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Abstract—Electric vehicles (EV) are growing in popularity as
a credible alternative to gas-powered vehicles. These vehicles
require their batteries to be “fueled up” for operation. While EV
charging has traditionally been grid-based, use of solar powered
chargers has emerged as an interesting opportunity. These
chargers provide clean electricity to electric-powered cars that
are themselves pollution free resulting in positive environmental
effects. In this paper, we design a solar-powered EV charging
station in a parking lot of a car-share service. In such a car-
share service rental pick up and drop off times are known. We
formulate a Linear Programming approach to charge EVs that
maximize the utilization of solar energy while maintaining similar
battery levels for all cars. We evaluate the performance of our
algorithm on a real-world and synthetically derived datasets to
show that it fairly distributes the available electric charge among
candidate EVs across seasons with variable demand profiles.
Further, we reduce the disparity in the battery charge levels
by 60% compared to best effort charging policy. Moreover, we
show that 80th percentile of EVs have at least 75% battery level
at the end of their charging session. Finally, we demonstrate
the feasibility of our charging station and show that a solar
installation proportional to the size of a parking lot adequately
apportions available solar energy generated to the EVs serviced.

I. INTRODUCTION

Over the past few years, electric vehicles (EV) have gained
significant traction because of their appeal as a credible
alternative to gas-powered vehicles. Since 2008, more than
4,10,000 EVs have been sold in the US alone by December
2015, representing 33% of the global sales [9]. With EVs
expected to be a major source of transportation in the future,
there has been meaningful discussion around their adoption
including those for policymakers [16]. However, EVs require
a charging station that enables them to “fuel up” its batteries
similar to gasoline powered cars. While EVs are inherently
pollution free, the electricity used to charge their batteries
may be drawn from traditional fossil-fuelled power plants,
diminishing their appeal as an environment-friendly mode of
transport.

Recently, there is a move towards designing solar-powered
EV charging stations that provide clean electricity. With the
reduction in solar costs and improvement in solar efficiency,
building solar-powered EV charging station presents an excel-
lent opportunity to greenify our transportation needs, making
EVs end-to-end environmentally positive. While PV systems
may be installed on rooftops to build such charging stations,
solar canopies installed on parking lots make an excellent
choice for solar-powered EV charging stations as it not only
generate clean electricity but also provide shade to the vehi-
cle (see Figure 1).

Fig. 1. Solar canopy parking lot with EV chargers.

In our paper, we consider a solar-powered charging station
for an EV car-share service (such as ZipCar, Autolib). Usually,
in a vehicle-sharing service, gasoline powered vehicles are
popular but with rising popularity of electric cars, these service
providers may soon own more electric cars. In fact, some
vehicle-sharing services already have Tesla models, cars that
run solely on electricity. Typically, vehicle-sharing service
leases vehicles to consumers and bill consumers using a pay-
per-use model. When the cars are not in use, they may be
charged from the power outlet until the start of the next lease.

Designing a solar-powered charging station for a car-share
service poses interesting challenges. First, the solar canopies
must be appropriately sized to deliver enough power to charge
the cars. While a small PV system may not deliver enough en-
ergy, a large PV system may cause wastage of energy. Second,
solar power is intermittent as the amount of power generated
on any given day is dependent on ambient weather conditions
such as cloud cover and temperature. Finally, vehicles must
be charged such that depleted batteries have a higher priority
over batteries with more charge. Obviously, a user will prefer
a car with more charge over a car with less charge. Thus, to
improve user satisfaction, if an electric car is 80% charged and
another car is 20% charged, charging preference must be given
to the car with a lower battery level. Note that the solar power
in a given day is limited, thus if multiple cars are plugged in
for charging, the best effort equal charge may be sub-optimal
as it does not prioritize one car over the other.

Prior research work mostly focuses on sizing and placement
of charging stations in a given location[12], [4], energy de-
mand prediction of EVs [6], [11], and EV charging strategies
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Car model Battery size Range Charge rate
(kWh) (mi) (kW)

Tesla S (pure electric) 70 240 10
Nissan Leaf (pure electric) 30 107 6.6
Chevrolet Volt (electric+gas) 18 53 3.6
Mitsubishi i-MiEV (pure electric) 16 62 3.3
Ford Fusion (electric+gas) 7 19 3.3

TABLE I
SUMMARY OF THE ELECTRIC CARS IN THE DATASET

to reduce the impact on the power system [20]. However,
they do not consider a grid-isolated solar-powered charging
stations in a car-share scenario. Here, we present an approach
to apportioning solar energy to cars such that it maximizes
both solar utilization and user satisfaction. Our contributions
are as follows:

Vehicle-sharing scenario modeling. We model - (i) the
battery characteristics of cars with different charging rates and
battery sizes, (ii) energy constraints in a PV system, and (iii)
the availability of vehicles in a shared system. In addition, we
model the utility function for a shared scenario such that it
maximizes both solar utilization and user satisfaction.

Energy-allocation Framework. We develop an allocation
framework that uses day-ahead solar energy prediction and
ground truth solar energy data to first arrive at a schedule and
later determines the actual allocation respectively.

Implementation and Evaluation. We implement our al-
gorithm and simulate the solar-power charging station using
an extensive real-world EV charging trace extracted from the
Dataport dataset [15] to evaluate our approach. We show that
our approach prioritizes depleted batteries over batteries with
more charge so as to maximize user satisfaction level. In
addition, we show that it is feasible to build grid-isolated solar-
powered charging stations.

II. BACKGROUND

In this section, we present an overview on EVs and solar-
powered charging stations. We also present our assumptions
and charging metrics used for solar energy allocation.

Overview. Electric Vehicles such as electric cars or electric
scooters have an electric engine that is powered using onboard
batteries. EVs need to be plugged into power outlets for
charging when its batteries are depleted. Electric cars are
growing in popularity and many cars such as Tesla S, Chevy
Spark and Nissan Leaf are available in the market. In countries
such as China, electric two-wheelers (e.g. scooters, mopeds)
are more common. The driving range of an electric car depends
on the size of its battery capacity (see Table I).

Electric vehicles need a charging station — similar to gas
station — where they can be charged whenever their battery
run low. Such an EV charging station is now being deployed at
various locations such as highway rest stops, parking lots and
pay garages. Residential owners of EVs can install a charging
station in their garages too. Typically, EV charging stations
draw power from the grid and use this electricity to charge
EV batteries. Thus, even though EV engines are pollution free,
charging of batteries is not — since electricity used to charge

them may have been produced using traditional fossil fuels.
To achieve a net end-to-end carbon-free footprint for EVs,
many charging stations are beginning to adopt solar power. A
residential owner can install solar panels on rooftops to charge
the EV batteries. Many parking lots are beginning to install
solar canopies to produce solar energy and can additionally
employ chargers to power EVs. Figure 1 shows a deployed
solar canopy that is also equipped with a solar EV charger.

Vehicle charging objectives. Solar-powered EV chargers
such as EV arc are completely powered by solar energy [7]. In
such cases, the rate of charging of EV batteries is constrained
by the electricity generated by solar panels. Furthermore, if
multiple EV cars are plugged into one charging stations and
solar electricity is constrained (i.e. sum of charging rate of all
EVs is greater than current solar output), then charging station
needs to determine how to apportion the solar energy across
cars. Cars may be heterogeneous, and may have different
charge levels. A simple best effort charging policy that equally
divides energy may not be the best strategy since maximize
user satisfaction is an important goal in a car-share service.

We consider two objectives — utilization and fairness —
in allocating solar energy to EVs in a car-share service.
Maximizing solar utilization ensures the algorithm generates
allocation schedule such that charging stations deliver as much
solar energy as possible and avoids waste. Fairness ensures
charging station allocates energy to maximize user satisfaction
i.e. users drive off cars with sufficiently charged batteries.

Key Assumptions. We assume that users use a reservation
system to check out and return the cars — so arrival and
departure times of all EVs are known. In addition, cars are
plugged into the charging station when parked at the car-
share service station. We also assume that the EV charging
stations do not have batteries to store the excess solar energy,
and excess energy is not utilized. Although storing the energy
may be a better alternative, in our study, we focus on the
feasibility of running a charging station using solar power
only. In future, we plan to study the addition of batteries in
a solar-powered charging station. Note that while we evaluate
our approach using electric car datasets, our approach is also
applicable to sharing schemes where electric bikes, Segways
etc. are used. Although this work is primarily motivated by the
car-share service, the objectives described above are applicable
in any shared environment where arrival and departure times
are known beforehand. For example, in a workplace parking
lot, the arrival and departure times can be estimated due to
fixed working hours.

III. PROBLEM FORMULATION AND SYSTEM DESIGN

We first introduce the solar-charge allocation problem in
a car-share service and formally derive the algorithm that
maximizes solar energy utilization and delivers energy to
electric vehicles in a fair manner. Essentially, the problem
requires maximizing the total power supplied to EVs, and
ensures fair energy allocation i.e. giving priority to depleted
batteries over the ones with relatively higher charge. Formally,
for a duration of T slots, given a solar energy generation
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Fig. 2. Basic block diagram of a solar-powered EV charging station.
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Figure 2 shows the charging station model of a solar-
powered EV charging station. Specifically, there are k power
outlets in the charging station that can be used to charge
the EV. The solar power generated, at any given time t,
is distributed to the EVs and any excess power is unused.
Although the amount of solar power generated is not known
in advance, the day-ahead solar power predictions can be
precomputed. In our approach, the algorithm uses the predicted
solar energy as an input to generate the charging schedule.
Since the actual charging schedule may differ based on the
actual solar energy generated, we later discuss how we manage
the charging in practice.

A. EV Charging policy

Below, we describe our utility function that meets our dual
objective of — utilization and fairness. Later, we discuss a
simple best-effort charging policy that may be used but does
not meet the dual objectives of a car-share scenario.

1) Utility function for charging: We associate a utility
function U

i

i.e. dissatisfaction level the user perceives when
it receives an EV with a given battery level. Clearly, a
higher battery level translates to lower dissatisfaction level
and vice-versa. Utility function formulation helps minimize
the dissatisfaction level and ensure the vehicles are fairly
charged. Figure 4 shows a sample utility function for a user at
a given battery level. This function is convex and it provides
diminishing returns at the tail-end with smaller dissatisfaction
as battery level increases. Intuitively, the dissatisfaction gap is
much higher among users who receive vehicles with a low and
a high battery level. Whereas, the dissatisfaction gap is lesser
when users receive vehicles with moderate or high battery
level.

2) Best-effort charging: In a best-effort charging policy,
the power generated per unit time can be divided equally or
proportionally to the available EVs. However, such a policy
may not guarantee maximum solar utilization over the day. For
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Fig. 3. An illustrative comparison between best effort equal charging policy
and an optimal approach. While best effort equal charging policy allocates
7.5 kWh of solar energy, an optimal approach allocates 10 kWh.

illustration, let us consider two EVs (EV1 and EV2) available
in the charging station for 1 & 2 hours respectively, and each
arrives with an initial battery capacity of 0% and requires 5
kWh of energy to reach 100% battery level (see Figure 3).
For simplicity, let us assume the solar energy available per
hour is 5 kWh. A best effort equal charge policy divides the
charge equally among available EVs. Thus, in the best effort
policy, both EV1 and EV2 receives 2.5 kWh in the first hour
and EV2 receives 2.5 kWh in the second hour. The policy
neither maximizes utilization nor fairness, as total solar energy
allocated is 7.5 kWh out of 10 kWh of available solar energy
(lower utilization) and disparate battery levels of 50% and
100% (less fairness). However, an optimal strategy distributes
5 kWh to EV1 in the first hour and 5 kWh to EV2 in the second
hour. Since both EVs receive 5 kWh of solar energy and
all the available solar energy is utilized, the optimal strategy
maximizes both utilization and fairness.

Usually, best effort charging policy work in scenarios where
arrival and departure times of EVs, or solar energy generated
is unknown. However, in a car-share scenario, the availability
of EVs is known with arrival and departure times. This
information can be leveraged to derive charging schedules that
best utilizes the available solar energy and divides the solar
energy fairly. Below, we describe our approach to allocate
solar energy fairly while maximizing utilization.

B. A LP approach to Solar-Charge Allocation

We provide a linear programming (LP) framework to solve
the offline allocation problem. The linear program takes into
account the solar energy generated, the energy demand for
each vehicle i, availability and battery level of each vehicle, to
determine the fair allocation while maximizing the total solar
energy delivered to the vehicles. First, we define our model.
The sum total solar energy delivered to each vehicle i in time
slot t cannot exceed the total solar energy S(t) generated by
the PV panels in time slot t.

X

i

R
i

(t)  S(t) 8t (1)



Fig. 4. Sample utility function to associate user dissatisfaction for a given
battery level. While low battery level gives higher dissatisfaction, higher
battery level provides lower dissatisfaction.

where, 0  R
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is the maximum charge
rate of vehicle i.

We assume access to the charging station is reservation
based and the arrival and departure of each vehicle are known.
In each time slot t, R

i

(t) = 0 when vehicle i is not available
for charging. When vehicle i is available, its charging is
determined by the availability of power outlets. Let Omax

denote the max. number of power outlets in the station. The
number of vehicles charging at any given time t is given by,

X

i

x
i

(t)  Omax 8t (2)

where, x
i

(t) 2 [0, 1], denotes whether vehicle i is plugged in
for charging in time slot t. Since vehicles are charged only
when plugged in, we must have

R
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8i, t (3)

Next, the energy stored in the battery at vehicle i at slot
t + 1 must satisfy energy conservation constraint. Let Y

i

(t)
denote the amount of energy stored in the battery at vehicle i
at slot t. We have

Y
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i

(t) + ↵
i

R
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where, 0  ↵
i

 1 denotes the efficiency of the battery for
the ith vehicle. Energy stored in the battery at vehicle i cannot
exceed its max capacity Y max

i

or underflow. We must have
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Let, B
i

(T
dep

) denote the battery level of the vehicle i when
it leaves at time slot T

dep

. The objective is defined as a
piecewise linear function (as shown in Figure 4) of a convex
function that aims to maximize the battery level for each
vehicle i while prioritizing depleted batteries over charged
batteries and is defined as

min
X

i

U
i

(B
i

(T
dep

)) (6)

where U
i

(.) is the utility function and defined as a piecewise
linear approximation of a convex function (see Figure 4).

Intuitively, the objective function maximizes the battery level
by minimizing the utility function U

i

(.) associated with battery
level B

i

. In addition, the utility function is fair as lower
charged batteries have a higher dissatisfaction compared to
higher charged batteries.

C. Online Charging Algorithm

Based on availability of the EV, the above offline LP pro-
duces a charging sequence schedule hR

i

(t)i, 8i, t. Depending
on factors such as weather conditions, the actual solar energy
generated may be greater or less than the predicted value.
Thus, the actual solar energy S

actual

(t) generated may be
more/less from the predicted value S

predicted

(t). We adjust the
charging sequence proportionally by increasing/decreasing the
R

i

(t) values. Thus, at any given time t, the charging algorithm
has the following cases:

1) If S
actual

(t) == S
predicted

(t), then do not modify the
R

i

(t) values.
2) If S
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(t), then divide the en-
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0)^ (k 2 N)} is the set of available vehicles to allocate
energy.

3) If S
actual

(t) > S
predicted

(t), then we take the following
steps to proportionally divide the available energy:
Step 1. Compute the excess energy available for alloca-
tion. excess energy = S

actual

(t)�
P

R
i

(t)
Step 2. Divide the energy proportionally based on current
allocation to available vehicles. Rnew

k

(t) = R
k

(t) +
excess energy ⇤R

k

(t)/
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k2A(t) Rk

(t),
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(t) + R
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) ^ (k 2 N)} is the set
of available vehicles to allocate energy such that its
constraints are not violated.
Step 3. Ensure the capacity constraints and charg-
ing constraints are not violated. Ractual

k

(t) =
min(Rnew

k

(t), Rmax

k

, Y max

k

� Y
k

(t))
Step 4. Update excess energy =

P
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k

(t) �P
Ractual

k

(t)
Step 5. Repeat step 2 until excess energy is zero or
no vehicles left to allocate the excess energy to. i.e.
excess energy == 0 or |A(t)| == 0
In other words, at each iteration, the algorithm dis-
tributes the excess energy to available vehicles and
repeats until no energy is left to distribute or all the
vehicle constraints are met.

IV. EVALUATION METHODOLOGY

We evaluate our solar-charge allocation algorithm using
both synthetically generated data and the Dataport dataset1 —
a real-world trace comprising, in part, power consumption of
EVs and power generation of solar panels located in Austin,
Texas. The dataset includes detailed information such as the
amount of energy used to charge the battery, the time of the

1http://dataport.pecanstreet.org/



Number of Cars 97
Car Sessions used 9083 out of 12123

Median Charging Session 65 minutes
Median Car’s Energy Demand 3.31 kWh
Median Daily Energy Demand 104.8 kWh

Solar panel Size 18 kW
Median Daily Solar Energy 74.5 kWh

TABLE II
SUMMARY OF CARS AND SOLAR INSTALLATION IN EV DATASET

day and the duration a car is connected to a power outlet.
It also contains solar power generation traces from multiple
residential buildings. Further, our dataset is at a minute level
granularity collected for a three-year period.

To simulate the charging operations of a car-share service
with a solar-power charging station, we construct an EV
dataset combining the EV and solar data described above.
First, we assume that the solar-powered EV charging station
has 5 power outlets. Since the charging station can service a
maximum of five vehicles at any given time slot, we construct
our EV charging dataset by making a simplifying assumption
that the vehicles are selected from the dataset on a first-come-
first-serve (FCFS) basis until all power outlets are occupied
for any given time slot. We refer each contiguous interval of
charging by a vehicle in the dataset as a charging session.
Since the vehicles can be charged only when solar energy is
available, we consider only those charging sessions that charge
after sunrise and before sunset (see Table II). Collectively, the
dataset contains 9083 charging sessions. Further, we assume
that the amount of charge drawn during a given charging
session is the amount needed to fully charge its battery.

PV system sizing: We first determine the size of the solar
panel needed to cover a single car in a parking lot. The
dimension of a single parking lot for a car in the US is around
9 ft. X 18 ft — a total area of 162 sq.ft. A typical solar panel
of size 17.57 sq. ft. produces 345 watts2. Thus, the amount
of solar power generated from a single parking lot is around
3.2 kW. and a parking lot with 5 vehicles can generate around
18 kW. Unless stated otherwise, we use a 18 kW PV system
from the dataset for our evaluation. We select a residential
rooftop installation from the Dataport dataset that has a solar
generation capacity of 18 kW. We use this as the ground truth
for actual solar power generated. Our algorithm requires the
predicted solar energy values to initially schedule the charging
and later uses the actual solar energy trace for allocating charge
to the EVs. We employ the methodology described in [10] that
uses the solar panel’s characteristics and day-ahead weather
forecasts to compute the predicted solar power. We train the
model using the dataset available for the previous year (2014)
and predict the solar power generated for the year (2015).
For our evaluation, we assume there is no loss in delivering
solar energy to the cars i.e ↵ = 1. In addition, we evaluate
at 5 minutes granularity as we wanted to ensure 5 minutes of
uninterrupted charging of batteries.

Utility function: In our LP formulation, to improve the
runtime, we assume a piecewise linear approximation of the

2SunPower X21 panel

Fig. 5. Mean and standard deviation of the battery levels. Our approach show
a 60% lower std. deviation compared to best effort indicating fairer allocation.

convex function as shown in Figure 4. We define the piecewise
linear approximation as follows:

U
i

(x) =

8
>>><

>>>:

100� 2.4x, 0  x < 25

65� 1.0x, 25  x < 50

35� 0.4x, 50  x < 75

17� 0.16x, otherwise.

The utility function U
i

(.) is chosen such that for a given
battery level range (e.g. 0% to 25%), the LP may choose to
distribute energy to any EV having battery level within the
range. However, between the different battery level ranges,
the LP priorities lower battery such that U

i

(B
i

([0, 25))) >
U
i

(B
i

([25, 50))) > U
i

(B
i

[50, 75))) > U
i

(B
i

[75, 100))). In
other words, cars with battery level between [0% to 25%] has
a higher dissatisfaction than cars with battery level greater
than 25%. Note while we select a linear approximation for our
evaluation, other linear approximation of a decreasing convex
function may be used.

V. EXPERIMENTAL RESULTS

A. Utilization and Fairness analysis

We compare the fairness and utilization of our approach
to the best effort equal charging policy. As discussed earlier,
the best effort charging policy distributes the available solar
energy equally among the cars available. As different EVs
have varying charging rate and battery capacity, the best effort
charging policy may not maintain similar battery levels. In
the trivial case, where solar energy available is more than the
overall EV demand, the performance of our approach and the
best effort charging policy would be similar, as all the energy
demand can be easily met. However, for a more pertinent
evaluation, we consider the case where demand is more than
the overall solar energy available. In particular, we consider
5 cars from the EV dataset having a median charging rate of
3.3 kW. We assume the cars are available for the entire day
with aggregate energy demand from EVs to be 3 times that
of the solar energy available. In addition, we uniformly assign
an initial battery level between 0% to 60% to the 5 EVs for



the solar trace of August 2nd 2015 and repeat this experiment
25 times. We compute the mean and standard deviation of the
battery levels for each run.

Figure 5 shows the comparison of our approach with the
best effort equal charging policy. Note that distribution of
the mean battery level for both the methods across different
runs is similar. In particular, the average value of the mean
battery level for both the approaches is ⇡52% suggesting
both methods deliver an equal amount of solar energy to the
vehicles. However, the distribution of the standard deviation
of the battery levels for our approach is tighter with a lower
average value compared to those of the best effort charging
policy. Clearly, a fair allocation will ensure cars depart at
similar battery levels and will have lower standard deviation.
In particular, we observe that using our approach the average
value of the standard deviation is ⇡8%, whereas using the best
effort charging policy the standard deviation is ⇡20%. Thus,
our approach is more fair compared to the best effort charging
policy as the average value of the standard deviation of our
approach is lower by ⇡60%.

B. Battery level analysis

We empirically analyze the utilization of solar energy using
the EV dataset for the entire year. Charging sessions in the
EV dataset is used to simulate the arrival and departure times
along with energy demands for EVs serviced in a car-share
charging station. Solar energy is allocated using our approach,
and we compute the battery level of each car at the end of the
charging session. Figure 6 shows the frequency distribution of
the initial and final battery level of cars charged over the entire
year. As expected, we observe an increase in the number of
cars leaving the charging station with a higher battery level.
We observe that the 80th percentile of the cars have at least
75.08% battery level at the time of departure. Among these
cars, some had an initial charge as low as 1.79%.

C. Impact of solar power intermittency in charge allocation

As discussed earlier, the offline LP algorithm uses the
day-ahead solar energy predictions to generate the charge
allocation schedule, and the online algorithm uses the ground
truth solar trace to allocate the charge. Due to solar energy
prediction errors, the charge allocation schedule generated by
the offline algorithm differs from the online algorithm. Here,
we analyze the mismatch in the charge allocation schedule
generated by the offline and the online algorithm.

1) Synthetic dataset with poisson arrivals: We use the
car’s charging session and other attributes from the real-world
dataset to construct the synthetic dataset. However, we ignore
its original arrival time and assume it to be generated from a
Poisson process with a fixed rate. First, we run our offline LP
approach and then the online algorithm to compute the overall
energy delivered in a given day. We run our simulation for a
week in each season. Figure 7 shows the difference in energy
estimated by the offline LP approach and the energy delivered
by the online algorithm with an arrival rate of 2 cars per hour
(� = 2). As shown in the graph, our offline algorithm estimate

Fig. 7. Difference in overall energy estimated by the offline and the energy
delivered by the online approach to the cars with poisson arrival rate of 2
cars per hour

Fig. 8. Difference in overall energy estimated by the offline and the energy
delivered by the online approach to the cars using real-world dataset for the
entire year

is between -4% to 4% on most days. Since the solar prediction
works considerably well during summer days, we notice that
the mismatch in summer is smaller compared to other seasons.

2) Real-world dataset: Unlike the previous evaluation, we
use the arrival times in addition to other car attributes available
in the dataset. Figure 8 shows the difference in energy esti-
mated by the offline LP approach and the energy delivered by
the online algorithm for the entire year. As the figure shows,
the mismatch is less than 5% for all but 2 days, and less than
1% for 287 days. Moreover, the mismatch is negative for some
days i.e. more energy is given to the cars than offline algorithm
had estimated. Since the solar model may predict a lower solar
energy value for the day-ahead, the actual energy allocated to
the cars by the online algorithm can be higher than the offline
approach.

D. Feasibility analysis of solar-powered charging station

Evaluating the feasibility of our solar-powered charging
station requires us - (i) to validate the sizing of the PV
system installed, (ii) demonstrate the utilization of solar energy
available, and (iii) exhibit fulfillment of EVs charge demand.
In this section, we assess the performance of our approach on
these parameters. Similar to the earlier evaluation, we test our
algorithm on both synthetic and real-world traces.

1) Synthetic dataset: To construct the synthetic dataset we
consider the following scenario. We assume the car-share



(a) Initial battery level of cars at arrival (b) Final battery level of cars at departure
Fig. 6. Battery levels of cars before/after charging at the charging station for the entire year.

service operates 5 Chevrolet Volt cars. With a maximum
charge rate of 3.6 kW and battery size of 18 kWh, starting with
an empty battery these cars take typically 5 hours to charge
to full capacity (see Table I). For our evaluation, we assume
the cars are available for the 5-hour duration to charge their
batteries. In addition, we uniformly choose the arrival time for
the five EVs between 9 a.m. to noon to ensure that the solar
energy is available when they are plugged in. We select the
solar trace of August 2nd 2015 and vary the solar installation
size to compute the overall EV demand fulfilled and the solar
energy utilized by the charging station. To reduce specificity
to a random sample, we repeat the experiment 25 times and
take its average value.

Figure 9 shows the average demand fulfilled and solar
energy utilized over several runs when solar installation size
is varied between 2 to 36 kW. As expected, smaller sized
PV system has a higher solar utilization whereas the demand
fulfilled is lower, as most of the solar energy generated is
delivered to the cars. As we increase the solar installation size,
we notice diminishing returns in terms of demand fulfilled.
This is due to lower power generation by the solar installation
during morning and evening period. Even with increased
solar capacity, the gap between the energy demand from
EVs and the available solar energy does not decrease rapidly.
The shaded region in the figure highlights a reasonable PV
installation size (13.5-22.5 kW) that maximizes both demand
fulfillment and solar utilization. Further, we observe that with
PV installation size of 18 kW, the solar utilization is as high
as 67% and energy demand fulfilled is around 68%.

2) Real-world dataset: We now evaluate the feasibility
of solar-powered charging station for the real-world dataset.
Similar to the previous evaluation, we vary the solar in-
stallation size to compute the overall EV demand fulfilled
and the solar energy utilized for the entire year. Similar to
the synthetic dataset evaluation, we observe that smaller PV
installations tend to have higher solar utilization but lower
demand fulfillment. It is interesting to note that the knee point
is around 18 kW, the energy generated by the size of a parking
lot that we had estimated earlier. In addition, the highlighted
region around the knee point is the typical range of a PV
system size that can be installed in a parking lot.

Fig. 9. Variable solar installation size with average solar utilization and
demand fulfillment using the synthetically constructed dataset.

Fig. 10. Energy demand fulfilled and solar utilized using the real-world
dataset for the entire year. The highlighted region shows the typical PV
systems size that can be installed in a parking lot for 5 cars.

VI. RELATED WORK

The increasing popularity of EVs raises a myriad of chal-
lenges. In this section, we provide a brief overview of re-
search focussed on resolving such challenges. The impact of
integrating EVs into the grid has been well studied. Li et. al.
introduces a conceptual framework for integrating EVs into the
grid and discusses its impacts and benefits [13]. Taylor et. al.
presents an analysis by accounting the impact of for spatial
and temporal diversities in EVs on the distribution feeders
of varying characteristics [18], and Foley et.al. discusses the
impact of EVs charging on electricity markets [8].

An important aspect in evaluating the EVs demand is right-



sizing and placement of charging stations. Chen et. al. presents
a city-wide study to find constrained number of optimal charg-
ing station locations by minimizing the cost of accessing them
by EV users [4]. Liu et. al. introduces a two-step approach
where initially candidate sites are initially selected based on
environmental factors and the service radius of EV charging
stations [12]. Also, a mathematical model is presented that
calculates an optimal sizing of EV charging stations. Sweda
et. al. discusses an agent-based decision support system for
identifying patterns in residential EV ownership and driving
activities for setting up charging station infrastructure [17].
However, our work is complementary as we consider charge
allocation in a shared charging station and not setting up of
charging station infrastructure in different locations. Moreover,
one-time planning of locating the stations does not completely
guarantee the operational challenges of charging individual
EVs to maintain customer satisfaction. Thus, a reasonable
charging strategy is required for optimizing operational needs.

Prior works have also examined various charging strategies
that satisfy different objectives. These objectives include - (i)
leveraging ToU pricing to optimize costs [2] [20], (ii) improv-
ing voltage profile [5], (iii) flatten grid electricity profile [21],
and (iv) flatten residential electricity profile [14]. In addition,
previous works have used EV batteries as a source to power
residential homes to get a grid friendly load profile [1]. This
work addresses the problem of a grid-isolated solar-power
charging station in a car-share service, which differs from
previous work discussed above. Further, in a car-share service,
the flexibility in scheduling cars may not be present to leverage
some of the strategies presented above.

Co-benefits of renewable integration with EVs have been
studied in the literature. However, these studies focus either
on reducing intermittency of renewable sources of energy [3]
[19] or on large-scale aggregated energy demand placed by
EVs and the potential renewable energy available (wind and
solar) [6], [11]. However, these work do not present actionable
charging strategies that we address in this paper.

VII. CONCLUSION

In this paper, we explored the benefits of integrating re-
newable solar energy with EV charging infrastructure placed
at car-sharing service’s parking lot. We formulated a Linear
Programming approach that maximized both solar energy uti-
lization and customer satisfaction. Comprehensive evaluation
of our algorithm was performed using real-world EV charging
traces. We show that our algorithm fairly distributes the charge
among candidate EVs and improves the disparity in battery
charge levels by 60% compared to the best effort charging
policy. Our results indicate that the 80th percentile of the EVs
have at least 75% charge at the end of their charging session.
Further, we assessed the performance of our approach across
different seasons with variable demand profile. Finally, we
demonstrated the feasibility of a grid-isolated solar-powered
charging station and show that a PV system proportional to
the size of a parking lot adequately apportions available solar
energy generated to the EVs serviced.
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