
A Practical Learning-Based Approach for Dynamic
Storage Bandwidth Allocation�

Vijay Sundaram and Prashant Shenoy

Department of Computer Science
University of Massachusetts Amherst
{vijay,shenoy}@cs.umass.edu

Abstract. In this paper, we address the problem of dynamic allocation of storage
bandwidth to application classes so as to meet their response time requirements.
We present an approach based on reinforcement learning to address this problem.
We argue that a simple learning-based approach may not be practical since it
incurs significant memory and search space overheads. To address this issue, we
use application-specific knowledge to design an efficient, practical learning-based
technique for dynamic storage bandwidth allocation. Our approach can react to
dynamically changing workloads, provide isolation to application classes and is
stable under overload. We implement our techniques into the Linux kernel and
evaluate it using prototype experimentation and trace-driven simulations. Our
results show that (i) the use of learning enables the storage system to reduce the
number of QoS violations by a factor of 2.1 and (ii) the implementation overheads
of employing such techniques in operating system kernels is small.

1 Introduction

Enterprise-scale storage systems may contain tens or hundreds of storage devices. Due
the sheer size of these systems and the complexity of the application workloads that
access them, storage systems are becoming increasingly difficult to design, configure,
and manage. Traditionally, storage management tasks have been performed manually
by administrators who use a combination of experience, rules of thumb, and in some
cases, trial and error methods. Numerous studies have shown that management costs
far outstrip equipment costs and have become the dominant fraction of the total cost
of ownership of large computing systems [15]. These arguments motivate the need to
automate simple storage management tasks so as to make the system self-managing and
reduce the total cost of ownership.

In this paper, we address the problem of automating the task of storage bandwidth
allocation to applications. We assume that the storage system is accessed by applications
that can be categorized into different classes; each class is assumed to impose a certain
QoS requirement. The workload seen by an application class varies over time, and we
address the problem of how to allocate storage bandwidth to classes in presence of
varying workloads so that their QoS needs are met. Since data accessed by applications
may be stored on overlapping set of storage devices, the system must dynamically
partition the device bandwidth among classes to meet their needs.
� This research was supported in part by NSF grants CCR-9984030, ANI-9977635 and EIA-

0080119.

K. Jeffay, I. Stoica, and K. Wehrle (Eds.): IWQoS 2003, LNCS 2707, pp. 479–497, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø©M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

480 V. Sundaram and P. Shenoy

Our work on dynamic storage bandwidth allocation has led to several contributions.
First, we identify several requirements that should be met by a dynamic allocation
technique. We argue that such a technique (i) should adapt to varying workloads, (ii)
should not violate the performance requirement of one class to service another class
better, and (iii) should exhibit stable behavior under transient or sustained overloads.

Second, we design a dynamic bandwidth allocation technique based on reinforcement
learning to meet these requirements. The key idea in such an approach is to learn from the
impact of past actions and use this information to make future decisions. This is achieved
by associating a cost with each action and using past observations to take an action with
the least cost. We show that a simple learning approach that systematically searches
through all possible allocations to determine the “correct” allocation for a particular
system state has prohibitive memory and search space overheads for practical systems.
We design an enhanced learning-based approach that uses domain-specific knowledge
to substantially reduce this overhead (for example, by eliminating searching through
allocations that are clearly incorrect for a particular system state). A key advantage of
using reinforcement learning is that no prior training of the system is required; our
technique allows the system to learn online.

Third, we implement our techniques into the Linux kernel and evaluate it using
prototype experimentation and simulation of synthetic and trace-driven workloads. Our
results show that (i) the use of learning enables the storage system to reduce the number
of QoS violations by a factor of 2.1 and (ii) the implementation overheads of employing
such techniques in operating system kernels is small. Overall, our work demonstrates
the feasibility of using reinforcement learning techniques to automate storage bandwidth
allocation in practical systems. Moreover, our techniques are sufficiently general and can
be used to manage other system resources as well.

The rest of the paper is structured as follows. In Section 2, we define the problem of
dynamic storage bandwidth allocation. Section 3 presents a learning-based approach for
dynamic bandwidth allocation. Section 4 presents details of our prototype implementa-
tion in Linux. Section 5 presents the results of our experimental evaluation. Section 6
discusses related work, and finally, Section 7 presents our conclusions.

2 Dynamic Storage Bandwidth Allocation: Problem Definition

2.1 Background and System Model

An enterprise storage system consists of a large number of disks that are organized into
disk arrays. A disk array is a collection of physical disks that presents an abstraction
of a single large logical storage device; we refer to this abstraction as a logical unit
(LU). An application, such as a database or a file system, is allocated storage space by
concatenating space from one or more LUs; the concatenated storage space is referred
to as a logical volume (LV). Figure 1 illustrates the mapping from LVs to LUs.

We assume that the workload accessing each logical volume can be partitioned into
application classes. This grouping can be determined based on either the files accessed
or the QoS requirements of requests. Each application class is assumed to have a certain
response time requirement. Application classes compete for storage bandwidth and the
bandwidth allocated to a class governs the response time of its requests.

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 481

Logical Unit (LU)LU

DisksDisks

Logical Volume Logical Volume Logical Volume

Class 2Class 1 Class 3 Class 4 Class 5

Fig. 1. Relationship between application classes, logical volumes and logical units.

To enable such allocations, each disk in the system is assumed to employ a QoS-
aware disk scheduler (such as [7,18,23]). Such a scheduler allows disk bandwidth to
be reserved for each class and enforces these allocations at a fine time scale. Thus, if
a certain disk receives requests from n application classes, then we assume that the
system dynamically determines the reservations R1, R2, · · ·Rn for these classes such
that the response time needs of each class are met and

∑n
i=1 Ri = 1 (the reservation Ri

essentially denotes the fraction of the total bandwidth allocated to class i; 0 ≤ Ri ≤ 1).

2.2 Key Requirements

Assuming the above system model, consider a bandwidth allocation technique that dy-
namically determines the reservations R1, R2,, Rn based on the requirements of each
class. Such a scheme should satisfy the following key requirements.
Meet class response time requirements: Assuming that each class specifies a target
response-time di, the bandwidth allocation techniques should allocate sufficient band-
width to each class to meet its target response-time requirements. Whether this goal can
be met depends on the load imposed by each application class and the aggregate load.
In scenarios where the response time needs of a class can not be met (possibly due to
overload), the bandwidth allocation technique should attempt to minimize the difference
between the observed and the target response times.
Performance isolation:Whereas the dynamic allocation technique should react to chang-
ing workloads, for example, by allocating additional bandwidth to classes that see an
increased load, such increases in allocations should not affect the performance of less
loaded classes. Thus, only spare bandwidth from underloaded classes should be reallo-
cated to classes that are heavily loaded, thereby isolating underloaded classes from the
effects of overload.
Stable overload behavior: Overload is observed when the aggregate workload exceeds
disk capacity, causing the target response times of all classes to be exceeded. The band-
width allocation technique should exhibit stable behavior under overload. This is es-
pecially important for a learning-based approach, since such techniques systematically
search though various allocations to determine the correct allocation; doing so under
overloads can result in oscillations and erratic behavior. A well-designed dynamic allo-
cation scheme should prevent such unstable system behavior.

482 V. Sundaram and P. Shenoy

2.3 Problem Formulation

To precisely formulate the problem addressed in this paper, consider an individual
disk from a large storage system that services requests from n application classes. Let
d1, d2, . . . , dn denote the target response times of these classes. Let Rt1, Rt2, . . . , Rtn
denote the response time of these classes observed over a period P . Then the dynamic
allocation technique should compute reservations R1, R2, · · · , Rn such that Rti ≤ di

for any class i subject to the constraint
∑

i Ri = 1 and 0 ≤ Ri ≤ 1. Since it may
not always be possible to meet the response time needs of each class, especially under
overload, we modify the above condition as follows: instead of requiring Rti ≤ di, ∀i,
we require that the response time should be less than or as close to the target as possible.
That is, (Rti − di)+ should be equal to or as close to zero as possible (the notation x+

equals x for positive values of x and equals 0 for negative values). Instead of attempting
to meet this condition for each class, we define a new metric

sigma+
rt =

n∑

i=1

(Rti − di)+ (1)

and require that sigma+
rt be minimized. Observe that, sigma+

rt represents the aggregate
amount by which the response time targets of classes are exceeded. Minimizing a single
metric sigma+

rt enables the system to collectively minimize the QoS violations across
application classes.

We now present a learning-based approach that tries to minimize the sigma+
rt ob-

served at each disk while meeting the key requirements outlined in Section 2.2.

3 A Learning-Based Approach

In this section, we first present some background on reinforcement learning and then
present a simple learning-based approach for dynamic storage bandwidth allocation. We
discuss limitations of this approach and present an enhanced learning-based approach
that overcomes these limitations.

3.1 Reinforcement Learning Background

Any learning-based approach essentially involves learning from past history. Reinforce-
ment learning involves learning how to map situations to actions so as to maximize a
numerical reward (equivalent of a cost or utility function) [21]. It is assumed that the
system does not know which actions to take in order to maximize the reward; instead
the system must discover (“learn”) the correct action by systematically trying various
actions. An action is defined to be one of the possible ways to react to the current sys-
tem state. The system state is defined to be a subset of what can be perceived from the
environment at any given time.

In the dynamic storage bandwidth allocation problem, an action is equivalent to
setting the allocations (i.e., the reservations) of each class. The system state is the vector
of the observed response times of the application classes. The objective of reinforcement
learning is to maximize the reward despite uncertainty about the environment (in our

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 483

lo− hi+lo hi

Increasing Response Time

Response Time Requirement = d

Heavy
Overload

Heavy
Underload OverloadUnderload

d − tau d + tau

0 oo

Fig. 2. Discretizing the State Space

case, the uncertainty arises due to the variations in the workload). An important aspect
of reinforcement learning is that, unlike some learning approaches, no prior training
of the system is necessary—all the learning occurs online, allowing the system to deal
with unanticipated uncertainties (e.g., events, such as flash crowds, that can not have
been anticipated in advance). It is this feature of reinforcement learning that makes it
particularly attractive for our problem.

A reward function defines the goal in the reinforcement learning; by mapping an
action to a reward, it determines the intrinsic desirability of that state. For the storage
allocation problem, we define the reward function to be −sigma+

rt—maximizing re-
ward implies minimizing sigma+

rt and the QoS violations of classes. In reinforcement
learning, we use reward values learned from past actions to estimate the expected reward
of a (future) action.

With the above background, we present a reinforcement learning approach based on
action values to dynamically allocate storage bandwidth to classes.

3.2 System State

A simple definition of system state is a vector of the response times of the n classes:
(Rt1, Rt2, . . . , Rtn), where Rti denotes the mean response time of class i observed over
a period P . Since the response time of a class can take any arbitrary value, the system
state space is theoretically infinite. Further, the system state by itself does not reveal if
a particular class has met its target response time. Both limitations can be addressed by
discretizing the state space as follows: partition the range of the response time (which
is [0, ∞)) into four parts

{[0, di − τi], (di − τi, di], (di, di + τi], (di + τi, ∞)}

and map the observed response time Rti into one of these sub-ranges (τi is a constant).
The first range indicates that the class response time is substantially below its target
response time (by a threshold τi). The second (third) range indicates that the response
time is slightly below (above) the target and by no more than the threshold τi. The fourth
range indicates a scenario where the target response time is substantially exceeded. We
label these four states as lo−, lo, hi and hi+, respectively, with the labels indicating
different degrees of over- and under-provisioning of bandwidth (see Figure 2). The state
of a class is defined as Si ∈ {lo−, lo, hi, hi+} and the modified state space is a vector
of these states for each class: S = (S1, S2, . . . , Sn). Observe that, since state of a class
can take only four values, the potentially infinite state space is reduced to a size of 4n.

484 V. Sundaram and P. Shenoy

3.3 Allocation Space

The reservation of a class Ri is a real number between 0 and 1. Hence, the allocation
space (R1, R2, . . . , Rn) is infinite due to the infinitely many allocations for each class.
Since a learning approach must search through all possible allocations to determine
an appropriate allocation for a particular state, this makes the problem intractable. To
discretize the allocation space, we impose a restriction that requires the reservation of
a class be modified in steps of T , where T is an integer. For instance, if the step size is
chosen to be 1% or 5%, the reservation of a class can only be increased or decreased by
a multiple of the step size. Imposing this simple restriction results in a finite allocation
space, since the reservation of a class can only take one of m possible values, where
m = 100/T . With n classes, the number of possible combinations of allocations is
(m+n−1

m), resulting in a finite allocation space. Choosing an appropriate step size allows
allocations to be modified at a sufficiently fine grain, while keeping the allocation space
finite. In the rest of this paper, we use the terms action and allocation interchangeably.

3.4 Cost and State Action Values

For the above definition of state space, we observe that the response time needs of a
class are met so long it is in the lo− or lo states. In the event an application class is in
hi or hi+ states, the system needs to increase the reservations of the class, assuming
spare bandwidth is available, to induce a transition back to lo− or lo. This is achieved
by computing a new set of reservations (R1, R2, . . . , Rn) so as to maximize the reward
−sigma+

rt. Note that the maximum value of the reward is zero, which occurs when the
response time needs of all classes are met (see Equation 1).

A simple method for determining the new allocation is to pick one based on the
observed rewards of previous actions from this state. An action (allocation) that resulted
in largest reward (−sigma+

rt) is likely to do so again and is chosen over other lower
reward actions. Making this decision requires that the system first try out all possible
actions, possibly multiple times, and then choose one that yields the largest reward. Over
a period of time, each action may be chosen multiple times and we store an exponential
average of the observed reward from this action (to guide future decisions):

Qnew
(S1,S2,....,Sn)(a) = γ ∗ Qold

(S1,S2,....,Sn)(a) + (1 − γ) ∗ −sigma+
rt(a) (2)

where Q denotes the exponentially averaged value of the reward for action a taken from
state (S1, S2, . . . , Sn) and γ is the exponential smoothing parameter (also known as the
forgetting factor). Learning methods of this form, where the actions selected are based
on estimates of action-reward values (also referred to as action values), are referred to
as action-value methods.

We choose an exponential average over a sample average because the latter is appro-
priate only for stationary environments. In our case, the environment is non-stationary
due to the changing workloads and the same action from a state may yield different
rewards depending on the current workload. For such scenarios, recency-weighted ex-
ponential averages are more appropriate. With 4n states and (m+n−1

m) possible actions
in each state, the system will need to store (m+n−1

m) ∗ 4n such averages, one for each
action.

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 485

Update Action
Values

Average Class
Response Times

Determine System
State

Compute New Allocation

Queues
Class Specific

Storage Device
(Disk)

Requests

Compute Reward

Period P
Sleep for Re−computation

QoS Aware
Disk Scheduler

Fig. 3. Steps involved in learning.

3.5 A Simple Learning-Based Approach

A simple learning approach is one that systematically tries out all possible allocations
from each system state, computes the reward for each action and stores these values to
guide future allocations. Note that it is the discretization of the state space and the alloca-
tion space as described in Sections 3.4 and 3.2 which make this approach possible. Once
the reward values are determined for the various actions, upon a subsequent transition
to this state, the system can use these values to pick an allocation with the maximum
reward. The set of learned reward values for a state is also referred to as the history of the
state. As an example, consider two application classes that are allocated 50% each of the
disk bandwidth and are in (lo−, lo−). Assume that a workload change causes a transi-
tion to (lo−, hi+). Then the system needs to choose one of several possible allocations:
(0, 100), (5, 95), (10, 90), . . ., (100, 0). Choosing one of these allocations allows the
system to learn the reward −sigma+

rt that accrues as a result of that action. After trying
all possible allocations, the system can use these learned values to directly determine an
allocation that maximizes reward (by minimizing the aggregate QoS violations). This
quicker and suitable reassignment of class allocations is facilitated by learning. Figure
3 shows the steps involved in a learning based approach.

Although such a reinforcement learning scheme is simple to design and implement,
it has numerous drawbacks.
Actions are oblivious of system state: A key drawback of this simple learning approach
is that the actions are oblivious of the system state—the approach tries all possible ac-
tions, even ones that are clearly unsuitable for a particular state. In the above example,
for instance, any allocation that decreases the share of the overloaded hi+ class and
increases that of the underloaded lo− class is incorrect. Such an action can worsen the
overall system performance. Nevertheless, such actions are explored to determine their
reward. The drawback arises primarily because the semantics of the problem are not
incorporated into the learning technique.
No performance isolation: Since the system state is not taken into account while making
allocation decisions, the approach can not provide performance isolation to classes. In
the above example, an arbitrary allocation of (0, 100) can severely affect the lo− class
while favoring the overloaded class.
Large search space and memory requirements: Since there are (m+n−1

m) possible al-
locations in each of the 4n states, a systematic search of all possible allocations is
impractical. This overhead is manageable when n = 2 classes and m = 20 (which cor-

486 V. Sundaram and P. Shenoy

responds to a step size of 5%; m = 100/5), since there are only (2120) = 21 allocations
for each of the 42 = 16 states. However, for n = 5 classes, the number of possible
actions increases to 10626 for each of the 45 states. Since the number of possible actions
increases exponentially with increase in the number of classes, so does the memory
requirement (since the reward for each allocation needs to be stored in memory to guide
future allocations). For n = 5 classes and m = 20, 83MB of memory is needed per disk
to store these reward values. This overhead is impractical for storage systems with large
number of disks.

3.6 An Enhanced Learning-Based Approach

In this section, we design an enhanced learning approach that uses the semantics of
the problem to overcome the drawback of the naive learning approach outlined in the
previous section. The key insight used in the enhanced approach is to use the state of
a class to determine whether to increase or decrease its allocation (instead of naively
exploring all possible allocations). In the example listed in the previous section, for
instance, only those allocations that increase the reservation of the overloaded class
and decrease the allocation of the underloaded class are considered. The technique also
includes provisions to provide performance isolation, achieve stable overload behavior,
and reduce memory and search space overheads.

Initially, we assume that the allocations of all classes are set to a default value (a
simple default allocation is to assign equal shares to the classes; any other default may
be specified). We assume that the allocations of classes are recomputed every P time
units. To do so, the technique first determines the system state and then computes the
new allocation for this state as follows:
Case I: All classes are underloaded (are in lo− or lo). Since all classes are in lo or lo−,
by definition, their response time needs are satisfied and no action is necessary. Hence,
the allocation is left unchanged. An optimization is possible when some classes are in
lo− and some are in lo. Since the goal is to drive all classes to as low as state as possible,
one can reallocate bandwidth from the classes in lo− to the classes in lo. How bandwidth
is reallocated and history maintained to achieve this is similar to the approach described
in Case III below.
Case II: All classes are overloaded (are in hi or hi+). Since all classes are in hi or hi+,
the target response times of all classes are exceeded, indicating an overload situation.
While every class can use extra bandwidth, none exists in the system. Since no spare
bandwidth is available, we leave the allocations unchanged.
An additional optimization is possible in this state. If some class is heavily overloaded
(i.e., is in hi+) and is currently allocated less than its initial default allocation, then the
allocation of all classes is set to their default values (the allocation is left unchanged
otherwise). The insight behind this action is that no class should be in hi+ due to star-
vation resulting from an allocation less than its default. Resetting the allocations to their
default values during such heavy overloads ensures that the system performance is no
worse than a static approach that allocates the default allocation to each class.
Case III: Some classes are overloaded, others are underloaded (some in hi+ or hi and
some in lo or lo−). This is the scenario where learning is employed. Since some classes
are underloaded while others are overloaded, the system should reallocate spare band-

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 487

width from underloaded classes to overloaded classes. Initially, there is no history in the
system and the system must learn how much bandwidth to reassign from underloaded to
overloaded classes. Once some history is available, the reward values from past actions
can be used to guide the reallocation.
The learning occurs as follows. The application classes are partitioned into two sets:
lenders and borrowers. A class is assigned to the lenders set if it is in lo or lo−; classes
in hi and hi+ are deemed borrowers. The basic idea is to reduce the allocation of a lender
by T and reassign this bandwidth to a borrower. Note that the bandwidth of only one
lender and one borrower is modified at any given time and only by the step size T ; doing
so systematically reassigns spare bandwidth from lenders to borrowers, while learning
the rewards from these actions.
Different strategies can be used to pick a lender and a borrower. One approach is to
pick the most needy borrower and the most over-provisioned lender (these classes can
be identified by how far the class is from its target response time; the greater this dif-
ference, the greater the need or the available spare bandwidth). Another approach is to
cycle through the list of lenders and borrowers and reallocate bandwidth to classes in a
round-robin fashion. The latter strategy ensures that the needs of all borrowers are met
in a cyclic fashion, while the former strategy focuses on the most needy borrower before
addressing the needs of the remaining borrowers.
Regardless of the strategy, the system state is recomputed P time units after each real-
location. If some classes continue to be overloaded, while others are underloaded, we
repeat the above process. If the system transitions to a state defined by Case I or II, we
handle them as discussed above.
The reward obtained after each allocation is stored as an exponentially-smoothed aver-
age (as shown in Equation 2). However, instead of storing the rewards of all possible
actions, we only store the rewards of the actions that yield the k highest rewards. The
insight here is that the remaining actions do not yield a good reward and, since the
system will not consider them subsequently, we do not need to store the corresponding
reward values. These actions and their corresponding reward estimates are stored as a
link list, with the neighboring elements in the link list differing in the allocations of
two classes by the step size T , that of one lender and one borrower. This facilitates a
systematic search of the suitable allocation for a state, and also pruning of the link list to
maintain a size of no more than k. By storing a fixed number of actions and rewards for
any given state, the memory requirements can be reduced substantially. Further, while
the allocation of a borrower and a lender is changed only by T in each step during the
initial learning process, these can be changed by a larger amount subsequently once
some history is available (this is done by directly picking the allocation that yields the
maximum reward).

As a final optimization, we use a small non-zero probability ε to bias the system to
occasionally choose a neighboring allocation instead of the allocation with the highest
reward (a neighboring allocation is one that differs from the best allocation by the step
size T for the borrowing and lending classes, e.g., (30, 70) instead of (35, 65) when
T = 5%). The reason we do this is that it is possible the value of an allocation is
underestimated as a result of a sudden workload reversal, and the system may thus select
the best allocation based on the current history. An occasional choice of a neighboring

488 V. Sundaram and P. Shenoy

allocation ensures that the system explores the state space sufficiently well to discover
a suitable allocation.

Observe that our enhanced learning approach reclaims bandwidth only from those
classes that have bandwidth to spare (lo and lo− classes) and reassigns this bandwidth
to classes that need it. Since a borrower takes up bandwidth in increments of T from
a lender, the lender could in the worst case end up in state hi1. At this stage there
would be a state change, and the action would be dictated by this new state. Thus, this
strategy ensures that any new allocation chosen by the approach can only improve (and
not worsen) the system performance; doing so also provides a degree of performance
isolation to classes.

The technique also takes the current system state into account while making alloca-
tion decisions and thereby avoids allocations that are clearly inappropriate for a particular
state; in other words, the optimized learning technique intelligently guides and restricts
the allocation space explored. Further, since only the k highest reward actions are stored,
the worst case search overhead is reduced to O(k). This results in a substantial reduction
from the search overheads of the simple learning approach. Finally, the memory needs
of the technique reduce from (m+n−1

m) to 4n ∗ k, where k is the number of high reward
actions for which history is maintained. This design decision also results in a substan-
tial reduction in the memory requirements of the approach. In the case of 5 application
classes, T = 5% (recall m = 100/T) and k = 5, for example, the technique yields
more than 99% reduction in memory needs over the simple learning approach.

4 Implementation in Linux

We have implemented our techniques in the Linux kernel version 2.4.9. Our prototype
consists of three components: (i) a QoS-aware disk scheduler that supports per-class
reservations, (ii) a module that monitors the response time requirements of each class, and
(iii) a learning-based bandwidth allocator that periodically recomputes the reservations
of the classes on each disk. Our prototype was implemented on a Dell PowerEdge server
(model 2650) with two 1 GHz Pentium III processors and 1 GB memory that runs RedHat
Linux 7.2. The server was connected to a Dell PowerVault storage pack (model 210)
with eight SCSI disks. Each disk is a 18GB 10,000 RPM Fujitsu MAJ3182MC disk2.
We use the software RAID driver in Linux to configure the system as a single RAID-0
array.

We implement the Cello QoS-aware disk scheduler in the Linux kernel [18]. The disk
scheduler supports a configurable number of application classes and allows a fraction of
the disk bandwidth to be reserved for each class (these can be set using the scheduler sys-
tem call interface). These reservations are then enforced on a fine time scale, while taking
disk seek overheads into account. We extend the open system call to allow applications
to associate file I/O with an application class; all subsequent read and write operations
on the file are then associated with the specified class. The use of our enhanced open

1 The choice of the step size T is of importance here. If the step-size is too big the overloaded
class could end up in underload and vice versa and this could result in oscillations.

2 The Fujitsu MAJ3182MC disk has an average seek overhead of 4.7 ms, an average latency of
2.99 ms and a data transfer rate of 39.16 MB/s.

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 489

system call interface requires application source code to be modified. To enable legacy
application to benefit from our techniques, we also provide a command line utility that
allows a process (or a thread) to be associated with an application class—all subsequent
I/O from the process is then associated with that class.Any child processes that are forked
by this process inherit these attributes and their I/O requests are treated accordingly.

We also add functionality into the Linux kernel to monitor the response times of
requests in each class (at each disk); the response time is defined to the sum of the
queuing delay and the disk service times. We compute the mean response time in each
class over a moving window of duration P .

The bandwidth allocator runs as a privileged daemon in user space. It periodically
queries the monitoring module for the response time of each class; this can done using
a special-purpose system call or via the /proc interface in Linux. The response time
values are then used to compute the system state. The new allocation is then determined
and conveyed to the disk scheduler using the scheduler interface.

5 Experimental Evaluation

In this section, we demonstrate the efficacy of our techniques using a combination
of prototype experimentation and simulations. In what follows, we first present our
simulation methodology and simulation results, followed by results from our prototype
implementation.

5.1 Simulation Methodology and Workload

We use an event-based storage system simulator to evaluate our bandwidth allocation
technique. The simulator simulates a disk array that is accessed by multiple application
classes. Each disk in the array is modeled as a 18GB 10,000 RPM Fujitsu MAJ3182MC
disk. The disk array is assumed to be configured as a RAID-0 array with multiple
volumes; unless specified otherwise we assume an array of 8 disks . Each disk in the
system is assumed to employ a QoS-aware disk scheduler that supports class-specific
reservations; we use the Cello disk scheduler [18] for this purpose. Observe that the
hardware configuration assumed in our simulations is identical to that in our prototype
implementation. We assume that the system monitors the response times of each class
over a period P and recomputes the allocations after each such period. We choose
P = 5s in our experiments. Unless specified otherwise, we choose a target response
time of di = 100ms for each class and the threshold τi for discretizing the class states
into the lo−, lo, hi and hi+ categories is set to 20ms.

We use a two types of workloads in our simulations: trace-driven and synthetic. We
use NFS traces to determine the effectiveness of our methods for real-world scenarios.
However, since a trace workload only represents a small subset of the operating region,
we use a synthetic workload to systematic explore the state space.

We use portions of an NFS trace gathered from the Auspex file server at Berkeley
[12] to generate the trace-driven workload. To account for caching effects, we assume a
large LRU buffer cache at the server and filter out requests resulting in cache hits from
the original trace; the remaining requests are assumed to result in disk accesses. The
resulting NFS trace is very bursty and has a peak to average bit rate of 12.5.

490 V. Sundaram and P. Shenoy

0

50

100

150

200

250

300

350

400

450

500

200 400 600 800 1000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time (secs.)

Static
Learning

Target Response Time

0

50

100

150

200

250

300

350

400

450

500

200 400 600 800 1000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time (secs.)

Static
Learning

Target Response Time

(a) Average Response Time: Class 1 (b) Average Response Time: Class 2

Fig. 4. Behavior of the learning-based dynamic bandwidth allocation technique.

Our synthetic workload consist of Poisson arriving clients that read a randomly
selected file. File sizes are assumed to be heavy-tailed; we assume fixed-size requests
that sequentially read the selected file. By carefully controlling the arrival rates of such
clients, we can construct transient overload scenarios (where a burst of clients arrive in
quick succession).

Next, we present our experimental results.

5.2 Effectiveness of Dynamic Bandwidth Allocation

We begin with a simple simulation experiment to demonstrate the behavior of our dy-
namic bandwidth allocation approach in the presence of varying workloads.We configure
the system with two application classes. We choose an exponential smoothing parameter
γ = 0.5, the learning step size T = 5% and the number of stored values per state k = 5.
The target response time is set to 75ms for each class and the re-computation period was
5s. Each class is initially assigned 50% of the disk bandwidth.

We use a synthetic workload for this experiment. Initially both classes are assumed to
have 5 concurrent clients each; each client reads a randomly selected file by issuing 4 KB
requests. At time t = 100s, the workload in class 1 is gradually increased to 8 concurrent
clients. At t = 600s, the workload in class 2 is gradually increased to 8 clients. The
system experiences a heavy overload from t = 700 to t = 900s. At t = 900s, several
clients depart and the load reverts to the initial load. We measure the response times of
the two classes and then repeat the experiment with a static allocation of (50%, 50%)
for each class.

Figures 4 depicts the class response times. As shown the dynamic allocation tech-
nique adapts to the changing workload and yields response times that are close to the
target. Further, due to the adaptive nature of the technique, the observed response times
are, for the most part, better than that in the static allocation. Observe that, immediately
after a workload change, the learning technique requires a short period of time to learn
and adjust the allocations, and this temporarily yields a response time that is higher than
that in the static case (e.g., at t = 600s in Fig 4(b)). Also, observe that between t = 700
and t = 900 the system experiences a heavy overload and, as discussed in Case II of

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 491

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

2000 4000 6000 8000 10000

C
um

ul
at

iv
e

Q
oS

 V
io

la
tio

ns

Time (secs.)

Dy. Alloc. with Learning
Dy. Alloc. w/o Learning

Static

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1000 2000 3000 4000 5000

C
um

ul
at

iv
e

Q
oS

 V
io

la
tio

ns

Time (secs.)

Enhanced Learning
Static

Naive Learning

(a) Trace Workload (b) Comparison with Simple Learning

Fig. 5. Comparison with Alternative Approaches

our approach, the dynamic technique resets the allocation of both hi+ classes to their
default values, yielding a performance that is identical to the static case.

5.3 Comparison with Alternative Approaches

In this section, we compare our learning-based approach with three alternate approaches:
(i) static, where the allocation of classes is chosen statically, (ii) dynamic allocation with
no learning, where the allocation technique is identical to our technique but no learning
is employed (i.e., allocations are left unchanged when all classes are underloaded or
overloaded as in Cases I and II in Section 3.6, and in Case III bandwidth is reassigned
from the least underloaded class to the most overloaded class in steps of T , but no
learning is employed), and (iii) the simple learning approach outlined in Section 3.5.

We use the NFS traces to compare our enhanced learning approach with the static
and the dynamic allocation techniques with no learning. We configure the system with
three classes with different scale factors3 and set the target responses time of each class
to 100ms. The re-computation period is chosen to be 5s. We use different portions of
our NFS trace to generate the workload for the three classes. The stripe unit size for
the RAID-0 array is chosen to be 8 KB. We use about 2.8 hours of the trace for this
experiment.

We run the experiment for our learning-based allocation technique and repeat it for
static allocation and dynamic allocation without learning. In figure 5(a) we plot the
cumulative

∑
sigma+

rt (i.e., the cumulative QoS violations observed over the duration
of the experiment) for the three approaches; this metric helps us quantify the performance
of an approach in the long run. Not surprisingly, the static allocation techniques yields
the worst performance and incurs the largest number of QoS violations. The dynamic
allocation technique without learning yields a substantial improvement over the static
approach, while dynamic allocation with learning yields a further improvement. Observe
that the gap between static and dynamic allocation without learning depicts the benefits
of dynamic allocation over static, while the gap between the technique without learning

3 The scale factor scales the inter-arrival times of requests and allows control over the burstiness
of the workload.

492 V. Sundaram and P. Shenoy

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
ai

liz
ed

 C
um

ul
at

iv
e

Q
oS

 V
io

la
tio

ns

Forgetting Factor

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

N
or

m
ai

liz
ed

 C
um

ul
at

iv
e

Q
oS

 V
io

la
tio

ns

Step Size

(a) Effect of Smoothing Parameter γ (b) Effect of Step Size t

Fig. 6. Impact of Tunable Parameters

and our technique depicts the additional benefits of employing learning. Overall, we see
a factor of 3.8 reduction in QoS violations when compared to a pure static scheme and
a factor of 2.1 when compared to a dynamic technique with no learning.

Our second experiment compares our enhanced learning approach with the simple
learning approach described in Section 3.5. Most parameters are identical to the previ-
ous scenario, except that we only assume two application classes instead of three for
this experiment. Figure 5(b) plots the cumulative QoS violations observed for the two
approaches (we also plot the performance of static allocation for comparison). As can
be seen, the naive learning approach incurs a larger search/learning overhead since it
systematically searches through all possible actions. In doing so, incorrect actions that
exacerbate the system performance are explored and actually worsen performance. Con-
sequently, we see a substantially larger number of QoS violations in the initial period; the
slope of the violation curve reduces sharply once some history is available to make more
informed decisions. Consequently, during this initial learning process, a naive learning
process under-performs even the static scheme; the enhanced learning technique does
not suffer from these drawbacks, and like before, yields the best performance.

5.4 Effect of Tunable Parameters

We conduct several experiments to study how the choice of three tunable parameters
affects the system behavior: the exponential smoothing parameter γ, the step size T and
the history size k that defines the number of high reward actions stored by the system.

First, we study the impact of the smoothing parameter γ. Recall from Equation 1
that γ = 0 implies that only the most recent reward value is considered, while γ = 1
completely ignores reward values. We choose T = 5% and k = 5. We vary γ sys-
tematically from 0.0 to 0.9, in steps of 0.1 and study its impact on the observed QoS
violations. We normalize the cumulative QoS violations observed for each value of γ
with the minimum number of violations observed for the experiment. Figure 6(a) plots
our results. As shown in the figure, the observed QoS violations are comparable for γ
values in the range (0,0.6). The number of QoS violations increases for larger values of
gamma—larger values of γ provide less importance to more recent reward values and
consequently, result in larger QoS violations. This demonstrates that, in the presence

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 493

of dynamically varying workloads, recent reward values should be given sufficient im-
portance. We suggest choosing a γ between 0.3 and 0.6 to strike a balance between the
recent reward values and those learned from past history.

Next, we study the impact of the step size T . We choose γ = 0.5, k = 4 and vary T
from 1% to 10% and observe its impact on system performance. Note that a small value
of T allows fine-grain reassignment of bandwidth but can increase the time to search
for the correct allocation (since the allocation is varied only in steps of T). In contrast,
a larger value of T permits a faster search but only permits coarse-grain reallocation.
Figure 6(b) plots the normalized QoS violations for different values of T . As shown,
very small values of T result in a substantially higher search overhead and increase the
time to converge to the correct allocation, resulting in higher QoS violations. Moderate
step sizes ranging from 3% to as large as 10% seem to provide comparable performance.
To strike a balance between fine-grain allocation and low learning (search) overheads,
we suggest step sizes ranging from 3-7%. Essentially, the step size should be sufficiently
large to result in a noticeable improvement in the response times of borrowers but not
large enough to adversely affect a lender class (by reclaiming too much bandwidth).

Finally, we study the impact of varying the history size k on the performance. We
choose γ = 0.5, T = 5% and vary k from 1 to 10 (we omit the graph due to space con-
straints). Initially, increasing the history size results in a small decrease in the number
of QoS violations, indicating that additional history allows the system to make better
decisions. However, increasing the history size beyond 5 does not yield any additional
improvement. This indicates that storing a small number of high reward actions is suf-
ficient, and that it is not necessary to store the reward for every possible action, as in
the naive learning technique, to make informed decisions. Using a small value of k also
yields a substantial reduction in the memory requirements of the learning approach.

5.5 Implementation Experiments

We now demonstrate the effectiveness of our approach by conducting experiments on our
Linux prototype. As discussed in Section 4, our prototype consists of a 8 disk system,
configured as RAID-0 using the software RAID driver in Linux. We construct three
volumes on this array, each corresponding to an application class. We use a a mix of
three different applications in our study, each of which belongs to a different class:
(1) PostgreSQL database server: We use the publicly available PostgreSQL database
server version 7.2.3 and the pgbench 1.2 benchmark. This benchmark emulates the
TPC-B transactional benchmark and provides control over the number of concurrent
clients as well as the number of transactions performed by each client. The benchmark
generates a write-intensive workload with small writes. (2) MPEG Streaming Media
Server: We use a home-grown MPEG-1 streaming media server to stream a 90 minute
videos to multiple clients over UDP. Each video has a constant bit rate of 2.34 Mb/s
and represent a sequential workload with large reads. (3) Apache Web Server: We use
the Apache web server and the publicly available SURGE web workload generator to
generate web workloads. We configure SURGE to generate a workload that emulates
300 time-sharing users accessing a 2.3 GB data-set with 100,000 files. We use the default
settings in SURGE for the file size distribution, request size distributions, file popularity,
temporal locality and idle periods of users. The resulting workload is largely read-only

494 V. Sundaram and P. Shenoy

0

50

100

150

200

250

300

350

400

450

200 400

C
um

ul
at

iv
e

Q
oS

 V
io

la
tio

ns

Time (secs.)

Static
Learning

0

20

40

60

80

100

120

200 400

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time (secs.)

Learning
Static

Target Response Time

(a) Cumulative QoS violations (b) Database Server

Fig. 7. Results from our prototype implementation.

and consists of small to medium size reads. Each of the above application is assumed
to belong to separate application class. To ensure that our results are not skewed by a
largely empty disk array, we populated the array with a variety of other large and small
files so that 50% of the 144GB storage space was utilized. We choose γ = 0.5, T = 5%,
k = 5 and a recomputation period P = 5s. The target response times of the three classes
are set to 40ms, 50ms and 30ms, respectively.

We conduct a 10 minute experiment where the workload in the streaming server is
fixed to 2 concurrent clients (total I/O rate of 4.6 Mb/s). The database server is lightly
loaded in the first half of the experiment and we gradually increase the load on the
Apache web server (by starting a new instance of the SURGE client every minute; each
new client represents 300 additional concurrent users). At t = 5 minutes, the load on
the web server reverts to the initial load (a single SURGE client). For the second half
of the experiment, we introduce a heavy database workload by configuring pgbench to
emulate 20 concurrent users each performing 500 transactions (thereby introducing a
write-intensive workload).

Figure 7(a) plots the cumulative QoS violations observed over the duration of the
experiment for our learning technique and the static allocation technique. As shown, for
the first half of the experiments, there are no QoS violations, since there is sufficient
bandwidth capacity to meet the needs of all classes. The arrival of a heavy database
workload triggers a reallocation in the learning approach and allows the system to adapt to
this change. The static scheme is unable to adapt and incurs a significantly larger number
of violations. Figure 7(b) plots the time-series of the response times for the database
server. As shown, the adaptive nature of the learning approach enables it to provide
better response times to the database server. While the learning technique provides
comparable or better response time than static allocation for the web server, we see
that both approaches are able to meet the target response time requirements (due to
the light web workload in the second half, the observed response times are also very
small). We observe a similar behavior for the web server and the streaming server. As
mentioned before, learning could perform worse at some instants, either if it is exploring
the allocation space or due to a sudden workload change, and it requires a short period
to readjust the allocations. In figure 7(b) this happens around t = 400 s when learning

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 495

performs worse than static, but the approach quickly takes corrective action and gives
better performance.

Overall, the behavior of our prototype implementation is consistent with our simu-
lation results.

5.6 Implementation Overheads

Our final experiment measures the implementation overheads of our learning-based
bandwidth allocator. To do so, we vary the number of disks in the system from 50 to
500, in steps of 50, and measure the memory and CPU requirements of our bandwidth
allocator. Observe that since we are constrained by a 8 disk system, we emulate a large
storage system by simply replicating the response times observed at a single disk and
reporting these values for all emulated disks. From the perspective of the bandwidth
allocator, the setup is no different from one where these disks actually exist in the
system. Further, since the allocations on each disk is computed independently, such
a strategy accurately measures the memory and CPU overheads of our technique. We
assume that new allocations are computed once every 5s.

We find that the CPU requirement for our approach to be less than 0.1% even for
systems with 500 disks, indicating that the CPU overheads of the learning approach is
negligible. The memory overheads of the allocation daemon are also small, with the
percentage of memory used on a server with 1 GB RAM varies (almost linearly) from
1 MB (0.1 %) for a 50 disk system to 7 MB (0.7 %) for a 500 disk system.

Finally, note that the system call overheads of querying response times and convey-
ing the new allocations to the disk scheduler can be substantial in a 500 disk system
(this involves 1000 system calls every 5 seconds, two for each disk). However, observe
that, the bandwidth allocator was implemented in user-space for ease of debugging; the
functionality can be easily migrated into kernel-space, thereby eliminating this system
call overhead. Overall, our results demonstrate the feasibility of using a reinforcement
learning approach for dynamic storage bandwidth allocation in large storage systems.

6 Related Work

Recently, the design of self-managing systems has received significant research attention.
For instance, the design of workload monitoring and adaptive resource management for
data-intensive network services has been studied in [9]. The design of highly-dependable
(“self-healing”) Internet services has been studied [15].

From the perspective of storage systems, techniques for designing self-managing
storage have been studied in [2,4]. The design of such systems involves several sub-tasks
and issues such self-configuration [2,4] , capacity planning [8], automatic RAID-level
selection [5], initial storage system configuration [3] , SAN fabric design [22] and on-
line data migration [13]. These efforts are complementary to our work which focuses on
automatic storage bandwidth allocation to applications with varying workloads.

Dynamic bandwidth allocation for multimedia servers has been studied in [20].
Whereas the approach relies on a heuristic, we employ a technique based on reinforce-
ment learning. Several other approaches ranging from control theory to online measure-
ments and optimizations can also be employed to address this problem. While no such

496 V. Sundaram and P. Shenoy

study exists for storage systems, both control theory [1] and online measurements and
optimizations [6,16] have been employed for dynamically allocating resources in web
servers. Utility-based optimization models for dynamic resource allocation in server
clusters have been employed in [11]. Feedback-based dynamic proportional share allo-
cation to meet real-rate disk I/O requirements have been studied in [17]. While many
feedback-based methods involve approximations such as the assumption of a linear
relationship between resource share and response time, no such limitation exists for
reinforcement learning—due to their search-based approach, such techniques can easily
handle non-linearity in system behavior. Alternative techniques based on linear pro-
gramming also make the linearity assumption, and need a linear objective function
which is minimized; such a linear formulation may not be possible or might turn out to
be inaccurate in practice. On the other hand, a hill-climbing based approach can handle
non-linearity, but can get stuck in local maxima.

Finally, reinforcement learning has also been used to address other systems issues
such as dynamic channel allocation in cellular telephone systems [19] and adaptive link
allocation in ATM networks [14].

7 Concluding Remarks and Future Work

In this paper, we addressed the problem of dynamic allocation of storage bandwidth
to application classes so as to meet their response time requirements. We presented an
approach based on reinforcement learning to address this problem. We argued that a
simple learning-based approach is not practical since it incurs significant memory and
search space overheads. To address this issue, we used application-specific knowledge
to design an efficient, practical learning-based technique for dynamic storage bandwidth
allocation. Our approach can react to dynamically changing workloads, provide isolation
to application classes and is stable under overload. Further, our technique learns online
and does not require any a priori training. Unlike other feedback-based models, an
additional advantage of our technique is that it can easily handle complex non-linearity in
the system behavior. We implemented our techniques into the Linux kernel and evaluated
it using prototype experimentation and trace-driven simulations. Our results showed that
(i) the use of learning enables the storage system to reduce the number of QoS violations
by a factor of 2.1 and (ii) the implementation overheads of employing such techniques in
operating system kernels is small. Overall, our work demonstrated the feasibility of using
reinforcement learning techniques for dynamic resource allocation in storage systems.
As part of future work, we plan to explore the use of such techniques for other storage
management tasks such as configuration, data placement, and load balancing.

References

1. T.Abdelzaher, K.G Shin and N. Bhatti. Performance Guarantees for Web server End-Systems:
A Control TheoreticApproach. IEEE Transactions on Parallel and Distributed Systems. 13(1),
January 2002.

2. G. A. Alvarez et al. Minerva: An Automated Resource Provisioning Tool for Large-scale
Storage Systems. ACM Transactions on Computer Systems(to appear). Technical report HPL-
2001-139, Hewlett-Packard Labs, June 2001.

A Practical Learning-Based Approach for Dynamic Storage Bandwidth Allocation 497

3. E.Anderson et al. Hippodrome: Running CirclesAround StorageAdministration. In FAST’02,
Monterey, CA, pp. 175–188, Jan. 2002.

4. E. Anderson et al. Ergastulum: An Approach to Solving the Workload and Device Configu-
ration Problem. HP Laboratories SSP technical memo HPL-SSP-2001-05, May 2001.

5. E. Anderson, R. Swaminathan, A. Veitch, G. A. Alvarez and J. Wilkes. Selecting RAID levels
for Disk Arrays. In FAST’02, Monterey, CA, pp. 189–201, January 2002.

6. M.Aron et al. Scalable Content-aware Request Distribution in Cluster-based Network Servers.
Proceedings of the USENIX 2000 Annual Technical Conference, San Diego, CA, June 2000.

7. P. Barham. A Fresh Approach to File System Quality of Service. In Proceedings of NOSSDAV’
97, St. Louis, Missouri, pages 119–128, May 1997.

8. E. Borowsky et al. Capacity planning with phased workloads. In Proceedings of the Workshop
on Software and Performance (WOSP’98), Santa Fe, NM, October 1998.

9. A. Brown, D. Oppenheimer, K. Keeton, R. Thomas, J. Kubiatowicz, and D.A. Patterson.
ISTORE: Introspective Storage for Data-Intensive Network Services. In Proceedings of the
7th Workshop on Hot Topics in Operating Systems (HotOS-VII), Rio Rico, Arizona, March
1999.

10. J. Carlström and E. Nordström. Reinforcement learning for Control of Self-Similar Call Traffic
in Broadband Networks. Proceedings of the 16th International Teletraffic Congress, ITC’16,
P. Key., D. Smith (eds.), Elsevier Science, Edinburgh, Scotland, 1999.

11. J. Chase et al. Managing Energy and Server Resources in Hosting Centers. Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles (SOSP), Oct. 2001.

12. M. Dahlin et al. A Qualitative Analysis of Cache Policies for Scalable Network File Systems.
In Proceedings of the ACM SIGMETRICS ’94, May 1994.

13. C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online Data Migration with Performance
Guarantees. In FAST’02, Monterey, CA, pp. 219–230, January 2002.

14. E. Nordström and J. Carlström. A Reinforcement Learning Scheme for Adaptive Link Al-
location in ATM Networks. IWANNT ’95, J. Alspector, T.X. Brown, pp. 88–95, Lawrence
Erlbaum, Stockholm, Sweden, 1995.

15. D.A. Patterson et al. Recovery-Oriented Computing (ROC): Motivation, Definition, Tech-
niques, and Case Studies. UC Berkeley Computer Science Technical Report UCB//CSD-02-
1175, March 15, 2002.

16. P. Pradhan, R. Tewari, S. Sahu, A. Chandra and P. Shenoy. An Observation-based Approach
Towards Self-managing Web Servers. In Proceedings of ACM/IEEE Intl Workshop on Quality
of Service (IWQoS), Miami Beach, FL, May 2002.

17. D. Revel, D. McNamee, C. Pu, D. Steere and J. Walpole. Feedback Based Dynamic Proportion
Allocation for Disk I/O. Technical Report CSE-99-001, OGI CSE, January 1999.

18. P. Shenoy and H. Vin. Cello: A Disk Scheduling Framework for Next Generation Operating
Systems. In Proceedings of ACM SIGMETRICS ’98, Madison, WI, pp. 44–55, June, 1998.

19. S. Singh and D. Bertsekas. Reinforcement Learning for Dynamic Channel Allocation in
Cellular Telephone Systems. With D. Bertsekas. In NIPS 10, 1997.

20. V. Sundaram and P. Shenoy. BandwidthAllocation in a Self-Managing Multimedia File Server.
Proceedings of the Ninth ACM Conference on Multimedia, Ottawa, Canada, Oct. 2001.

21. R. S. Sutton andA G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA.

22. J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes. Appia: Automatic Storage Area Net-
work Design. In FAST’02, Monterey, CA, pp. 203–217, January 2002.

23. R. Wijayaratne and A. L. N. Reddy. Providing QoS Guarantees for Disk I/O. Technical Report
TAMU-ECE97-02, Department of Electrical Engineering, Texas A&M University, 1997.

	Introduction
	Dynamic Storage Bandwidth Allocation: Problem Definition
	Background and System Model
	Key Requirements
	Problem Formulation

	A Learning-Based Approach
	Reinforcement Learning Background
	System State
	Allocation Space
	Cost and State Action Values
	A Simple Learning-Based Approach
	An Enhanced Learning-Based Approach

	Implementation in Linux
	Experimental Evaluation
	Simulation Methodology and Workload
	Effectiveness of Dynamic Bandwidth Allocation
	Comparison with Alternative Approaches
	Effect of Tunable Parameters
	Implementation Experiments
	Implementation Overheads

	Related Work
	Concluding Remarks and Future Work

