
Dělen: Enabling Flexible and Adaptive Model-serving
for Multi-tenant Edge AI

Qianlin Liang
University of Massachusetts Amherst

Amherst, MA, USA
qliang@cs.umass.edu

Walid A. Hanafy
University of Massachusetts Amherst

Amherst, MA, USA
whanafy@cs.umass.edu

Noman Bashir
University of Massachusetts Amherst

Amherst, MA, USA
nbashir@umass.edu

Ahmed Ali-Eldin
University of Massachusetts Amherst

Amherst, MA, USA
ahmeda@cs.umass.edu

David Irwin
University of Massachusetts Amherst

Amherst, MA, USA
irwin@ecs.umass.edu

Prashant Shenoy
University of Massachusetts Amherst

Amherst, MA, USA
shenoy@cs.umass.edu

ABSTRACT
Model-serving systems expose machine learning (ML) models to
applications programmatically via a high-level API. Cloud plat-
forms use these systems to mask the complexities of optimally
managing resources and servicing inference requests across multi-
ple applications. Model serving at the edge is now also becoming
increasingly important to support inference workloads with tight
latency requirements. However, edge model serving differs substan-
tially from cloud model serving in its latency, energy, and accuracy
constraints: these systems must support multiple applications with
widely different latency and accuracy requirements on embedded
edge accelerators with limited computational and energy resources.

To address the problem, this paper presents Dělen,1 a flexible
and adaptive model-serving system for multi-tenant edge AI. Dělen
exposes a high-level API that enables individual edge applications
to specify a bound at runtime on the latency, accuracy, or energy
of their inference requests. We efficiently implement Dělen using
conditional execution in multi-exit deep neural networks (DNNs),
which enables granular control over inference requests, and evalu-
ate it on a resource-constrained Jetson Nano edge accelerator. We
evaluate Dělen flexibility by implementing state-of-the-art adapta-
tion policies using Dělen’s API, and evaluate its adaptability under
different workload dynamics and goals when running single and
multiple applications.
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1 INTRODUCTION
Model-serving systems expose machine learning (ML) models to
applications programmatically via a high-level API [55]. These sys-
tems typically leverage one or more previously-trained deep learn-
ing models on cloud servers, and mask the complexities of optimally
selecting models, managing resources, and servicing inference re-
quests across many applications [8, 16, 27, 55, 56]. Cloud-based
model serving systems are generally multi-tenant with each server
hosting many deep learning models that serve multiple inference
applications [39]. Multi-tenancy increases efficiency by multiplex-
ing limited resources e.g., in GPUs, across applications.

Model serving at the edge is now also becoming increasingly im-
portant to support inference workloads for Internet of Things (IoT)
applications with tight latency requirements, including in smart
homes, mobile health, and wearable devices [40, 48]. Such IoT appli-
cations are becoming pervasive due to continuing advances in hard-
ware miniaturization and improvements in the energy-efficiency
of sensing and communication. Traditionally, edge devices, such as
smart assistants (e.g., Siri, Alexa, etc.), smart cameras, and emerging
household robots, that sense data for IoT applications have sent the
data over the network to remote servers, often in the cloud, for ML
inference processing. However, in recent years, a new generation
of IoT devices has emerged that enable sophisticated low-latency
processing of data at the edge. As one example, smart speakers
with voice assistants that respond to spoken commands require
processing and responses in real-time with low-latency to provide
an adequate interactive experience for users.

Thus, edge computing – where processing is done at the edge
of the network close to users – has emerged as the preferred ar-
chitecture for enabling low-latency IoT applications. To support
edge computing, a new class of low-power embedded hardware
accelerators, called neural accelerators, has emerged that is tai-
lored to, and highly energy-efficient at, executing ML inference
tasks [6, 21, 31, 42, 45, 50, 52–54]. These accelerators range from
the ultra-low-power Arduino Nano and low-power Jetson Nano
GPUs to Apple’s Neural Engine for its iPhones, and have enabled
the rise of edge AI, where embedded edge devices, rather than the
cloud, are capable of providing low-latency ML inference tasks for
applications. Since IoT devices often have many data sources from
numerous sensors and support multiple edge applications, the cloud
model-serving paradigm above, which was originally designed for
cloud servers, is still applicable at the edge. As with cloud model
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serving, edge accelerators may also service inference requests from
many different applications, e.g., using different subsets of sensors.

Importantly, edge model serving differs substantially from cloud
model serving in its latency, energy, and accuracy requirements:
these systems must support multiple applications with widely dif-
ferent latency and accuracy requirements on embedded edge ac-
celerators with limited computational and energy resources. In
particular, unlike cloud servers, edge computing platforms are of-
ten embedded devices with severe resource constraints. As a result,
supporting multi-tenancy by efficiently sharing server and acceler-
ator resources across many IoT applications and multiple models is
paramount for edge model serving. While there has been significant
prior research on optimizing edge AI inference, enabling support
for multi-tenancy and efficient resource sharing, which arise in
model serving systems, has not been a focus of prior research. In
addition, edge model serving must be adaptive at runtime to handle
both potentially dynamic and bursty workloads that vary over time,
and energy constraints due to limited battery power. Finally, edge
model serving must be flexible enough to satisfy widely different
latency and accuracy requirements from multiple applications.

To address the problem, this paper presents Dělen, a flexible,
adaptive, and multi-tenant model-serving system for supporting
low-latency IoT applications on edge AI platforms. Dělen is i) multi-
tenant in its support for multiple concurrent applications, ii) flexible
in enabling applications to specify their own latency, energy, or
accuracy requirements; and iii) adaptive in enabling applications
to specify policies that adapt their operation under workload vari-
ations and energy constraints. In particular, unlike cloud model
serving systems, Dělen implements model serving using multi-exit
DNNs rather than model selection, since they require much less
memory and permit granular control over inference requests using
conditional run-time execution based on application-specific la-
tency, energy, or accuracy constraints. In designing, implementing,
and evaluating Dělen, we make the following contributions.

• Dělen Design. We design an edge model serving platform that
enables flexible and adaptive inference request execution for
multi-tenant applications. The system’s core leverages conditional
run-time execution in multi-exit DNNs to expose a configurable
execution criteria on high-level objectives, including energy, la-
tency, or accuracy. Dělen’s tenant applications can leverage these
configurations to implement application-specific policies.
• Adaptation Policies. Dělen’s mechanisms enable edge applica-
tions to implement a wide range of adaptive policies, including
multiple recently-proposed state-of-the-art policies, and make
trade-offs between energy, latency, and accuracy under both
workload dynamics and energy/resource constraints. We show
how adaptive policies from prior work that use the notion of
Pareto frontier, max-min fairness, and energy-awareness can
be implemented using Dělen’s mechanisms. In addition to ap-
plication adaptation, we also show how Dělen enables cross-
application adaptation of resource allocations to achieve system-
wide goals. Our application-specific and multi-tenant policies
leverage Dělen’s conditional execution framework to handle
workload and system dynamics.
• Implementation and Evaluation.We implement a prototype
of Dělen on a battery-powered Jetson Nano node and use it to

Figure 1:Model serving at the edge.
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Figure 2:Multi-exit DNN architecture

conduct a detailed experimental evaluation.We evaluate Dělen by
implementing multiple state-of-the-art adaptation policies using
Dělen’s API, and evaluating Dělen’s flexibility and adaptability
under different energy, workload and multi-tenancy conditions.
For example, we show how using a Pareto Frontier policy pro-
longs 1.59× battery life while maintaining the desired accuracy.

2 BACKGROUND
This section provides background on model serving, edge AI, edge
accelerators and multi-exit deep neural networks (DNNs).

2.1 Model Serving
Model serving [19, 51] is a computing paradigm for hosting trained
machine learning models and providing inference services on these
models through a well-defined interface so that applications can
easily incorporate ML functionality. Figure 1 shows a generic frame-
work for model serving where IoT devices use various ML models
to run the inference workloads. Model serving has become popu-
lar in cloud settings due to the growing availability of pre-trained
models in domains, such as computer vision (e.g., object detection
models, such as YOLO [38]) and natural language processing (e.g.,
Bert [9]). Cloud-based model serving involves deploying such mod-
els on GPU-equipped servers and providing inference-as-a-service
to multiple applications. Model serving platforms are inherently
multi-tenant in nature, since each server and GPU can host and
execute multiple DNN models concurrently.

2.2 Edge AI
As IoT devices have proliferated, edge AI has emerged as a means
to provide low latency processing to latency-sensitive IoT appli-
cations. The emergence of low-power DNN accelerators has been
a key contributor to the rise of edge AI, where DNN inference
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Figure 3: The relationship between latency, accuracy, energy
for a few of the popular multi-exit DNNs.

can be performed at the edge without relying on cloud servers.
While smartphones were the early adopters of neural accelerators,
they have become ubiquitous with many options emerging in re-
cent years [3, 6, 21, 31, 42, 45, 50, 52–54]. These options vary in
their energy needs and processing capabilities, allowing application-
specific selection. For example, GAP8 [12] andArduinoNano 33 [30]
are suitable for single sensor lightweight DNN applications as they
consume only ∼100mW power, and offer limited memory and accel-
erator capabilities. In contrast, the Google Coral edgeTPU [7] and
the Jetson Nano GPU [35] can support multiple sensor streams and
larger DNN models, as they have greater processing capabilities
and larger RAM (∼4GB memory) but also consume more power
(e.g., 0.5W for the EdgeTPU and 5-10W for the Jetson Nano).

Traditionally, edge AI applications use dedicated accelerators
such that accelerator resources are dedicated to providing inference
service to a single application. In our work, we consider edge model
serving, where we seek to bring the resource-sharing benefits of
cloud model sharing to edge AI environments. In this case, simi-
lar to cloud model sharing, edge server and accelerator resources
are shared across multi-tenant edge applications. Since edge en-
vironments are resource-constrained, such multi-tenancy has the
potential to increase the utilization of scarce accelerator resources.

2.3 Adaptive Model Serving via Multi-exit DNN
While the multi-tenant nature of edge model sharing provides mul-
tiplexing benefits, it also raises challenges due to the workload and
system dynamics that arise in edge environments. Hence, there
is a need for flexible and adaptive model sharing in such settings
[11, 13–15, 17, 22, 33, 34, 43]. Adaptive cloud-based model shar-
ing is typically achieved through model selection [39, 47]. Model
selection involves loading a set of pre-trained models of various
sizes and complexity and then choosing a specific model at exe-
cution time depending on the application’s latency, accuracy, and
energy requirements. Adaptation can be performed by dynamically
switching to a different model when these requirements change.
Model selection can be easily incorporated into cloud model serving
by hosting and serving various model families, where each family
includes a set of models of different sizes.

While model selection can be incorporated into edge model serv-
ing as well, the resource and memory constrained nature of edge
accelerators limit the number of models that can be hosted concur-
rently. Hence, our work focuses on multi-exit DNNs, which have
the potential to mimic multiple models of a family using a smaller
memory footprint, while allowing similar adaptive execution.

Figure 4: Dělen’s architecture includes 1) a conditional run-
time execution framework, 2) a resource manager, and 3) a
profiling and monitoring engine.

Multi-exit DNNs, originally proposed in [44], are a class of DNN
models with multiple exit points. While traditional DNN models
execute all layers to produce a result, multi-exit DNNs allow exits
at intermediate layers and can produce a less accurate, but faster
result, by taking an earlier exit. Figure 2 shows the general archi-
tecture of multi-exit DNNs. Each successive exit involves executing
more layers than the previous exit and thus produces an incremen-
tally “better” result, at the cost of increasing latency and energy
consumption. Executing all layers to take the final exit produces
the same result as a traditional model. Figure 3 shows the trade-off
between latency, energy, and accuracy at different exits for 7 multi-
exit DNNs. By dynamically deciding on which exit to use, multi-
exit DNNs enable application-level adaptation [4, 23, 28, 32, 36],
while consuming fewer memory resources than model selection
approaches. Our work considers model serving mechanisms and
policies to make adaptive trade-offs when deciding on exit points.

3 DĚLEN: DESIGN AND OVERVIEW
Our main focus in designing Dělen as an edge model-serving plat-
form is to enable flexible and adaptive execution of inference re-
quests formulti-tenant applications.We begin by describing Dělen’s
key design components and subsequently provide an overview of
its flexible and adaptive runtime execution workflow.

3.1 Dělen Design Components
Figure 4 shows the overall architecture for Dělen. The core of the
system is its conditional runtime execution framework, which al-
lows applications to configure various runtime execution criteria.
Dělen has two additional components that facilitate the operation
of its conditional runtime execution framework: a resource man-
ager, and a profiling and monitoring module. We next describe the
design and functionality of each component.
3.1.1 Conditional Runtime Execution Framework. We design
our conditional execution framework as a runtime mechanism to
provide applications with a configurable execution criteria across
high-level objectives, such as energy, latency, or accuracy. The flexi-
bility of our execution criteria enables devising application-specific
policies that depend on the specific needs and high-level objectives
of individual applications. Our framework also enables applications
to adapt to changing workload dynamics by configuring their exe-
cution criteria at runtime. The flexibility and adaptability of Dělen
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Parameter Criteria, where𝑂𝑃 ∈ {<,==,>}

Response time ( response_time𝑂𝑃 threshold)
Confidence (confidence𝑂𝑃 threshold)
Accuracy (accuracy𝑂𝑃 threshold)
Energy (energy_used𝑂𝑃 threshold)

Computation (flops_used𝑂𝑃 threshold)
Exit (exit_number𝑂𝑃 threshold)
Null false /*forces full execution*/

Table 1: Dělen exit-selection criteria.

is embedded into the conditional runtime execution and is enabled
by two key design decisions that we next outline in detail.

First, we allow applications to define criteria for different pa-
rameters that specify either resources, such as energy and compu-
tation, or high-level objectives, such as accuracy, response time,
and confidence. The different parameters and relevant criteria are
shown in Table 1. We expose two methods specify_criteria()
and combine_criteria() to register one or more exit selection
criteria and combine them using boolean operators, respectively. As
an example, an application can specify (response_time > 20𝑚𝑠)
| | (confidence > 0.7) as its criteria, which will trigger an exit-
selection if the partial response time exceeds the 20ms threshold or
if the result confidence exceeds 0.7. An energy cap on the execu-
tion can also be specified using the criteria, such as energy_used
> 100𝑚𝐽 . Similarly, an application can determine the exit number
that will yield the desired accuracy using an external policy. For
example, exit_number == 2, causes the second exit to be taken.
The exit criteria is stored in a per-application table.

Second, we enable applications to update their exit criteria at
runtime to handle changing request and workload dynamics. For
example, an application-specific policy may decide to choose a later
exit for a complex inference request to ensure high accuracy at the
cost of energy. Similarly, another application may instead decide to
choose earlier exits under high workload intensity to ensure low
latency at the cost of accuracy. To enable adaptability, the runtime
system leverages a monitoring module to track the current state of
execution for each inference request that an adaptation policy can
leverage to update the exit criteria. We note that the exit-criteria
can be selected on a per-request basis, as well as for a given workload,
and is informed by the adaptation policies presented in §4.

The flexibility of our framework lies in enabling a wide range
of exit criteria for a given application and across applications to
handle their different needs and objectives. The adaptability of our
framework lies in allowing applications to change their exit criteria
on a per-request, as well as a per-workload basis, to handle the
dynamics at the inference and workload levels.
3.1.2 Resource Manager. Dělen enables multiple applications
to share accelerator resources, while configuring their application-
specific exit criteria. It enables support for multi-tenancy through
its resource manager component. The resource manager in-turn has
two key components: the share allocator and the resource limiter.

The share allocator’s job is to assign shares to each application
based on the initial application configuration that includes applica-
tion priority, application characteristics, and the choice of fairness
mechanism to use for multi-tenancy. Dělen’s resource manager is
work-conserving and distributes the shares of applications that are
not using them to all applications. The applications can reclaim

their assigned share if they start using them. We also allow appli-
cations to cooperate with other applications and allow each other
to use their share when not in use. To facilitate this, we provide a
mechanism to update the initially assigned shares at runtime based
on the current status of the cooperative applications.

The resource limiter’s job is to ensure that each application re-
spects its share and does not exceed it over a specified time window.
To do so, the resource manager uses a standard token bucket algo-
rithm for rate limiting [46]. In Dělen, the shares represent the limits
for each application, while the number of time-slices assigned to
each application represents the tokens. The token capacity for each
application is refilled after each limiting interval. While a hard limit
on resource usage can also be used, we use a token bucket algo-
rithm to allow short bursts of workloads for individual applications.
Dělen’s support for multi-tenancy is enabled by the resource man-
ager that allows application-specific resource limits. The resource
manager also enables an additional notion of adaptability where
the shares assigned to each application can be updated at runtime.

3.1.3 Profiling andMonitoring Engine. The profiling and mon-
itoring engine component of Dělen performs two key tasks: a one-
time profiling of an application’s characteristics and the continuous
monitoring of applications’ runtime behaviour.

The application profiling step allows Dělen to get information
about the resource usage of the DNN model. The profiling engine
executes inference requests using the model several times to gather
the following profile data at the granularity of an exit: (i) FLOPs,
which indicate the number of floating point operations performed
by the exit, (ii) energy consumed when executing the exit at full
GPU speed, and (iii) the latency to execute the exit. Each request
is repeated several times, and for each exit, to gather information
about each execution path. This information is used by the resource
manager to assign the initial shares to each application as well as
provided to the applications that leverage it to decide on the exit
criteria using an application-specific adaptation policy.

The continuous monitoring process monitors the status of each
application at runtime, which includes the current exit number,
FLOPs performed, energy consumed, total time taken, and other
metrics, such as confidence value. This information is used by
the runtime adaptation of the exit-selection criteria and runtime
adaptation of per-application shares for the multi-tenancy scenario.

3.2 Overview of Dělen Workflow
In this section, we discuss the typical steps taken by an application
using Dělen at startup and at runtime. At startup, Dělen receives
an application and its initial configurations (Step ❶). The profile
engine uses the application code and its initial configuration to
generate the profile data (Step ❷). The share allocator component
of the resource manager then allocates shares to the application
based on the profile data and the initial configurations (Step ❸). At
the same time, it configures the resource limiter component with
the share for the given application. The adaptation policy used by
the application then uses the conditional execution framework to
determine the initial exit criteria for the inference requests (Step
❹). At this point, the start time configuration process completes
and the application starts executing on the accelerator (Step ❺).
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Algorithm 1: Per-workload adaptation with target error.
Input: A list of profiled error rate Err; target error rate 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 .

1 n← total number of exits ;
2 for 𝑖 = 1...𝑛 do
3 if Err[i] < 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 then
4 specify_criteria(exit_number == i) ;
5 return
6 specify_criteria(exit_number == n) ;

The workflow at runtime depends on the adaptation policy used
by the application. If the application uses a single exit number as
a criteria for all the inference requests in a given workload, the
runtime execution framework does not require active monitoring
of resources. However, if the application specifies a certain criteria
to be met for each inference request, such as a confidence threshold
for the output, the execution framework continuously monitors the
status of the application (Step ❻)). The criteria is evaluated after
each exit and the output is generated once the criteria is met (Step
❼). It is possible that the criteria is not met at any of the exits; in
this case, the output is generated after the last exit.

In addition to these per-application steps, Dělen’s workflow has
additional steps that ensure work-conserving and cooperativemulti-
tenancy among tenant applications. By default, Dělen monitors the
status of each application and redistributes the unused shares to all
the other applications to be work conserving (Step ❽). Additionally,
if an application specifies their willingness to cooperate, the share
allocator module will also recompute the weights assigned to each
application to allow one application’s share to be used by another
application (Step ❾).

4 ADAPTATION POLICIES
In this section, we highlight Dělen’s flexibility to implement a wide
range of policies. To do so, we use Dělen to implement several adap-
tation policies from prior work. We broadly classify these policies
into two categories based on their function: application-specific
and multi-tenant policies. Application-specific policies work on
individual applications and adapt the runtime execution based on a
per-request or per-workload basis. Multi-tenant policies ensure that
each of multiple concurrent applications receives their fair share of
resources and can individually optimize their application-specific
objectives.

4.1 Application-specific Policies
Our application-specific policies target either per-request or per-
workload runtime execution adaptation. Per-request policies adapt
the runtime execution for each request depending on its resource
needs. Per-workload policies adapt to different workload dynamics,
but apply the same criteria to all the requests in a given workload.
In addition, we present additional policies that are applicable to
both the individual requests and the workloads.
4.1.1 Per-request Adaptation Policies. Applications that spec-
ify high level objective, e.g., on latency, may need to adjust the
amount of computation to achieve this objective. Such applications
can use Dělen’s conditional execution framework to define arbi-
trary per-request policies. An application can define one, or more,
criteria for each request and the execution continues until these

Algorithm 2: Pareto adaptation with error constraint.
Input: A list of Pareto-optimal confidence criteria 𝜋 ; target error

rate 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 ; error profile for running policy 𝜋 with model
𝛼 and dataset 𝜔 , 𝛾𝜋𝛼 (𝜔) , and energy profile 𝜂𝜋𝛼 (𝜔) .

1 𝜋∗ ← argmin𝜋∈{𝜋 |𝛾𝜋
𝛼 (𝜔 )<𝑒𝑡𝑎𝑟𝑔𝑒𝑡 } 𝜂

𝜋
𝛼 (𝜔) ;

2 specify_criteria(c𝑖 > 𝜋∗
𝑖
)

criteria are met. For example, prior work demonstrates that all infer-
ence requests do not have the same complexity; in this case, we can
use a confidence threshold to avoid wasting computing cycles and
energy [23, 36, 44]. As another example, if an application specifies
a target latency, the execution greedily continues as long as the
execution can go through the next exit within the latency limit.

The application can also use logical operators to combine mul-
tiple criteria. For example, an application can specify the confi-
dence threshold in addition to the response time, which can be
used to achieve higher-level secondary objectives, such as accu-
racy maximization, while satisfying the response time require-
ments [23, 36, 44]. In this case, the execution will stop once either
the response time or the confidence criteria are met.

4.1.2 Per-workloadAdaptation Policies. Dělen allows an appli-
cation to specify criteria that consider the workload characteristics,
e.g., request arrival rate, and application objectives, e.g., target error
rate, and adapt the criteria as the workload dynamics changes.

The per-workload adaptation policies from prior work specify
one or more targets that determine the exit layer for all the requests
over some duration [4, 17, 32]. For example, an application can
specify a target error rate that is used to determine the exit layer
for all the requests that meet that target error rate. As shown in
Algorithm 1, given a target error rate and error profile for the used
model from the profiling engine, this algorithm selects the first exit
that meets the target error rate. If none of the exits can satisfy the
target, it specifies the last exit (i.e., executing the entire model). It
then uses the exit_number criteria to configure the runtime execu-
tion for all the incoming inference requests. We call this adaptation
policy the per-workload static policy.

The static nature of this policy is well-suited to a scenario where
the workload dynamics, such as the request rate, do not significantly
change. However, for many edge applications, the workload can
experience sudden spikes of requests. In this case, the per-workload
policy can adapt the criteria to handle the change in the request
rate. For example, under high load, an application may decide to
take a hit on the error rate to serve all requests within a target
response time. On the other hand, under low load, the application
can opportunistically decrease its target error rate while serving all
requests within a target response time. An implementation of this
policy leverages the monitoring module of Dělen to continuously
monitor the incoming workload characteristics and configures the
per-workload static policy to handle the changing dynamics. To
do so, it inputs the target latency and latency profile to determine
the exit number. The configuration of target latency based on the
workload characteristics is application-specific. We call this variant
of per-workload adaptation policy the per-workload dynamic policy.

4.1.3 Pareto Adaptation Policies. In this section, we describe
policies from prior work that combine the desired properties of
both the per-request and the per-workload adaptation policies.
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Figure 5: Pareto Frontier of energy and accuracy for a 4-exit
ResNet50. Each circle is 3-tuple containing the confidence
threshold for each of the 3 possible exits.
The per-request policies satisfy criteria for individual requests, but
are oblivious to workload-level trade-offs and requirements. The
per-workload policies treat all requests equally and may not meet
the objectives for each individual request. The Pareto policies aim
to achieve the best of both policies. They enable the high-level
trade-offs of per-workload policies, while also meeting the desired
criteria on a per-request basis. We note that Pareto policies are not
necessarily better than either of the individual policies.

An example of such policies is the Pareto adaptation policy, which
is inspired by prior work on the Pareto Frontier approach [26, 29].
In our Pareto-adaptation policy, we use the confidence as the criteria
for our per-request policy. Lets assume that the confidence 𝑐𝑖 is the
maximum value of the output Softmax layer at exit 𝑖 and 𝜋𝑖 is the
confidence threshold for exit 𝑖 . The exit criteria for our per-request
policy is defined as 𝑐𝑖 > 𝜋𝑖 , where 𝑖 is the exit number.

To optimize the energy-error trade-off, offered by the per-
workload policies, we sample a set of confidence criteria Π and
apply the Pareto frontier approach [26, 29]. Specifically, given a
multi-exit DNN model 𝛼 , a dataset 𝜔 , and a confidence criteria
𝜋 ∈ Π, we can compute the error rate, 𝛾𝜋𝛼 (𝜔) and energy 𝜂𝜋𝛼 (𝜔).
We then compute a set of Pareto optimal criteria Π∗, such that
𝜋∗ ∈ Π∗ if and only if for all 𝜋 ≠ 𝜋∗, either 𝛾𝜋𝛼 (𝜔) > 𝛾𝜋

∗
𝛼 (𝜔) or

𝜂𝜋𝛼 (𝜔) > 𝜂𝜋
∗

𝛼 (𝜔).
Figure 5 shows an example of the Pareto Frontier using a 4-exit

ResNet50 DNN for energy and error rate tradeoff. We employ grid
search method and sample 1000 confidence criteria. Each point
represents a confidence criteria and the Pareto optimal criteria
set is shown in red. As shown, the Pareto frontier represents the
optimal combinations of energy-error that is achievable for a given
accelerator and a DNN. With the Pareto optimal criteria set and
its corresponding error and energy profile, we search a criteria in
the set, which consumes the minimum energy while meeting the
error constraint. This can be done efficiently in 𝑂 (log𝑛) time. The
pseudocode for Pareto Adaptation is shown in algorithm 2.

Note that while we focus on the energy-error trade-off in Algo-
rithm 2, we can generalize it to define a trade-off between any two
metrics, such as latency and error. To do so, we need only replace
the input profile with the profile of target metric.

Algorithm 3: Cross-application adaptation.
Input: 𝜆𝑖 ∈ Λ - request rate for each application 𝑖; 𝑤𝑖 ∈ W -

weights for each application; Li ∈ L - latency profile for
application 𝑖; 𝛽𝑖 ∈ F - a Boolean variable indicating if an
application 𝑖 participates in cooperative adaptation.

Output: S - a set specifying share for each application.
1 while T do
2 𝜁 ← set of cooperative applications (𝛽𝑖 == 1);
3 if (𝜁 ≠ ∅) then
4 A← status of each application in 𝜁 ;
5 W ← recompute_weight(A,Λ) ;
6 S← max_min_fairness(W,Λ, L);
7 𝑙𝑖 ← current service time constraint for application 𝑖;
8 # Other policies such as Pareto Front can also be applied here;
9 specify_criteria(confidence> S[𝑖 ]) ;

10 # Send S to resource limiter;

4.2 Multi-tenant Policies
As mentioned in §3, Dělen supports multi-tenant applications by
assigning shares of available resources to applications, and em-
ploying multi-tenant adaptation policies to ensure a fair and work-
conserving access of resources to each application. In our multi-
tenant policy, we use the notion of max-min fairness but any other
notion of fairness can be used as well [24]. Max-min fairness assigns
shares of accelerator time to different applications based on their
workload and weights specifying their priority. For example, if two
applications get 5 and 10 requests per second, their fair shares are
33% and 66%, respectively. In a cooperative sharing scenario, the
unused portions of a share can be redistributed among applications.

Our multi-tenant adaptation policy can concurrently handle
both non-cooperative and cooperative applications, as shown in
Algorithm 3. The parameter 𝛽 indicates an application’s willingness
to participate in cooperative sharing and its value is set to 0 for
all non-cooperative applications. The resource manager computes
the shares for each application at the start based on the initially
specified request rates. The value of the share for non-cooperative
applications only changes, for work conservation, when some of the
applications are not using their share, while other needs them. For
cooperative applications, we monitor their status and periodically
recompute their weights based on their current workload. In this
case, the sensor that sees a higher workload is given a higher share
to process its increased demands. There is a down-call from the
multi-tenant adaptation policy to all the applications to update their
criteria. These application can use their share to implement any of
the per-application adaptation policies from §4.1.

5 DĚLEN IMPLEMENTATION
In this section, we outline how we implement the key design com-
ponents of Dělen, described in §3, and additional supporting mod-
ules. We implement Dělen on a Jetson Nano that runs CUDA 10.2,
cuDNN 8, and TensorRT 7.1.3. However, it can support other deep
learning frameworks, such as Tensorflow [1] and Pytorch [37]. Our
prototype is implemented using around 3000 lines of code (the
source code for our system is publicly available at URL blinded). We
only provide implementation details of the multi-exit DNN training
engine, conditional runtime execution framework, and profiling
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engine as they require adapting the implementation for the model
serving framework and underlying hardware.
Multi-exit DNN Training Engine. While a large number of pre-
trained DNNs are available for common tasks, such as image classi-
fication, object detection, and speech recognition through various
model repositories [10], multi-exit versions of the standard DNN
models are generally not available. Since we leverage multi-exit
DNNs, we also design and implement a PyTorch-based training
engine to convert a standard DNN model into a multi-exit version.

The state-of-the-art DNN architectures [18, 41] use the concept
of a neural block, which is a pattern of layers that are used repeat-
edly to build the DNN. To build a multi-exit DNN from a standard
DNN, our training engine adds classification layers (e.g., linear lay-
ers) on top of some intermediate blocks and uses the intermediate
output of the block for classification as an early exit. In the training
process, the application specifies the desired number of exits for
the conversion. A lower number of exits has a small training over-
head but it provides less options for adaptive execution based on
high-level objectives and resource availability. On the other hand,
a large number of exits adds a significant training overhead but
offers a significantly higher flexibility for adaptive execution.

Furthermore, unlike standard DNNs, the training engine needs
to compute the loss and train all exits in the multi-exit case. Instead
of training the exits one by one, our training engine uses weighted
cumulative loss similar to MSDNet [20] and trains all exits at once,

𝐿𝑡𝑜𝑡𝑎𝑙 =
1
|B|

∑︁
(x,𝑦) ∈D

𝑁∑︁
𝑖=1

𝑤𝑖𝐿(𝑓𝑖 (x), 𝑦).

where B is the mini-batch, x is the input data and 𝑦 is the ground
truth label. 𝐿 is the loss function for each exit. In this work, we use
a cross-entropy loss function for all exits. 𝑓𝑖 (x) is the output of exit
𝑖 and 𝑤𝑖 > 0 is the weight of that exit. Although prior work [20]
suggests using the same weight for all exits, we empirically found
that this can hurt the performance of later exits and makes them
less accurate than earlier exits. Since our goal is to incrementally im-
prove accuracy with each successive exit, our training engine gives
higher weights to later exits to ensure monotonic improvements.
Conditional Runtime Execution Framework. TensorRT’s run-
time does not support multi-exit DNN execution and we implement
runtime support for multi-exit DNNs and conditional execution.
After training a model, the runtime system converts each 𝑛-exit
DNN into 𝑛-sub-networks. The inputs and outputs of these sub-
networks share the same buffer. To load a DNN model on the GPU,
the runtime system loads all of its sub-networks independently in
TensorRT and then runs each of them on demand. The conditional
execution allows the exit criteria to be evaluated at the exit block
boundaries, which enables an early exit to be taken.
Profiling Engine. As discussed in §3, the profiling engine gathers
the resource usage information for the application DNN. In our im-
plementation, we first compile the multi-exit DNN model using the
TensorRT compiler in the native format to run it using TensorRT—
Nvidia’s low-level runtime framework for Jetson Nano GPUs. The
profiling engine runs a configurable number of inference requests,
termed 𝑀 , at each exit 𝑖 for 𝑁 times. The value of 𝑀 depends on
the dataset used, while we configure the value of 𝑁 to be one as
our data set is large enough to get reliable profile data.

IMX Camera

IMX Camera

Microphone

NVIDIA Jetson Nano

Geekworm T208 18650 UPS
18650 Li-Ion Battery

Figure 6: Dělen prototype implemented on Jetson Nano in
battery-powered configuration.

Models # Exits GFLOPS Energy (mJ) Accuracy

ResNet18 4 0.42 107 0.7450
ResNet34 4 3.68 158 0.7521
ResNet50 4 4.14 176 0.7657
EfficientNet-B0 3 0.42 92 0.7971
EfficientNet-B1 3 0.61 170 0.8097
EfficientNet-B2 3 0.71 249 0.7936
wav2vec2 3 2.51 273 0.8744

Table 2: Characteristics of our multi-exit DNNs.

6 EXPERIMENTAL EVALUATION
In this section, we describe our experimental setup and present the
results for our various adaptation policies using our prototype.

6.1 Experimental Setup
Dělen Prototype. Our experimental setup comprises the Jetson
Nano node in Figure 6 running Dělen’s implementation described
in §5. The Jetson Nano is equipped with a Quad-core ARMA57 CPU,
a 128-core Maxwell GPU, and a 4GB RAM shared between the CPU
and the GPU. The node runs Ubuntu 18.04, CUDA 10.2, CuDNN 8,
and TensorRT 7.1.3. As Figure 6 shows, it is battery powered using
6 rechargeable batteries with a capacity of 3400MAh each.
DNN Models. We use seven DNN models from three popular DNN
families to process image and speech data, as these comprise most
of the edge applications. Specifically, we use EfficientNet[41]
and ResNet[18] for image classification tasks and wav2vec2[2]
for speech recognition tasks. For ResNet and EfficientNet, we
choose ResNet18, 34, 50 and EfficientNet-B0, B1, B2 to represent
a small, medium and large model, respectively. For the wav2vec2
model, we reduce the convolutional dimension from 512 to 128 and
the number of encoder layers from 12 to 6 to improve execution
efficiency. We used our custom DNN training engine to train and
create multi-exit versions of these DNN models. We used the pro-
filing engine to gather detailed resource usage information about
each model, which is summarized in Table 2.
Training Details:We used our custom DNN training engine to cre-
ate multi-exit versions of all seven DNN models. We used the Food-
101 dataset [5] for training the EfficientNet and ResNet models,
and the Speech Commands dataset [49] for training the wav2vec2
model. We applied transfer learning and loaded pre-trained weights
for ImageNet before training. All models are trained using the Adam
optimizer [25] with a learning rate of 10−3. We trained the models
on an off-the-edge device using two NVIDIA GeForce GTX 1080 Ti
GPUs with a mini-batch size of 128 for 50 epochs.



IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Qianlin Liang, Walid A. Hanafy, Noman Bashir, Ahmed Ali-Eldin, David Irwin, and Prashant Shenoy

(a) Application Throughput and Exit Distribution

(b) Achievable Accuracy
Figure 7: The application throughput, exit distribution,
and accuracy for per-request (pR), per-workload (pW),
and Pareto-frontier (PF) adaptation policies. Dělen runs
ResNet50 and has a workload of 30 requests/second.
IoT workloads: The workload for our experiments is generated by
multiple concurrent sensing applications that generate sensor data
either from the hardware sensors or from a pre-generated sensor
trace stored on the file system. The IoT inference workload used in
each experiment is described in the corresponding sections.

6.2 Dělen’s Flexibility
In this section, we demonstrate the flexibility of Dělen in imple-
menting a wide range of application-specific policies that configure
the exit-selection criteria based on either high-level objectives, such
as latency, confidence, and accuracy (§6.2.1), or resource constraints,
such as energy-efficiency (§6.2.2).
6.2.1 Adaptation policies in action. In Figure 7, we demonstrate
Dělen’s flexibility by implementing and evaluating multiple adapta-
tion policies from §4 using a 4-exit ResNet50 fed at 30 requests/sec-
ond. We run three different variants of the per-request policy that
use response time (>100ms), confidence threshold (>0.7), and both
as the exit selection criteria. We also evaluated our per-workload
and Pareto-frontier policies, which try tomaximize the accuracy
for a given inference request rate.

We observe in Figure 7a that policy performance changes
between various exits in different ways. For instance, the
per-workload policy selects a single exit that fulfills the request
rate. The per-request(𝐶>0.7) policy is always attempts to achieve
the confidence threshold and often opts for higher exits which
requires more time and limits application throughput. This issue
is mitigated when the confidence criteria is combined with the
response time or using the Pareto-frontier policy that changes
the thresholds according to the rate.

We next highlight the impact of decisions made by different
policies on the accuracy of inference requests in Figure 7b. As ex-
pected, the fixed selection of an exit for the per-workload yields
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Figure 8: The performance of optimal exit (oracle), Pareto fron-
tier (PF), per-workload (pW), and last exit (Full) policies in
optimizing energy-efficiency under accuracy constraint.
the lowest accuracy, while the per-request prioritizing only con-
fidence achieves the highest accuracy at the cost of low throughput.
In contrast, the per-request that prioritizes response time either
sacrifices accuracy to achieve lower response time or unnecessarily
achieves higher accuracy for a handful of requests. Interestingly,
the combination of these policies avoids their individual pitfalls
and processes all requests with a slight accuracy hit. Finally, we
show that the Pareto-frontier is able to use the confidence cri-
teria knowledge to find the best configurations that adhere to time
constraints as well as increases accuracy.

6.2.2 Optimizing for energy efficiency. We next demon-
strate the flexibility of Dělen in optimizing for energy-efficiency,
while also respecting accuracy constraints. In addition to the
per-workload and Pareto-frontier policies, we implement two
new policies: the Oracle policy and the Full policy. The Oracle is
a per-request policy that takes the first exit which produces the
correct answer on a per-request basis. If the correct answer is not
found, it chooses the first exit in the model and produces the output.
This is the optimal policy that maximizes accuracy while minimiz-
ing energy consumption. The Full policy is implemented using the
per-workload framework with the last exit as the exit number for
all the inference requests.

Figure 8 shows the energy usage and accuracy for different
policies under the accuracy constraint of 70% for image classifica-
tion (e.g., EfficientNet and ResNet) and 83% for speech recog-
nition (e.g., wav2vec2) tasks. We run the models with the entire
test datasets, with a batch size of 1, while measuring the energy
consumption and accuracy. As expected, the Oracle policy achieves
the highest accuracy for all DNNs and the lowest energy for all
DNNs except Wav2Vec2, where it has a comparable energy usage
with other policies.

The Full policy achieves the second highest accuracy, which
comes at the cost of having the highest energy footprint. The
per-workload policy, on average, uses 29.94% less energy than
Full policy. Finally, the Pareto-frontier policy consumes up to
38.7% less energy than the per-workload, with a mean reduction
of 20.1%. Also, it consumes up to 60.9% less energy than Full, with
a mean reduction of 43.9%. For ResNet18, the energy consumption
of the Pareto-frontier policy is slightly higher than that of the
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Figure 9: The performance of Pareto-frontier policy in
adapting to different battery dynamics by minimizing en-
ergy usage under accuracy constraints.
per-workload policy. This is because the model is too small to
yield a high confidence output at early exits, and thus more inputs
are passed to later exits to achieve high accuracy, which increases
energy consumption. All policies achieve higher accuracy than the
constraints, as specified by the red dash lines.
Key Takeaways. The flexibility of Dělen’s conditional runtime exe-
cution framework allows applications to define a wide range of per-
request and per-workload execution criteria including accuracy, re-
sponse time, confidence, and energy-efficiency.

6.3 Dělen’s Adaptability
We next demonstrate the adaptability of Dělen in handling varying
resource dynamics, such as battery levels (§6.3.1), and workload
characteristics, such as handling changing request rates (§6.3.2).
6.3.1 Adapting to battery dynamics. In this experiment, we
demonstrate how applications can leverage Dělen to optimize en-
ergy efficiency with accuracy constraints under varying battery
dynamics that are ever-present at the edge. This adaptation is useful
for controlling the depletion rate of battery and vital for ensuring a
long battery life. We run three applications, IMG1, IMG2, and AUDIO,
that use EfficientNet-B0, ResNet34, and wav2vec2, respectively.
We change the battery level from high to medium to low. We lever-
age Dělen’s flexibility to configure the Pareto-frontier policy
accuracy constraints of 70%, 60%, and 50% for the two IMG tasks
and 89%, 86% and 83% for the AUDIO task, under high, medium, and
low battery conditions, respectively.

Figure 9 shows the runtime adaptation of the Pareto-frontier,
where all three DNNmodels use more energy per request to achieve
higher accuracy during the high battery period. As the battery level
drops to medium, applications adapt to using less energy and lower
accuracy by opting for earlier exits. At the lowest battery level,
applications conserve energy by further reducing energy usage at
the cost of further decreasing accuracy. We note that the AUDIO
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Figure 10: Battery levels for different policies over time.
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Figure 11: Adapting to workload dynamics at runtime using
combined per-request, per-workload, and Pareto-frontier
policies while using ResNet50 for image classification tasks.

Figure 12: The accuracy of inference for various runtime adap-
tation policies shown in Figure 11.
application sees less degradation than the two IMG because the
accuracy at different exits for AUDIO is very similar (see Figure 3).

Figure 10 illustrates the benefits of Dělen on energy-efficiency
and the node’s battery life by showing the battery’s state of charge
over time. We use the experimental setup from the previous fig-
ure, but set the request rate to 10 RPS for all tasks and allow
the battery to discharge until a 10% state of charge. In addition
to the Pareto-frontier, we evaluate the performance of the
per-workload and Full policies from §6.2.2. As shown, the battery
life for the Full, per-workload, and Pareto-frontier policies are
4.02, 4.56, and 6.42 hours, respectively. The Pareto-frontier pol-
icy allows the battery to last 1.41× longer than per-workload and
1.59× longer than Full.
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Figure 13: The effect of limiting resources to an individual
application across different request rates.
6.3.2 Adapting to workload dynamics. We next evaluate the
efficacy of Dělen in adapting to changing workload dynamics that
are inherent to many edge IoT applications. Figure 11 shows the
effects of changes in the request rate on accuracy and response time.
As shown, irrespective of the policy, Dělen was able to instantly
adapt to the workload changes as it updates the execution criteria
every second. The overhead of such frequent updates is negligi-
ble and discussed in §6.5. However, despite adaptation, the impact
on accuracy and response time is not the same across all policies.
For instance, the conservative nature of the per-workload policy
decreases the accuracy equally for both medium and high request
rates, but other policies were able to better cope with the medium
request rates. Figure 11(bottom) shows the average response time.
The behaviour of the combined per-request policy adapts to dif-
ferent request rates. At low rates, it relies more on the confidence
threshold, but at high rates it uses the response-time threshold as
an exit strategy.

To further quantify the accuracy implications of different poli-
cies with workload changes, we gradually increase the workload in
steps from 10 RPS to 50 RPS with the objective of maximizing accu-
racy. Dělen monitors the input rate and notifies the application to
adapt its behavior. Figure 12 shows the policies’ accuracy and input
rate trade-off in executing a 4-exit ResNet50 workload. Here, we
use the policies from the previous experiment. We also add another
per-workload (Exit==1) as a lower-bound on accuracy. As shown,
the conservative nature of the per-workload policy resulted in
lower accuracy than other policies and it ends up choosing the first
exit at 40 RPS. The other policies overcome this limitation by choos-
ing the current exit if the confidence is above the threshold or the
response time limit is hit. The Pareto-frontier policy makes bet-
ter decisions due to its prior knowledge of the relationship between
confidence thresholds, processing time, and accuracy.
Key Takeaway. The adaptive runtime execution of Dělen allows
applications to adapt to changing resource and workload dynamics
while achieving high-level objectives.

6.4 Delen’s Multi-tenancy
In this section, we demonstrate Dělen’s ability to allocate and re-
strict shares assigned to individual (§6.4.1) or multiple concurrent
applications (§6.4.2) in a fair and work-conserving manner.

6.4.1 Restricting per-application resources. As mentioned in
§3 Dělen supports limiting per-application resources to ensure that
applications adhere to their assigned resource share. Resource lim-
itations are an integral part of how Dělen enables multi-tenancy
of applications. To reiterate, each application is assigned a certain

number of tokens depending on its share. Once an application
exhausts its tokens, Dělen will either delay or drop the requests
depending on the applications’ configuration. While Dělen lim-
its the resources, policies themselves can be oblivious or aware
of their assigned share. For example, both the Pareto-frontier
and the per-workload policies consider the request rate and time
assigned per request when configuring the exit-selection criteria.
However, the per-request policies do not consider the workload
characteristics2.

Figure 13 shows the resource usage of a single application when
limited to using only 50% of the system-level resources. We vary
the request rate to evaluate the ability of Dělen’s resource limiter
in limiting the usage of applications that inherently respect their
shares and for those which do not. As shown, the per-workload
policy and the Pareto-frontier, which aremindful of the resource
limit, do not reach the limit. However, the per-request(𝐶>0.7) in
this case, attempts to surpass the limit, but the resource limiter
restricts the application’s usage to below the limit.

6.4.2 Ensuring fair multi-tenancy of applications. We next
demonstrate Dělen’s ability to support multi-tenancy, while ensur-
ing fairness, in scenarios where applications operate in a coopera-
tive or a non-cooperative manner using MAX-MIN fairness. Figures
14 and 15 shows how conditional execution can be used to adapt
the application’s behavior for cooperative and non-cooperative
sharing. We use three applications IMG1, IMG2, and AUDIO. Initially,
the three applications use Resnet 34 at 15 FPS, Efficientnet-B0
at 15 FPS, and wav2vec2 at 5 samples/sec, respectively. All three
applications use the Pareto-frontier policy and are assigned a
weighted share based on their initial workload. At 𝑡 = 20 min, the
IMG1 application sees a workload burst where its request rate rises
to 30 FPS for the next 20 minutes and then returns back to 15 FPS.

Non-cooperative sharing uses local adaptation where the as-
signed shares do not change in the face of workload changes,
and each application makes local adaptation decisions to react
to changes. In this case, IMG1 application adapts to the workload
increases at 𝑡 = 20 by decreasing its accuracy and request time (to
maintain the same time-share). As shown in Figure 14, IMG1 rate
doubling is translated to halving the response time and energy and
a decrease in accuracy by 30%. Also, the other two applications do
not see any impact of these burst seen by IMG1.

In contrast, cooperative sharing is a global adaptation approach
where both the MAX-MIN shares and the conditional execution
criteria are modified to react to workload dynamics. In this case,
when IMG1 sees a higher workload, the weighted shares of all three
applications are recomputed. IMG1 gets a relatively higher share
while the relative share of IMG2 and AUDIO falls. Further, all three
applications react to the change in their share according to their
policy, Pareto-frontier in this case, and recomputes request time.
As seen in Figure 15, this causes a small degradation in response
time and accuracy for all three, while IMG1 is better able to absorb
the workload spike by a smaller drop in the accuracy. The two
policies show how MAX-MIN fairness and conditional execution
enable different behaviors depending on system’s goals.

2A malicious application can surpass its limit by issuing many requests. However,
analysis of security aspects and mitigation strategies is out of scope for this paper.
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Figure 14: Non-Cooperative local MAX-MIN adaptation.
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Figure 15: Cooperative global MAX-MIN adaptation.
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Figure 16: The overhead of Dělen’s conditional execution
framework compared to traditional (single exit) approach.
Key Takeaways. Dělen can restrict the resource usage of individual
applications and leverages that mechanism to enable multi-tenancy
while allowing each application to flexibly configure their exit selec-
tion criteria and adapt to workload dynamics at runtime.

6.5 Delen’s Overheads
Finally, we evaluate overheads imposed by the components of our
systems. Dělen’s system overhead comes from two operations: 1)
updating the exit criteria and 2) evaluating the exit criteria. Table
3 depicts these overheads. As can be seen, updating overhead de-
pends on the policy. For some simple policies, such as Algorithm
1, the updating overhead is negligible. For complex policies, such
as Pareto-frontier, it takes up to a few milliseconds. However,
the results can be cached as the pareto-frontier is assumed to fixed
throughout the application’s lifetime. In this case, the overall up-
dating overhead is negligible. Dělen’s main overhead comes from
evaluating the exit criteria. To enable early exits, extra classifica-
tion layers are inserted into the DNN. Each of these classification
layers takes ∼ 1ms to execute and 100𝜇s to evaluate the specified
boolean criteria. The more exits we go through, the higher the
evaluation overhead. Figure 16 shows the full model execution time
comparison between Dělen multi-exit and traditional (single-exit)
models. The figure shows the worst case evaluating overhead for
each request. As shown, the mean worst case overhead is 6.9%.

7 CONCLUSIONS
In this paper, we presented the design, implementation, and eval-
uation of Dělen, which is a flexible, adaptive, and multi-tenant
model-serving system for supporting low-latency IoT applications
on edge AI platforms. Dělen exposes a high-level API that enables
individual edge applications to specify a bound at runtime on the

Evaluation Metric Time Overhead

Classifier Network Evaluation 1 ms
Exit Criteria Evaluation 100 𝜇s
Update Criteria (PF) 2.6 ms

Update Criteria (others) 70 𝜇s
Table 3: Dělen’s overheads.

latency, accuracy, or energy of their inference requests. We evalu-
ated Dělen’s flexibility by implementing state-of-the-art adaptation
policies using its API, and evaluated its adaptability under different
workload dynamics and goals when running single and multiple
concurrent applications.
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