
multiple contexts to be running at the same time [13]. This

(a) Serving Raw Images using GPUDirect RDMA (GDR)

(b) Serving Preprocessed Images using GPUDirect RDMA (GDR)

Request Preprocess Inference Response

Request Inference Response

Request Preprocess Inference Response Copy H2D Copy D2H

Request Inference Response Copy H2D Copy D2H

(c) Serving Raw Images using RDMA or TCP

(d) Serving Preprocessed Images using RDMA or TCP

Fig. 3: Model-serving stages.

resembles the execution of multiple streams without potential
head-of-queue blocking in streams. Although all these resource
sharing methods increase system efficiency at scale, they come
with the cost of lower performance predictability. Researchers
have developed methods to cope with the unpredictability [7],
or improve predictability by disabling sharing methods [8].
However, the trade-off between predictability and utilization
has not been fully explored.

III. METHODOLOGY

In this paper, we seek to investigate the role of hardware-
accelerated network fabric in enabling low-latency compu-
tation offload at the edge. Given that ML model-serving is
a popular type of edge-offloaded computation, we focus on
model-serving offload. In order to study the complex interplay
between network fabric technologies and the rest of model-
serving pipelines and derive generalizable findings, what is
needed is somewhat open-ended deployment environments,
where we can easily enable different features and analyze their
impact. Off-the-shelf model-serving systems [14], [15] are not
suitable in this respect due to the following reasons. First of
all, the existing systems only support TCP-based application
protocols such as HTTP and GRPC, but do not support
hardware-accelerated transport primitives such as RDMA and
GDR. Second, as deployment-ready systems, they do not come
with fine-grained profiling and tracing capability that will
help us understand performance bottlenecks in model-serving
pipelines. Finally, production-grade systems often come with
various add-on features such as security, clients priority, etc.,
which may not help with or even complicate our investigations.
These factors motivate us to build our own model-serving
system from scratch that is flexible and generic enough to
serve as a reference model-serving testbed. In the following,
we describe the functional details of our model-serving system.

A. Model-Serving Pipeline Stages

In our framework, a model-serving pipeline consists of
request handling, preprocessing, inference, and response han-
dling stages. The preprocessing stage ensures that client-
submitted data is compatible with the model requirements
(e.g., input size) in case that the client submits raw data. The
inference stage executes a given model with client data. The
request/response handling stages proceed differently based on
the underlying transport mechanism, as explained below.

To support model-serving over RDMA, a server and a client
first go through an RDMA-specific connection setup proce-
dure. During this time, they create a set of queues for send-

TABLE I: Performance metrics.

Category Metric Description
total-time End-to-end model-serving latency

Transport request-time Time taken to send a request
response-time Time taken to send a response

copy-time H2D copy time + D2H copy time
GPU preprocessing-time Time taken in preprocessing

inference-time Time taken in model inference
CPU cpu-usage CPU usage in user and kernel

Memory memory-usage RAM and GPU memory usage

ing/receiving data over RDMA and for receiving work com-
pletion events, allocate memory buffers to hold request and
response data, and exchange connection-related metadata [16].
Once a connection is created, the client sends a model-serving
request to the server by posting a work request (WR) to
its send queue, and blocks until it receives work completion
(WC) events for the request as well as for a corresponding
response from the server. We use RDMA_WRITE operation for
both the request and the response. When the server receives
a WC event for the request, as shown in Figure 2(a), it first
copies the data from the client’s request buffer to the GPU
memory using cudaMemcpy with cudaMemcpyHostToDevice

flag. Then it processes the request according to the application
requirements. Lastly, it copies the data back to the client’s
response buffer, this time with cudaMemcpyDeviceToHost

flag, and pushes a WR to its send queue and waits for a WC
event. GDR follows the same steps as RDMA, except that, on
the server, we allocate GPU memory rather than host memory,
and that H2D and D2H copies are omitted (Figure 2(b)).

For TCP-based transport, we choose ZeroMQ [17] over
HTTP and GRPC for the following reason. The RDMA-based
transport in our framework allows data to be transmitted with
memory read/write semantic, and hence does not incur data
(de)serialization overhead. Whereas common TCP-based pro-
tocols like HTTP and GRPC require data (de)serialization, and
therefore comparing end-to-end latency between HTTP/GRPC
and RDMA is not fair. Unlike HTTP/GRPC, ZeroMQ does not
require data serialization, and hence it can be a fair comparison
with RDMA protocol. We use a Router-Dealer proxy where
the server allocates the same number of threads as the number
of clients. Each thread reuses its memory buffers to avoid
memory allocation overheads. Figure 3 summarizes the model-
serving pipelines for different communication mechanisms.
The difference lies in the processing stages for raw and
preprocessed data and the steps on the server side where data
copies are selectively needed.

B. Performance Metrics

To understand the performance bottlenecks of a model-
serving pipeline, fine-grained visibility into the pipeline is
required. Thus, we enable detailed time profiling for in-
dividual pipeline stages in the model-serving system. The
client-perceived end-to-end model-serving latency is broken
into two components: (i) transport latency and (ii) GPU
latency. Within GPU latency, copy-time is only applicable
to TCP/RDMA-based communication as GDR moves data
directly to GPU memory. To measure GPU-related latency

TABLE II: DNN models used.
Model Task GFLOPS Input Shape Output Shape

MobileNetV3 Classification 0.06 3×224×224 1×1000
ResNet50 Classification 4.1 3×224×224 1×1000

EfficientNetB0 Classification 0.39 3×224×224 1×1000
WideResNet101 Classification 22.81 3×224×224 1×1000

YoloV4 Detection 128.46 3×416×416 S×S×3×85,
S = {13, 26, 52}

DeepLabV3_ResNet50 Segmentation 178.72 3×520×520 2×21×520×520

GPU Server (S2)

RNIC

RAM
GPU

CPU
Gatway (S1)

RNIC

CPU
RAM

25 GbpsLoad Generator

(a) Direct connection
GPU Server (S2)

RNIC

RAM
GPU

CPU
Client (S1)

RNIC

CPU
RAM

Gateway (S3)

RNIC

CPU
RAM

25 Gbps 25 GbpsLoad Generator

(b) Proxied connection

Fig. 4: Connection modes.

components, we inject CUDA events between steps and mea-
sure the time between the events. Transport delay components
request-time and response-time capture client-to-server
and server-to-client communication overhead, respectively,
which are measured differently for different transport methods.
For RDMA/GDR-based transport, which is offloaded to an
RNIC, we measure the delay as the time between posting
an RDMA WR and receiving a corresponding WC event.
TCP-based ZeroMQ communication overhead is measured
with processing time for zmq_send() API on server response,
while the request time is the time difference between the
total-time and total server time. Besides measuring model-
serving latency, we also capture CPU/memory resource usages
using Linux /proc file system and nvidia-smi. All reported
performance metrics are summarized in Table I. The metrics
are collected with a varying number of clients, where each
client sends 1000 requests in a closed-loop fashion.

C. Experimental Scenarios

The flexibility of our model-serving system allows us to
evaluate model-serving pipelines across a wide range of de-
ployment environments as explained below.

Transport mechanism. It supports four types of transport
mechanisms: (i) local, (ii) RDMA, (iii) GDR, and (iv) TCP
(ZeroMQ). In “local” processing, a client processes data on a
local GPU without offloading. Hence it only incurs processing
and inference latency, but no delay from data movement. This
presents a lower bound on achievable end-to-end latency.
Connection mode. It supports two common connection sce-
narios between a client and a GPU server: (i) direct connection,
and (ii) proxied connection. They are compared in Figure 4.
The direct connection mode illustrates the connectivity be-
tween a gateway and a GPU server within an edge computing
facility. In this case, we deploy our load generator on the
gateway server. Note that both the gateway and the GPU
server must be equipped with RNICs to support hardware-
accelerated transport. The proxied connection mode represents
the case where client-to-server communication is proxied by

TABLE III: Testbed configuration.
Name Server type CPU GPU NIC

S1 Dell PowerEdge R740 Intel Xeon-G 6240 - ConnectX-5 25GbE
S2 Dell PowerEdge R740 Intel Xeon-G 6240 NVIDIA A2 ConnectX-5 25GbE
S3 Dell PowerEdge R750 Intel Xeon-G 6330 - ConnectX-5 25GbE

(a) Raw images (b) Preprocessed images
Fig. 5: Total latency across mechanisms for ResNet50.

an intermediate gateway. To focus on the effect of networking
rather than the gateway’s scheduling decision, the gateway is
configured to forward client requests to a fixed server.
Workload. To evaluate the effect of different jobs and data
sizes, we deploy several different DNN models as shown in Ta-
ble II. The models differ in terms of functionality, model com-
plexity, and communication overhead (i.e., input/output sizes).
The classification models are trained with ImageNet [18],
while detection and segmentation models are trained with
Microsoft COCO [19].
GPU configuration. Finally, we evaluate common methods
to control processing latency within a GPU by varying client
concurrency, client priority, and GPU sharing modes, namely
multi-stream, multi-context, and MPS.

D. Implementation and Deployment

In implementing the aforementioned system, we use
NVIDIA OFED v5.6 for RDMA communication, and Ze-
roMQ v2.1 for TCP-based communication. For model-serving
pipelines, we use CUDA toolkit v11.6.2, OpenCV v4.5.5, and
TensorRT v8.4. The client and server are written in C++ and
comprise ∼4.5k SLOC. The model-serving system is deployed
on three servers described in Table III. S2 is equipped with
NVIDIA A2 GPU, which has 10 execution engines, 16 GB
memory, and two copy-engines. All servers are running on
Ubuntu v20.04 LTS and kernel v5.15.

In the rest of the paper, we utilize our platform to sys-
tematically examine the latency performance of model-serving
under different scenarios. Starting from employing a single
client session to identify the bottlenecks of the model-serving
pipeline without resource sharing and contention, we fur-
ther study the impact of concurrency when offload resources
are subject to competition from multiple clients. Lastly, we
explore the trade-offs of the mechanisms used to tame the
overhead of concurrency. In all cases, different transport,
workload, and connection mode combinations are explored.

IV. SINGLE CLIENT PERFORMANCE

In general, when a client offloads a model-serving compu-
tation to a server, its end-to-end latency is determined by how
the client’s model-serving request is delivered to the target

(a) Raw images (b) Preprocessed images
Fig. 6: Latency breakdown across mechanisms for ResNet50.

compute resource (transport delay), as well as how the request
is executed within the compute resource (execution delay).
Within an edge computing facility, the transport delay can vary
with different transport mechanisms, while the execution delay
can be influenced by how the compute resource is shared to
handle concurrent client requests. In the first set of evaluations,
we focus on the transport delay, while discounting the effect
of a specific GPU scheduling algorithm. For this purpose,
we evaluate the latency performance of model-serving across
different transport mechanisms when running a single client,
which shows the performance of model-serving without any
interference from sharing edge network or compute resources.

A. Direct Connection

We start by evaluating model-serving performance in the
most simplistic scenario, where model-serving requests are
handled in the direct connection mode. In this mode, we
exclude the the client-to-edge latency and focus on the latency
with the edge network fabric. In this case, we run the load
generator on the gateway server itself. In Figure 5, we compare
model-serving latency across different transport mechanisms
when ResNet50 is used (Table II). We add “local processing”
as a reference. We repeat the experiments with and with-
out preprocessing. The figure shows that GDR and RDMA
perform better than TCP-based transport. When the server
performs preprocessing (Figure 5(a)), GDR and RDMA incur
20.3% and 11.4% less latency than TCP, respectively. Without
preprocessing (Figure 5(b)), GDR and RDMA lead to 23.2%
and 15.2% shorter delay than TCP, respectively. The relative
performance of hardware-accelerated transports, compared to
TCP, is more pronounced when preprocessing is not needed
because the overall model-serving pipeline takes less time to
execute. Compared to local processing, GDR-based model-
serving adds as low as 0.27–0.53ms, while TCP adds 1.2–
1.5ms, depending on whether or not preprocessing is needed.

To understand the source of difference, we plot the latency
breakdown in Figure 6. The figure shows that the difference
between GDR/RDMA and TCP comes from data transfer time.
For example, TCP-based transport takes 0.73ms and 0.61ms
more to send raw and preprocessed data than GDR and
RDMA-based counterparts, respectively. GDR outperforms
RDMA as it skips H2D and D2H copies, which saves extra
0.3ms and 0.2ms when handling raw and preprocessed data,
respectively. This highlights the advantage of GDR and quan-

(a) Raw Images (b) Preprocessed Images
Fig. 7: Model-serving latency overhead with respect to local processing for different DNN models.

(a) TCP (b) RDMA (c) GPUDirect RDMA (GDR)
Fig. 8: Latency breakdown across different transport mechanisms for different DNN models.

tifies potential bottlenecks across protocols when the number
of clients increases, which will be demonstrated in Section V.

To generalize these findings, we repeat the experiments
with other ML models of varied complexity and I/O sizes,
as listed in Table II. Figure 7 shows the latency overhead with
respect to local processing for different models. That is, with
each model, it shows how much longer latency is incurred
by offloading the model compared to executing it locally.
Figures 7(a) and (b) show the latency overhead when sending
raw and preprocessed images, respectively. In both cases,
GDR outperforms the alternatives as expected. However, the
overhead greatly varies across models. It shows that smaller
models tend to have higher overhead than bigger models, and
that models with larger I/O have higher overhead as well. This
is because smaller models and models with larger I/O sizes
have a higher fraction of time spent in the communication
stage, making the role of transport mechanisms more vital than
bigger models with smaller I/O sizes. For example, offloading
MobileNetV3 adds at least 80.8% and 48.1% overhead com-
pared to local processing, while offloading WideResNet101

adds just about 4.5% and 2% overhead when serving raw and
preprocessed images, respectively. Models with large I/O sizes
(e.g., DeepLabV3) also show very high overhead, especially
with TCP.

To quantify these overheads, Figure 8 depicts the frac-
tion of time spent in each stage. The result confirms our
hypothesis. For instance, when serving MobileNetV3, 62%,
42%, and 30% of total time is spent in data movement
(copy-time + request-time + response-time) when serv-
ing requests over TCP, RDMA, and GDR, respectively, while
in WideResNet101, the fraction of communication overhead
does not surpass 10% in all cases. The result also shows
the merits of hardware-accelerated transport for large I/O.
For example, when serving raw data using DeepLabV3, TCP
spends 60% of the overall latency in data movement, while

Fig. 9: CPU Usage across models.

Fig. 10: End-to-end latency with proxied connection.

RDMA and GDR spend only 32% and 23%. In this case,
the overhead of large I/O size is translated to higher latency
difference, where TCP-based transport adds 71ms and 68ms,
compared to GDR and RDMA-based transports, respectively.
Note that, with more powerful accelerators and more I/O-
intensive immersive application offloading, the fraction of time
spent in actual processing will become smaller, which will
further increase the importance of transport methods.

Finally, Figure 9 shows the CPU usage per request across
different models. It shows that TCP-based transport incurs the
highest CPU usage as the CPU is involved in communication.
The overhead is most visible when serving DeepLabV3 as its
I/O size is high, where TCP adds 100% more CPU usage
than GDR-based transport. It also shows that issuing copy
operations for RDMA adds only a minor effect.

B. Proxied Connection

Next, we switch to a more realistic scenario, where a client
sends its requests to an intermediate gateway which then steers
the requests to an appropriate GPU server. To focus on the

(a) MobileNetV3 (b) DeepLabV3

Fig. 11: Total time across clients when processing raw images.

effect of transport mechanisms in such “proxied-connection”
scenario, we exclude the overhead of server selection within
the gateway by letting the gateway forward requests to a
fixed server. In this scenario, client-to-gateway and gateway-
to-server communication can be realized with available trans-
port mechanisms independently. This results in the follow-
ing configuration pairs for client-to-gateway and gateway-to-
server transports: (i) RDMA/GDR, (ii) RDMA/RDMA, (iii)
TCP/GDR, and (iv) TCP/RDMA. Lastly, we add TCP/TCP as
a representative of existing model-serving frameworks.

Figure 10 plots model-serving latency results when a client
submits raw data to MobileNetV3. It shows that hardware-
accelerated transports can improve model-serving latency even
if applied only to the last hop of the communicating path.
Compared to end-to-end TCP connections (i.e., TCP/TCP),
adopting hardware-accelerated transport between the gateway
and the GPU server saves 23% and 57%, when replaced with
RDMA (i.e., TCP/RDMA) and GDR (i.e., TCP/GDR). The
results also show that TCP introduces higher performance vari-
ation, but the usage of hardware-accelerated communication,
even partially, can reduce its effects.
Key takeaways: GDR can provide significant gains when com-
munication comprises a high fraction of end-to-end latency.
Hardware-accelerated transport can alleviate the overhead of
proxied connections which are common in large-scale and
dynamic model-serving environments.

V. PERFORMANCE SCALABILITY

Next, we study performance scalability and the effect of
sharing the compute infrastructure across multiple clients. In
this set of experiments, our load generator starts multiple
instances of a client application, each issuing model-serving
requests concurrently. On the GPU-server side, requests from
each client are handled by a dedicated stream.

A. Direct Connection

First, we evaluate performance scalability using the direct
connection mode. Figure 11 shows the model-serving latency
across a varying number of clients when MobileNetV3 and
DeepLabV3 are used with raw images. In both cases, GDR
outperforms both RDMA and TCP, and the gap between the
two increases with the number of clients. For instance, with
16 clients, GDR saves 4.7ms and 160ms for MobileNetV3

and DeepLabV3, respectively, compared to TCP. Surprisingly,

however, the gain from using RDMA is lost with more clients,
making its performance equivalent to that of TCP.

To understand the reason for this behavior, we examine
how latency breakdown changes as we increase the number of
clients. Figures 12 and 13 show the fraction of time spent in
each stage when serving raw images using MobileNetV3 and
DeepLabV3. As the number of clients changes, different mod-
els and transport mechanisms develop different bottlenecks.
For instance, for MobileNetV3, the fraction of processing
time (preprocessing-time + inference-time) increases
from 38% to 62%, from 58% to 72%, and from 70% to
92% when TCP, RDMA, and GDR are used, respectively.
Having the processing delay as the largest component makes
network overheads negligible, which is a desired goal in edge
offloading. However, for RDMA and TCP, increasing the
copy time presents a steady source of overhead, where the
GPU copy engine becomes the bottleneck. This explains the
performance similarity between RDMA and TCP. The figure
also shows that network I/O (request and response) never
becomes a bottleneck in these two cases.

On the other hand, when the more complex DeepLabV3 is
served, processing time has less impact on the performance,
especially for RDMA and TCP. For instance, in case of GDR
shown in Figure 13(c), processing time dominates the pipeline,
which is indicated by the low transport overhead. However, in
case of TCP and RDMA (Figures 13(a) and 13(b)), although
processing time still dominates the overhead, the copy-time
overhead becomes significant. The copy-time changes from
7% to 36% (10–366ms) for TCP, and from 12% to 28% (9–
264ms) for RDMA.

B. Proxied Connection

Figure 14 shows performance scalability in the proxied
connection mode. Similar to Section IV-B, we compare five
different configurations for the proxied connection when
serving raw images with MobileNetV4: (i) RDMA/GDR,
(ii) RDMA/RDMA, (iii) TCP/GDR, (iv) TCP/RDMA, and
(v) TCP/TCP. The figure shows that, as the number of
clients increases, the behavior of different configurations
changes in a counter-intuitive way, compared to the sin-
gle client case discussed in Section IV-B. For instance,
TCP/GDR outperforms the hardware-accelerated connection
(RDMA/RDMA), and it even becomes comparable to the
RDMA/GDR case. Moreover, the performance of end-to-end
TCP-based transport (TCP/TCP) becomes similar to that of

(a) TCP (b) RDMA (c) GDR
Fig. 12: Latency breakdown when serving raw images using MobileNetV3.

(a) TCP (b) RDMA (c) GDR
Fig. 13: Latency breakdown when serving raw images using DeepLabV3.

Fig. 14: Performance scalability with proxied connection.

hardware-accelerated transport in the last hop (TCP/RDMA)
or end-to-end hardware-accelerated network (RDMA/RDMA).
The resulting performance similarity between these methods
(RDMA/RDMA, TCP/RDMA, and TCP/TCP) is caused by the
bottleneck created by the copy engine, as explained earlier.
We note that the usage of GDR in the last hop saves 27%
compared to end-to-end TCP-based transport, while adding
only 4% compared to the best case (RDMA/GDR).
Key takeaways: The H2D/D2H copy quickly becomes a bottle-
neck in model-serving, which can easily remove any gain from
hardware-accelerated RDMA communication. By skipping this
step, GDR can yield higher scalability. This also applies to
proxied communication, where skipping GPU’s copy-engine
with GDR greatly benefits the end-to-end latency. Adopting
GDR at the last hop communication is comparable to utilizing
hardware-accelerated communication end-to-end in terms of
the overall model-serving latency.

VI. GPU PROCESSING MANAGEMENT

As already shown in Section V, sharing a GPU among
concurrent clients can add a significant overhead to the end-to-
end model-serving latency. When we consider GPU resource
sharing in the context of computation offload, the way GPU
management can affect GPU processing is slightly different
across different transport mechanisms. For instance, when
using GDR, only execution engines are shared among clients.
In the case of RDMA and TCP, both execution engines and
copy engines are shared. To shed light on its implications, we

(a)

(b) (c)
Fig. 15: Effect of limiting concurrent execution while serving
ResNet50. (a) Scalabality using GDR, (b) Total latency when
serving 16 clients, (c) CoV in processing time.
evaluate different GPU management approaches and find out
how effective they are in limiting GPU sharing overhead. Since
TCP-based and RDMA-based transports use GPU resources
similarly, we consider GDR and RDMA only.

A. Concurrent Execution

Sharing GPU resources among multiple clients increases
device efficiency, but at the cost of increased variability in
processing time [8]. A common approach to reducing this
variability is to contain the level of execution concurrency.
For GPUs, this can be achieved through limiting the number
of execution streams. With a fixed number of streams, client
requests are placed in a job queue till a stream becomes
available. This presents a trade-off between efficiency and
variability regarding concurrent execution. Here we try to
quantify the trade-off with different spans of GPU concur-
rency, i.e., concurrency in execution engines only (with GDR)
and concurrency in execution and copy engines (with RDMA).

(a) GDR (b) RDMA
Fig. 16: Single priority client with a varying number of regular
clients, serving preprocessed images with YoloV4.

(a) GDR (b) RDMA
Fig. 17: Serving raw images using EfficientNetB0 with
different GPU sharing methods.

Figure 15 shows the effect of limiting the level of con-
currency by scheduling clients with a varying number of
streams on ResNet50. Figure 15(a) shows how model-serving
scales when using GDR with different levels of concurrency.
When there is only one stream to be shared by all clients
(no-concurrent execution), end-to-end latency is 33% higher
compared to the one-stream-per-client case (i.e., 16 streams
for max concurrency). This is because limiting the number of
execution streams increases requests’ queuing delay. Figure
15(b) zooms in on the total time for 16 clients under different
levels and spans of concurrency. As the number of streams
increases, both GDR and RDMA yield latency reduction, but
at a monotonically decreasing rate. This is because the level of
multiplexing is limited by the model and device sizes. Since
GDR skips the copy engine, it performs better than RDMA.

In Figure 15(c), we examine the effect of concurrency by
quantifying variability in processing time with the coefficient
of variation (CoV) computed as σ/µ. In both RDMA and
GDR, as expected, the processing time (which excludes copy
process) is less variable when concurrency is limited. However,
surprisingly, the variability is different between RDMA and
GDR. For instance, for 16 clients, the CoV is 0.11 and 0.21
for GDR and RDMA, respectively. This contradicts with the
assumed independence between execution and copy engines
in GPUs. This is mostly an artifact of the fact that GPUs are
managed using a single central unit (i.e., GigaThread Engine).

B. Priority Clients

Next, we evaluate the effect of varying the priority of
different clients under two different concurrency domains (i.e.,
GDR and RDMA). In this experiment, we run one high-
priority client along with other normal-priority clients, and

vary the total number of clients from 2 to 16. Figure 16
compares model-serving latency experienced by the priority
and normal clients across GDR and RDMA. We use YoloV4

with preprocessed images. For both RDMA and GDR, the
latency for the priority client remains roughly the same with
the number of clients until it reaches eight clients. In this
case, the performance of the priority client greatly differs
between RDMA and GDR. For instance, using GDR, the
latency experienced by the priority client is 54ms which
is much lower than normal clients. However, in the case
of RDMA, with more clients, the priority client’s latency
grows comparable to that of normal clients. This noticeable
difference stems from the fact that, when using GDR, the
priority is applicable only to execution that can be prioritized
at a fine granularity of kernel block level [11]. In contrast,
when using RDMA, the copy engine is interleaved at a coarse
granularity of a request, limiting the ability of the priority
client to occupy the copy engine. Note that, for models with
smaller I/O, data copies will be interleaved at a relatively finer
granularity, decreasing this effect on high-priority clients.

C. Comparison of GPU Sharing Methods

Lastly, we compare several common GPU sharing methods
under different concurrency domains. We adjust the lev-
els of concurrency by (i) changing the number of streams
(multi-stream), (ii) increasing the number of deployed ap-
plication instances with multiple contexts (multi-context),
or (iii) time-sharing multiple application instances via MPS,
where no streams or applications are shared between users.
Figures 17(a) and (b) compare model-serving latency among
these three schemes when serving EfficientNetB0 over
GDR and RDMA. As expected, MPS always performs better
than multi-context [13]. GDR and RDMA yield similar
latency with multi-context and MPS across a varying num-
ber of clients, showing no clear benefit for GDR compared
to RDMA. On the other hand, multi-stream exhibits dif-
ferent behavior between the two. As in Figure 17(a), when
using GDR, the performance is almost identical between
multi-stream and MPS, but using RDMA, MPS shows better
performance. We hypothesize that, across processes, GPU
copy engines are interleaved in a different way, which hides
the copy overhead. We note that multi-stream uses multi-
threading which shares the CUDA libraries on the GPU, while
multi-context and MPS use multi-processing which restricts
memory sharing, and hence limits the number of clients.
Key takeaways: Data exchange between the host and GPU
memory imposes an interfering effect on processing. Stream
priorities are more effective in sharing execution engines than
the copy engine as the scheduling decision for execution
engines is made on a fine granularity. The copy engine is
shared differently between multiple streams and contexts.

VII. LIMITATIONS OF RDMA AND GDR

We show that RDMA and GDR are promising alternatives
to TCP-based transport for latency-sensitive compute offloads.
However, we acknowledge their drawbacks as follows.

Memory overhead: With RDMA and GDR, it is common
that memory buffers are reserved and pinned per-client. This
implies that the total number of sessions that can be supported
will be limited, especially for GDR, as GPU memory is often
more limited that host memory.
Homogeneity: RDMA transfers raw bytes between a client
and a server. This requires data are stored homogeneously on
both sides’ memory, which might limit the interoperability.
Proxied communication could alleviate this problem.
GPU pinning: GDR operates by allocating GPU memory
buffers for each client. This ties a client to a specific GPU, or
forces it to pay the data copying overhead between GPUs.
GPU inadequacy: With dedicated ASIC-based accelerators
(e.g., image decoder), GPUs may not be an optimal choice
for certain preprocessing tasks, where transferring data to the
host memory via RDMA may be a better option than GDR.
GPUDirect may still be used to move preprocessed data from
an accelerator to a GPU directly, avoiding multiple data copies.

VIII. RELATED WORK

The performance of hardware-accelerated transports has
been studied previously [20]–[25]. In contrast, we performed
detailed performance evaluation of model-serving systems
across a wide range of realistic scenarios. The most related
works are [26]–[28]. Lynx [26] offloads the network stack
from CPUs to SmartNIC cores. FlexDriver [28] leverages
FPGA to build an on-accelerator hardware data-plane driver.
GPU-Ether [27] implements native network I/O on GPUs
themselves. While these works demonstrate the performance
benefits of their point solutions, these efforts do not provide in-
depth insights into the role of hardware-accelerated transport
such as GDR actually plays. Our study bridges the gap and
sheds light on this topic with important findings beyond simply
showing which communication mechanism is the best.

IX. CONCLUSION

In this paper, we presented a reference model-serving ap-
plication framework with support for multiple communication
mechanisms (TCP, RDMA, GDR) and the capability to profile
a model-serving pipeline on a fine time granularity. Our evalu-
ation results indicate that hardware-accelerated communication
provides the most improvement when communication takes
up a significant portion of the pipeline. Adopting hardware-
accelerated communication within the compute cluster can
significantly reduce latency compared to TCP-based pipelines.
Our study also highlights that data copies and concurrent com-
pute sharing can affect latency, and these insights can be used
for better utilization of hardware-accelerated communication
in various applications.

ACKNOWLEDGEMENT

The work was started while Walid was a summer intern at
Nokia Bell Labs. Walid and Prashant were partly supported
by NSF grants 2105494, 1908536, 2211302, and 2211888.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-based Cloudlets in Mobile Computing,” IEEE Pervasive Computing,
vol. 8, no. 4, 2009.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in Proc. MCC Workshop on Mobile
Cloud Computing ’12, 2012.

[3] M. Satyanarayanan et al., “The Role of Edge Offload for Hardware-
Accelerated Mobile Devices,” in Proc. ACM HotMobile ’21, 2021.

[4] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A Low-Latency Online Prediction Serving System,”
in Proc. USENIX NSDI ’17, 2017.

[5] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “DeepSlicing:
Collaborative and Adaptive CNN Inference With Low Latency,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, 2021.

[6] S. Naveen, M. R. Kounte, and M. R. Ahmed, “Low Latency Deep
Learning Inference Model for Distributed Intelligent IoT Edge Clusters,”
IEEE Access, vol. 9, 2021.

[7] Q. Liang, W. A. Hanafy, A. Ali-Eldin, and P. Shenoy, “Model-Driven
Cluster Resource Management for AI Workloads in Edge Clouds,” ACM
Trans. Auton. Adapt. Syst., 2023.

[8] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving DNNs like Clockwork: Performance Predictability
from the Bottom Up,” in Proc. USENIX OSDI ’20, 2020.

[9] J. Soifer, J. Li, M. Li, J. Zhu, Y. Li, Y. He, E. Zheng, A. Oltean,
M. Mosyak, C. Barnes, T. Liu, and J. Wang, “Deep Learning Inference
Service at Microsoft,” in Proc. USENIX OpML ’19, May 2019.

[10] Ramki Krishnan and Chris Wright, “Microservices on the Edge: The
Infrastructure Impact,” in Proc. IETF 98, 2017.

[11] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed,” in
2017 IEEE Real-Time Systems Symposium (RTSS), pp. 104–115, 2017.

[12] M. Yang, “Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time
Tasks in Autonomous Systems,” in Proc. 30th Euromicro Conference on
Real-Time Systems, 2018.

[13] Nvidia, “Multi-Process Service (MPS) .” https://docs.nvidia.com/deploy/
pdf/CUDA Multi Process Service Overview.pdf, 2022.

[14] NVIDIA, “NVIDIA Triton Inference Server.” https://developer.nvidia.
com/nvidia-triton-inference-server, 2022.

[15] C. Olston et al., “TensorFlow-Serving: Flexible, High-Performance ML
Serving,” in Proc. ML Systems Workshop at NIPS 2017, 2017.

[16] “RDMA Aware Networks Programming User Manual.” Mellanox Tech-
nologies. Rev 1.7.

[17] ZeroMQ, “ZeroMQ.” https://zeromq.org/.
[18] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition

Challenge,” Int. Journal of Computer Vision, vol. 115, no. 3, 2015.
[19] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” in

Computer Vision – ECCV 2014, (Cham), pp. 740–755, 2014.
[20] Y. Ren, T. Li, D. Yu, S. Jin, and T. Robertazzi, “Design and Performance

Evaluation of NUMA-Aware RDMA-Based End-to-End Data Transfer
Systems,” in Proc. SC ’13, 2013.

[21] J. Jose et al., “Memcached Design on High Performance RDMA
Capable Interconnects,” in Proc. ICPP 2011, 2011.

[22] H. Subramoni, P. Lai, M. Luo, and D. K. Panda, “RDMA over Ethernet
– A preliminary study,” in Proc. IEEE Cluster 2009, 2009.

[23] A. Li et al., “Evaluating Modern GPU Interconnect: PCIe, NVLink,
NV-SLI, NVSwitch and GPUDirect,” IEEE Trans. on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 94–110, 2020.

[24] A. Venkatesh et al., “A high performance broadcast design with hard-
ware multicast and GPUDirect RDMA for streaming applications on
Infiniband clusters,” in Proc. IEEE HiPC 2014, 2014.

[25] C.-H. Chu et al., “Exploiting Hardware Multicast and GPUDirect
RDMA for Efficient Broadcast,” IEEE Trans on Parallel and Distributed
Systems, vol. 30, no. 3, pp. 575–588, 2019.

[26] M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A smartnic-driven
accelerator-centric architecture for network servers,” in Proc. ASPLOS
’20, p. 117–131, 2020.

[27] C. Jung, S. Kim, I. Yeom, H. Woo, and Y. Kim, “Gpu-ether: Gpu-native
packet i/o for gpu applications on commodity ethernet,” in Proc. IEEE
INFOCOM 2021, 2021.

[28] H. Eran, M. Fudim, G. Malka, G. Shalom, N. Cohen, A. Hermony,
D. Levi, L. Liss, and M. Silberstein, “Flexdriver: A network driver for
your accelerator,” in Proc. ASPLOS ’22, 2022.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://zeromq.org/

	Introduction
	Background
	Edge Offloading
	Edge Offloading over RDMA
	Edge Offloading over GPUDirect RDMA
	GPU Scheduling

	Methodology
	Model-Serving Pipeline Stages
	Performance Metrics
	Experimental Scenarios
	Implementation and Deployment

	Single Client Performance
	Direct Connection
	Proxied Connection

	Performance Scalability
	Direct Connection
	Proxied Connection

	GPU Processing Management
	Concurrent Execution
	Priority Clients
	Comparison of GPU Sharing Methods

	Limitations of RDMA and GDR
	Related Work
	Conclusion
	References

