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Abstract—Cloud platforms’ rapid growth raises significant
concerns about their electricity consumption and resulting carbon
emissions. Power capping is a known technique for limiting
the power consumption of data centers where workloads are
hosted. Today’s data center computer clusters co-locate latency-
sensitive web and throughput-oriented batch workloads. When
power capping is necessary, throttling only the batch tasks
without restricting latency-sensitive web workloads is ideal
because guaranteeing low response time for latency-sensitive
workloads is a must due to Service-Level Objectives (SLOs)
requirements. This paper proposes PADS, a hardware-agnostic
workload-aware power capping system. Due to not relying on
any hardware mechanism such as RAPL and DVFS, it can keep
the power consumption of clusters equipped with heterogeneous
architectures such as x86 and ARM below the enforced power
limit while minimizing the impact on latency-sensitive tasks. It
uses an application-performance model of both latency-sensitive
and batch workloads to ensure power safety with controllable
performance. Our power capping technique uses diagonal scaling
and relies on using the control group feature of the Linux
kernel. Our results indicate that PADS is highly effective in
reducing power while respecting the tail latency requirement
of the latency-sensitive workload. Furthermore, compared to
state-of-the-art solutions, PADS demonstrates lower P95 latency,
accompanied by a 90% higher effectiveness in respecting power
limits.

Index Terms—Diagonal Scaling, Power Cap, Demand Re-
sponse, DVFS.

I. INTRODUCTION

The increasing power consumption of data centers is a major
global concern due to its financial and environmental impacts.
Currently, data centers and networking account for nearly
3% of the world’s electricity consumption [1], with forecasts
predicting a threefold increase by the end of this decade [2],
[3]. In order to amortize costs, data center operators must
carefully plan for long-term timeframes when planning new
deployments. As such, they need to consider both the power
delivery infrastructures and the future computational demands.
In addition, many data centers still rely on energy from pol-
luting sources, which generate greenhouse gas emissions and
contribute to climate change [3], [4]. While meeting certain
environmental regulations, operators must also account for the
substantial electricity cost variations necessary to run their
equipment during the lifespan of the data center. Considering
these issues’ importance and contemporary relevance, it is
essential to control and optimize the power consumption of
data centers flexibly.

Data center providers have employed power oversubscrip-
tion to improve efficiency and lower costs. Power budgeting
is a well-known technique for managing the electricity con-
sumption of data centers by capping its computing demand [5].
Since advancements in the design of data centers have sig-
nificantly improved the efficiency of cooling and power dis-
tribution infrastructures, the majority of the electricity used
in modern data centers is consumed by servers. As such,
most techniques implement power budgeting through capping
mechanisms that consolidate, throttle [6], migrate (to and
across different locations), and scale [7] workloads to meet
the power budget limits at the data center level.

Controlling power consumption requires both system and
workload flexibility. This flexibility can be realized in multiple
ways, though most techniques utilize hardware mechanisms
such as Running Average Power Limit (RAPL) [8] and Dy-
namic Voltage and Frequency Scaling (DVFS) [9], as well
as software techniques like power-aware scheduling [10] and
cluster-level power management [11]. Research has under-
scored the limited efficacy in reducing server power con-
sumption across many modern architectures with hardware
mechanisms. Although they provide an application-agnostic
approach to reduce power consumption, the primary limitation
of hardware techniques is that power limits are applied to
entire CPU sockets rather than individual applications. This
results in non-optimal power allocation, especially impacting
multi-tier services distributed across multiple servers. Other
recent research points out that aggressive power optimization
can increase the risk of higher tail latency and degrade
application performance. This is because power optimization
techniques are typically SLO-unaware [7], and workloads tend
to be highly sensitive to dynamic changes in power allocation,
which indirectly affect both performance and power consump-
tion, making the simultaneous control of both parameters a
complex task [8]. Certain techniques assume batch workloads
are best-effort – i.e., utilize every resource available to it –
and can better handle performance variations. For instance,
Thunderbolt [6] uses CPU bandwidth control to prioritize
latency-sensitive workloads by reducing the throughput of
batch workloads, effectively allocating more power to the
former at the expense of the latter.

Although batch workloads have good flexibility in terms of
Service-Level Objectives (SLOs), it is important to prioritize
and minimize the impact that resource allocation causes on



the tail latency of web workloads. One solution for managing
dynamic web workloads is to use elastic scaling, where re-
sources allocated to the web service are dynamically adjusted
to match workload variations [12]. Although many cloud
providers support elastic scaling [13], [14], [15], methods
tend to overprovision resources because they consider only
a single dimension when scaling, often through horizontal
scaling. The target is to handle the peak workload seen in a
provisioning step and to reduce SLO violations while avoiding
frequent re-provisioning decisions. If variations in workloads
is not effectively captured, this results in over-provisioning
that accounts for forecasting errors. When vertical scaling is
employed, it allows for precise resource provisioning, though
at significantly lower levels, to accommodate unexpected peak
workload demand. This also results in overprovisioning, as
new application replicas consume time to be instantiated,
potentially leading to SLO violations and high power usage
due to the non-proportionality of computing power consump-
tion [16].

The most significant challenges related to server throttling
to implement power budgeting and that requires further in-
vestigation involve power-performance tradeoffs. In addition,
there is still a lack of models describing the relationship
between server configurations and application performance,
together with software techniques necessary for optimizing
multiple co-located applications. To address these issues,
we propose PADS (Power-Aware Diagonal Scaler), a power
budgeting technique that combines horizontal and vertical
scaling—referred to as diagonal scaling—along with an appli-
cation power-performance model to cap the total power con-
sumption of servers while respecting application SLOs. Unlike
prior work that has used diagonal scaling, PADS utilizes ap-
plication information such as workload rate or computational
stage to estimate the precise level of resource bandwidth
to allocate to applications. By leveraging these application
models, we can meet the SLO targets of high-priority web
services and effectively minimize the performance degradation
impact on lower-priority, batch jobs. The key idea of PADS
is that similar CPU bandwidth configurations can result in
different application performances and varying power con-
sumption levels, revealing a new search space to be exploited
in implementing power cap policies. In implementing PADS,
we make the following contributions:

• We showcase the empirical effects of CPU bandwidth
allocation when provisioning resources on power con-
sumption and latency (§II).

• We introduce PADS’s design that combines diagonal
scaling with application power-performance models to
cap the power consumption of servers. Our approach
leverages analytical profiling power and performance
models to jointly meet the workload levels, application
SLOs, and power budgets (§III).

• We implement a prototype of PADS (§IV) and evaluate
it using realistic applications and workloads. Our results
show that power efficiency can reach near-optimal levels

of 89% while avoiding power cap violations. (§V).
• In addition, we showcase PADS’s adaptive properties for

Demand-Response use-cases that can be robust to power
cap changes without violating the limit while achieving
lower response time by 20% compared to baseline.

• We open-source PADS for reproducibility1.

II. BACKGROUND

This section provides background on latency-critical web
services, diagonal scaling techniques, power budgeting and
capping techniques, and the motivation of our system.

A. Interactive Services

Interactive workloads are low latency services that require
user round-trip times – i.e., the time from request submission
to response – to be within certain levels of operation. For
applications such as web apps or mobile apps, the round-
trip performance of requests is directly experienced by an
end user. As such, keeping the latency of requests under
specific target – i.e., SLO requirement – is one of the key
challenges in increasing user satisfaction. Several studies have
shown that high tail latency can significantly increase customer
abandonment rates [17], [18], [19]. For instance, one study
found that even small increases in response times can lead to
a one percent reduction in e-commerce sales [19]. One of the
primary causes of high tail latency is the complexity of modern
software stacks and the resource management of intricate
workflows. Scheduling delays [20], multi-tenancy [21], energy
optimizations [22], and bad resource allocation configura-
tions [17] can all introduce significant and random delays
in request execution, causing requests to be served orders of
magnitude slower than average [20]. To avoid pitfalls when
controlling the response time of latency-sensitive workloads, it
is common to over-provision applications’ resource needs [14].

B. Resource Scaling

Managing the performance within a data center depends
primarily on allocating resources and power to applications.
While statically over-provisioning resources can mitigate tail
latency, it’s not a financially sustainable approach, especially
for services with millions of users. Thus, cloud data centers
continuously seek cost-efficient techniques to maintain low
tail latency despite dynamic request patterns. Auto-scaling is
a key technique to reduce the wastage of resources. Several
factors related to the auto-scaling mechanism can impact
the performance of cloud services. One critical factor is the
configuration of CPU utilization thresholds, which governs
the activation of auto-scaling policies for adding or removing
resources. Another essential consideration is the scaling step
size, representing the number of instances configured during
each provisioning process to accommodate workload spikes.
Significant research efforts have been dedicated to examining
various aspects, including investigations into vertical and hor-
izontal resource scaling [6], and the tradeoffs between power

1The code available at: https://github.com/umassos/PADS



and performance in systems operating under power constraints
or aiming to reduce overall footprint.

C. Power Budgeting

The exponential trends in energy needs have generated
growing scrutiny regarding the energy consumption of data-
centers. Consequently, numerous cloud providers and data cen-
ter operators have heightened their focus on fostering energy-
efficient and sustainable practices such as power budgeting,
where server power capping has emerged as a key solution.
Power capping is used to limit a server’s power consumption
to stay within a specific power budget. This approach allows
data center operators to reduce peak power consumption at the
cost of potential performance degradation for hosted applica-
tions. Traditionally, Dynamic Voltage and Frequency Scaling
(DVFS) is used to reduce CPU power consumption by lower-
ing the voltage and frequency. Recently, RAPL [23] has been
proposed as an alternative that enables direct control over the
power consumption of a server’s CPU and memory. Extensive
research has explored the implementation of power capping
through resource scaling – both vertically and horizontally
–, as well as through optimizations involving the trade-offs
between power allocation and application performance [6].

Performance degradation often occurs when the power con-
sumption of servers is throttled. The extent of performance
degradation varies between applications and also depends on
the workload experienced at the throttling time. Additionally,
different workloads may hold varying levels of importance
to the data center operator, who prioritizes certain groups of
applications when power budget is insufficient to run servers at
full capacity. Schedule mechanisms can use operating system
tooling to regulate the amount of processing power applica-
tions access from available system resources. For instance,
the Linux cgroups [24] feature can be used to limit and
prioritize certain groups of processes running in a server
while controlling the CPU bandwidth they have. In addition,
it can vertically scale a process by dynamically scaling the
resources applications can access. Surprisingly, there has been
relatively limited exploration into the interactions between
scaling parameters, specifically the simultaneous coordination
of vertical and horizontal resource allocation and scaling with
power allocation and application performance.

D. Motivation

The key insight of our research is that resource bandwidth
can lead to application underperformance and increased power
consumption, even when allocations are equivalent. Con-
versely, power budgeting mechanisms used by cloud providers
are typically agnostic to the application workload, with caps
enforced through resource profiling that may result in budget
violations (§V). This creates an opportunity to optimize power
budgeting by using resource bandwidth mechanisms that in-
tegrate application performance and power models to jointly
minimize performance degradation and meet datacenter, and
workload SLOs.
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Fig. 1: Power consumption of a compute intensive workload
across equivalent nominal resource bandwidths (CPU quota)
and different resources (cores). Increasing CPU bandwidth
does not necessarily lead to higher power consumption.

Figure 1 illustrates the power consumption of a compute-
intensive workload [25] running in a 16 cores server. For each
core assignment (in number of cores), we assign a Linux
cgroup’s CPU quota (in ms), reporting the average power
consumption (W) for each combination. We can make two key
observations. First, for each CPU quota, the power consump-
tion ranks across the different core assignments are different.
This means that power consumption not only depends on the
number of cores it uses, but also on the CPU time each
core has. For example, while the 12-core assignment (right-
arrow) consistently has the lowest power consumption across
all CPU quotas, the 6, 8, and 10-core assignments repeatedly
change ranks, with up to 5× power consumption variations
between the lowest (18W) and largest (65W) CPU-quotas.
Second, increases in core allocation do not necessarily result in
increased in power consumption. For instance, an increase in
30% in CPU quota bandwidth results in 20% increase in power
consumption for the 8-core assignments (circles) while having
negligible effects on the 10-core assignment (left-arrows). This
means that improvements in application performance may
be achieved while keeping the resulting power consumption
constant. These observations show that power budget strategies
that employ auto-scaling techniques should not only consider
simple core-scaling techniques, but also the processing time
since it directly affects application end performance.

Key Insight. Applications’ power consumption does not
necessarily align with resource bandwidth allocation. Un-
like simple auto-scaling techniques, power budgeting mech-
anisms that integrate application power and performance
models through diagonal scaling can enhance power con-
sumption optimization tradeoffs by up to 5× while main-
taining equivalent levels of SLOs.

III. SYSTEM DESIGN

A. System Overview

PADS is a power budgeting system for data centers that im-
plements power capping employing diagonal scaling alongside



application profiles to devise power-performance models and
enabling it to explore a wider range of resource provisioning
options that can simultaneously maintain the data center’s total
power consumption within budget and meet application SLOs.
PADS includes three phases. First, the performance and

power models are devised based on application profile data,
similar to how it is presented in §II. We use first-order regres-
sion [26] to build accurate models. Latency sensitive services
are profiled according to the impact their different workload
levels have on resource utilization, which are then mapped to
power consumption. Conversely, batch applications are pro-
filed by submitting them to various resource quotas, mapping
them to both workload throughput and power consumption2.
Second, once the analytical power-performance models are
devised, PADS searches sets of CPU bandwidth and resource
assignment combinations that reduce power consumption be-
low the power budget. In this operation, PADS ensures that
the picked combination satisfies power and performance con-
straints for all applications. Although multiple policies could
be evaluated when choosing which combination to apply, here,
we greedily sort the final set by combinations that minimize
the performance degradation of batch workloads. Finally, once
the final power-performance combination is devised, PADS
applies diagonal scaling by dynamically adjusting number of
cores along with their CPU bandwidth times. To minimize
uncertainty in CPU performance and fluctuations in response
times due to reduced power levels, the PADS utilizes a config-
urable buffer to adjust the total data center power budget. This
enables a safety net for priority workloads that are sensitive
to changes in resource and power allocations.

B. Algorithm Design

Algorithm 1 details how PADS decides how resource scaling
happens for each applications while keeping the total power
consumption under an enforced power cap. The algorithm
accepts two inputs and uses two system-wide available data.
The first input is the power change. It denotes the dif-
ference between the system’s power cap and active power
consumption. The second input is application classes. Cloud
datacenters host multiple applications and pack them into the
same server as much as possible for efficiency. However,
each application has different performance requirements. Thus,
certain applications are prioritized in using resources. For
example, latency-sensitive web applications might be given a
priority in utilizing more resources than batch applications due
to their strict responsiveness requirements to users. Therefore,
it is essential to put applications into different priority classes
so that when PADS takes an action, it does not hurt the
performance of high-priority class applications. Rather, PADS
revokes resources from the less priority applications. The
first system-wide available data is the information on CPU
utilization of applications. PADS uses this information to
meet SLO requirements of applications, if any. Here, we
note that we put applications with SLO requirements into

2Our power regression models achieve accuracy over 90%.

Algorithm 1: Find Resource Change
Input: power change, app classes
Data: app cpu utils, workload level
Output: resource change

1 resource change← ∅
2 residual power ← power change
3 foreach class ∈ app classes do
4 foreach app ∈ class do
5 if residual power > 0 then
6 candidates, nominees← ∅, ∅
7 candidates← candidates∪

power_to_cpu_resource(power change
|class| )

8 foreach cand ∈ candidates do
9 new cpu util←

compute_cpu_util( appcpu usage,
cand)

10 eval result←
eval_cpu_utils(new cpu util,
app cpu utils, workload level)

11 if (eval result) then
12 residual power ←

residual power − (power change
|class| )

13 nominees← nominees∪
app_perf_model(cand)

14 resource change←
resource change ∪ min(nominees)

15 return resource change

the highest application classes to exclude these applications
from resource deflation. Moreover, PADS uses workload level
change information that is specific to latency-sensitive web
applications. Making PADS proactive by utilizing workload
change information improves its decision-making process.

Our algorithm follows classical MAPE loop structure [27].
In the Monitor and Analysis phase, we collect system-
wide power consumption information and compare it with
the system-wide applied power cap. After that, we move
to Planning phase to decide what actions should be taken
to keep the power consumption under the cap continuously
(Algorithm 1). Here, we have two cases: we reduce the given
CPU cores and CPU quota from the applications starting from
the lowest-priority application classes if the system power
consumption exceeds the cap. Otherwise, we add resources to
the applications starting from the lowest-priority application
classes. In both cases, our algorithm behaves applications
placed in the same class uniformly distributed. For example,
suppose the power change is X Watts, and there is n number
of applications in the application class. In this case, we
change CPU cores along with their CPU bandwidth such that
the selected resource combination accounts for X

n Watts per
application according to the application power model. Here,
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Fig. 2: Architecture of PADS. Arrows going outwards from
the circle on nodes show resource changes of applications.

PADS might have multiple CPU core and quota combinations.
Thus, we keep all these combinations in candidates set (line
7). Among these candidates, we filter the ones whose effect on
overall CPU utilization does not make the applications with
SLO violate their performance requirements (lines 8-11). After
that, PADS computes and compares the performance effects
of chosen candidates on the application and picks the one
with the least performance impact (lines 13-14). Here, PADS
also ensures that the selected candidate does not lower the
application’s resource under its minimum limit to guarantee
that application stays responsive. Our system switches to
Execute step as a final step. In this step, planned resource
changes are applied to each application accordingly.

IV. ARCHITECTURE AND IMPLEMENTATION

In this section, we describe the architecture and implemen-
tation of PADS. The prototype of PADS is developed with
approximately 1.3KLOC of Python.

Figure 2 shows how PADS’s major components interact
with each other. When it makes a decision and subsequently
takes action to keep the total power consumption below the
power limit, it considers the outcomes of its decisions on
the performance of latency-sensitive applications. Thus, PADS
is an application performance-aware power capping system.
Next, we describe each of the major components of PADS.
Manager. The manager runs on a group of dedicated nodes,
monitors data from the agents under their control, and makes
power-capping decisions.
Agent. The agent is a lightweight program running on every
node in the cluster. It executes CPU resource decisions made
by the manager.
PADS manager reads power measurements from the ePDU

using a Simple Network Management Protocol (SNMP) every
second. Similarly, it reads the performance metric of the
latency-sensitive web application, i.e., 95th response time,
every second. We were down to a 1-second resolution due
to the criticality of frequently monitoring power consumption
and application performance. This small monitoring interval
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Fig. 3: Wikipedia workload trace for evaluation.

allows PADS to make more stabilized and quicker power-
capping decisions. When the manager decides on a new CPU
core and quota of applications, the power consumption limits
are also considered. After the decision is made, it sends
this information to agents running on each node. The agent
is responsible for setting the given resource limits by the
manager. It applies the resource changes by using the Linux
cgroup feature. This feature limits the application from using
all resources except whatever is given to itself. The agent
also provides the manager crucial telemetry data about the
applications, such as CPU utilization. For communicating, the
manager and agent communicate via gRPC calls [28].

V. EXPERIMENTAL SETUP AND EVALUATION

In this section, we first describe the setup for our exper-
iments, including the real-world applications and workload
traces. Next, we evaluate our PADS in respecting the given
power cap limit while maintaining the 95th response time
performance metric of latency-sensitive application. Then, we
compare PADS against Thunderbolt, one of the state-of-the-art
power capping systems. In all results, we normalize the power
consumption to the highest power consumed when power is
not restricted.

A. Experimental Setup

Testbed Setup. Our testbed includes Dell PowerEdge R440
server running Ubuntu 20.04 LTS. The server has a two-socket
Intel Xeon Silver CPU, 8 cores each, 2.10GHz, and 64GB of
memory. We disable hyperthreading and turbo boost because
they affect the comparisons, regardless of the approach used.
Moreover, we enable the performance governor of CPUFreq
driver [29]. We deploy our applications inside of the LXC
container. As a power meter, we use CyberLink Switched
Metered-by-Outlet PDU [30]. This power meter provides
outlet-level power monitoring in real time.
Applications. We use two application classes: high-priority
and low-priority. We put a latency-sensitive cloud application:
MediaWiki [31] into the high-priority class, while batch-
application: BLAST [25] into the other one. We co-locate
them when we deploy. MediaWiki is an open-source wiki
software platform that hosts a replica of Wikipedia. It is a
traditional LAMP stack software. We use the pre-built version
of the German Wikipedia, which comprises 10 GB of content.
We use the HAProxy load balancer for the latency-sensitive
application to collect application arrival rate and response
time data. We use BLAST as a batch application. It is a
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Fig. 4: PADS mechanism. Power consumption is limited while
considering p95 latency.

bioinformatics program for finding regions of local similarity
between nucleotides of DNA and/or RNA sequences or amino-
acid sequences of proteins.
Workloads. In our experimental setup, we use Mediawiki real-
world workload trace [32]. shown in Figure 3. We scaled
traces by considering the serving capacity of our setup. When
submitting these workloads, we issued requests using an open-
loop system model [33], which creates a new request whether
a response to previous requests is received. We use the
httpmon workload generator [34] to emulate users accessing
applications.
Metric Collection. We characterize the response time of
a Mediawiki request as the time length from the moment
the request is dispatched to the moment the request output
response is received. Here, we specifically focus on the CPU
request processing time. In other words, we do not consider
the requests’ network latency. We collect Mediawiki’s P95
response times at 1-second granularity.

B. Validation

Our first set of experiments aims to validate and show how
PADS can maintain the P95 response time below the target
while keeping the power consumption under the power cap.
Results. In this experiment, we sampled and used the
workload shown in Figure 3. Figure 4 depicts results for
PADS under this workload. We empirically set the target
SLO response time as 250 ms, the power cap as 92% of the
maximum power consumption under an unrestricted environ-
ment, and measured the 95th response time of the MediaWiki
application. Moreover, we show how PADS changes CPU
cores and quota resources allocated to the BLAST application.
According to results, PADS achieves zero power cap violation
and an average of 150ms P95 latency, well below the SLO
target due to accurate Mediawiki workload predictions and
CPU core and quota allocations. Overall, PADS effectively
applies a power-capping mechanism jointly with performance
awareness to respect power cap and performance targets.

Strict Medium Relax
Power Cap

0

2

4

6

8

10

12

Po
w

er
 C

ap
 V

io
la

tio
n 

(%
)

x x x

PADS Thunderbolt

Strict Medium Relax
Power Cap

0

50

100

150

200

250

300

R
es

po
ns

e 
Ti

m
e 

(m
s)

PADS Thunderbolt

(a) Power Cap Violation (b) Mediawiki Response Time

Fig. 5: PADS versus Thunderbolt: x on (a) shows no violation.

C. Comparison with State-of-the-Art

We implement and evaluate Thunderbolt [6] for comparison.
It is a reactive power capping system that employs an off-
the-shelf Linux CPU bandwidth mechanism to throttle batch
applications by changing their quota limits when total power
consumption exceeds a given power limit.

Thunderbolt maintains two capping thresholds, each with a
multiplier. In our experiment, we used the same parameters
presented in the Thunderbolt paper. In addition, we set the
complete unthrottling duration to 10 seconds. This means
Thunderbolt gives 10% of resources back to the BLAST
application every second if the system is in the unthrottling
stage.
Results. Figure 5 presents the power cap violation and latency
results for PADS and Thunderbolt. As shown in Figure 5(a),
the higher power availability across all policies enables lower
power cap violations. As the power cap targets reduce, the
impacts of using application model information to make de-
cisions are more noticeable, negatively affecting Thunderbolt
but PADS. Since Thunderbolt does not use any application
information, such as workload changes of the Mediawiki ap-
plication, its reaction features do not take the required actions
promptly to avoid power cap violations. Noticeably, PADS
avoided more than 90% power cap violations for the string
power capping setting. Figure 5(b) shows the response time
distribution across different power cap settings. Overall, as the
power cap gets relaxed, response time distribution increases
across both systems because they give more resources to the
BLAST application, and this puts pressure on the Mediawiki,
but PADS still performs better up to 20% and keeping response
time under 250ms. This is because of PADS’ better control
over response time variability, resulting in more predictable
performance.

Key Takeaway. Despite excluding latency-sensitive appli-
cations from throttling for power reduction reasons, power-
capping mechanisms still tend to degrade their performance
while enforcing power limits. Thus, application information
should be integrated into the power-capping system to have
a more control on performance.

D. Use-case: Demand-Response (DR)

Demand-response (DR) programs aim to address stability
challenges by incentivizing power consumers to regulate their
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Fig. 6: Power cap violation and Mediawiki performance under
demand-response use case.

consumption within predetermined timescales. By participat-
ing in these programs, consumers, such as datacenters, can
lower their energy expenses and contribute to grid stability
and sustainability. However, significant challenges, such as
hefty economic penalties due to power management errors,
can arise when operating under limited and fluctuating power
availability. [35].

In this experiment, we evaluate how PADS and Thunderbolt
work under dynamic power cap changes. We use electricity
price data for two different regions located in Europe, shown
in Figure 6(a) [36]. We generated power cap data shown
in Figure 6(b) from the electricity price graph by taking an
inverse proportion of the prices and normalizing between the
strict and relaxed power cap settings. In this use-case scenario,
the datacenter adjusts its maximum power usage in real time.
It wants to use less electricity when the price is high and vice
versa. For this reason, we see from Figure 6(b) that when
the electricity price is high, the power cap value is lower, and
when the price is low, the power cap value is higher. We expect
Region-I to be more challenging than Region-II because of the
variability in changes.
Results. Figures 6(c) and (d) depicts the results of power
cap violation and response time of Mediawiki application for
PADS and Thunderbolt. For the Region-I, PADS achieves 75%
less power violation than Thunderbolt, while it doesn’t have
any violation for the Region-II. Across all regions, PADS
achieves 10% to 15% better response time than Thunderbolt.

Key Takeaway. Power capping systems should be resistant
to changes in power cap over time. PADS shows robustness
to the changes while it respects the performance require-
ment of the latency-sensitive applications.

VI. RELATED WORK

Power capping is a technique to guarantee power con-
sumption does not exceed the user-defined bound [37]. [38]
compared the effectiveness of various power capping mecha-
nisms, including DVFS and RAPL. Dynamo [39] is a power
management system that uses a three-band algorithm for power
capping and uncapping decisions and Intel RAPL to en-
force the given power limit. CapMaestro [40] manages power
oversubscription by proposing a global priority-aware algo-
rithm to protect high-priority workloads from power throttling
while maintaining a minimum performance guarantee for low-
priority workloads. Thunderbolt [6] is the other power capping
system that throttles the CPU shares of throughput-oriented
workloads using Linux cgroup features to stay within the
specified power budget while ensuring that latency-sensitive
tasks remain unaffected. Microsoft also designs a workload-
aware power capping system [10] for the Azure platform em-
ploying per-core DVFS and RAPL mechanisms. PARM [41]
is an adaptive resource allocation framework under a power
capping system. Its difference from PADS is that it re-allocates
resources to preserve SLO under the cap. That is, a separate
system already does power capping on top of PARM. [42]
uses the DVFS boosting technique at scale to quickly and
safely expand the computational capacity by providing addi-
tional power capacity in an oversubscribed environment.

VII. CONCLUSION

This paper proposes an application performance-aware
power capping system that integrates horizontal and vertical
scaling ideas, PADS. We call it diagonal scaling. We designed
our system to keep the power consumption of the system under
power limit while adhering to the application performance
– e.g., 95th percentile latency (P95). To achieve this goal,
PADS incorporates the application power-performance models
into power cap decisions to dynamically allocate CPU core
and quotas in response to power consumption and workload
fluctuations of the latency-sensitive web application. In partic-
ular, we combine the analytical power-performance model of
batch applications and the workload rates of latency-sensitive
web applications to make power capping decisions. Finally,
we prototype and evaluate our system against a state-of-the-
art power capping system under real-world workloads and
applications. Our findings indicate that PADS can achieve
power to optimal levels, reaching up to 89%, besides avoiding
power limit exceedings. Moreover, compared to state-of-the-
art solutions, PADS attains lower, controllable P95 latency
without power cap violations. Finally, PADS is robust in
avoiding power cap violations and controlling p95 latency
under scenarios like power cap dynamic change.
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[3] J. Malmodin, N. Lövehagen, P. Bergmark, and D. Lundén, “Ict sector
electricity consumption and greenhouse gas emissions–2020 outcome,”
Telecommunications Policy, vol. 48, no. 3, p. 102701, 2024.

[4] T. Sukprasert, A. Souza, N. Bashir, D. Irwin, and P. Shenoy, “On the
limitations of carbon-aware temporal and spatial workload shifting in
the cloud,” in Proceedings of the Nineteenth European Conference on
Computer Systems, 2024, pp. 924–941.

[5] J. Krzywda, A. Ali-Eldin, E. Wadbro, P.-O. Östberg, and E. Elmroth,
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