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Abstract—This paper describes Acies-OS, a content-centric
platform for edge AI twinning and orchestration that allows easy
deployment, re-configuration, and control of edge AI services,
augmented by a digital twin. The work is motivated by the
proliferation of edge AI in a plethora of IoT applications,
ranging from home automation to military defense, and the
emergence of digital twins that go beyond monitoring and
emulation into configuration management and optimization of
edge capabilities. While past work focused on either the edge
capabilities themselves or the digital twin, this work focuses
on their seamless interactions, offering abstractions that enable
the digital twin to manage and optimize an increasingly diverse
edge AI system. Acies-OS features a structured namespace, a
thin client library with flexible pub/sub-based communication,
health monitoring support, and a control plane for twin-based
value-added analysis and optimization. To illustrate the use of
Acies-OS, we implemented a multi-node multi-modality vehicle
classification application and used Acies-OS to interface it to
a digital twin. We then deployed the system in the field to
showcase run-time twin-based optimizations of inference latency,
classification accuracy, and robustness to failures in noisy and
challenging conditions.

Index Terms—Digital Twin, Digital Twin Control Plane,
Content-Centric Network, Internet of Things, Cyber Physical
Systems, Edge AI.

I. INTRODUCTION

Acies-OS is a novel content-centric platform for edge AI
twinning and orchestration. It is motivated by two recent
advances in IoT applications. The first is the proliferation of in-
telligent IoT services, or edge AI. The second is the emergence
of digital twins [1] that go beyond emulation into run-time
orchestration (perhaps based on running multiple emulations
to arrive at a most favorable configuration of the deployed
system or based on outputs of compute-intensive algorithms
for twin-based functional optimization). These advances call
for solutions to interface digital twins to the systems they
emulate, optimize, and manage in a manner that facilitates
not only state monitoring but also control.

Importantly, unlike many other application domains where
the twinned system is fairly static (e.g., a vehicle that generally

consists of the same types of components and interconnec-
tions), thereby allowing for a static custom interface with the
twin, IoT deployments can differ dramatically from one to
another. They may differ in the types of sensors used, the
number of nodes deployed, the types of analytics executed,
and the allocation of functions to computing resources, among
other factors. Thus, general support is needed for describing
the implemented system to the digital twin, as well as for
describing the knobs exposed by the system for twin-based
management and control. This support is the goal of AciesOS.

Acies-OS1 assumes a microservices-based application archi-
tecture, where deployed analytics consist of multiple discrete
stages executed across multiple hosts [2, 3]. The end-to-
end functionality is modeled as a processing graph. This
abstraction is particularly well-suited for Edge AI applications,
where resource constraints call for careful distribution of
functionality across multiple heterogeneous nodes, such that
each node contains only one or a few steps of the pipeline.
Unique to Acies-OS is the assumption of a built-in digital
twin that helps configure, troubleshoot, and optimize edge
performance [4]. As deployment conditions continually push
for innovations that optimize operations and decision-making
processes, digital twins have emerged as pivotal tools. The
paper enables seamless integration of edge AI and digital twin-
based orchestration to leverage their full joint potential.

Applying digital twin technology to edge AI applications
presents several challenges, especially when combined with
complex and dynamic deployment environments. We deployed
a vehicle classification application and conducted real-world
experiments to assess system performance. Evaluation results
indicate that our digital twin framework helps identify an
optimal accuracy-latency tradeoff [5], improve classification
accuracy through model selection, and ensure uninterrupted
application data flow during failures, demonstrating the flexi-
bility, utility, and extensibility of the proposed design.

1The code for this project is available at https://github.com/acies-os/acies-os
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II. SYSTEM DESIGN

A key challenge explored in Acies-OS is to develop a
flexible interface between a digital twin and its twinned edge
AI system that not only allows for state monitoring and
twin-based emulation but also enables flexible control of the
twinned system’s workflow configuration to enable a wide
range of system optimizations and adaptations to a dynamic,
possibly unfriendly, environment.

Acies-OS features a middleware library that exports the
abstraction of nodes, much like ROS [6], interconnected by
a computation graph. The application is modeled as a set of
services, where a service constitutes a node (in the compu-
tation graph) that processes incoming messages from topics,
produces results, and publishes them to other topics. The
services also subscribe to a special control (or configuration)
topic that allows manipulation of service-specific parameters.

A control plane allows the twin to publish on configuration
topics, thereby manipulating system configuration. All com-
munication is content-centric, following a simple but flexible
namespace that allows posting to nodes, services, and control
channels. Below, we describe key elements of the namespace
first, then elaborate the middleware library and control plane.

A. Namespace Design

Acies-OS features a namespace design geared to support
a flexible and extensible control plane. The design aims to
(i) support interoperability among heterogeneous components,
(ii) enhance fault tolerance, and (iii) enable flexible twin-
based control of system state. Towards that end, it adopts a
content-centric approach [7], leveraging a pub/sub-based sys-
tem. By combining a pub/sub-based middleware with carefully
designed namespaces, different subsystems can be seamlessly
integrated and interoperable through topics. Pub/sub-based
communication patterns offer location-transparent communi-
cation, while the control plane provides robustness and fault
tolerance. While many existing frameworks and middleware
employ pub/sub-based communication [8, 9, 10], and some
even offer namespace support [8, 9], the semantics and orga-
nization of the namespace are typically left to the discretion
of the application developer. This variability from one appli-
cation to another complicates system integration and impedes
component reuse. In contrast, our well-designed simple (but
extensible) namespace simplifies dataflow management and
facilitates flexible and extensible development of control plane
software. Next, we discuss the proposed namespace design,
which consists of three main components.

Service Space: The application workload is modeled as a
processing pipeline comprising multiple services running on
one or multiple nodes. Each service is uniquely identified by
a namespace in the format of row 1.1 as illustrated in Table I.
Services may subscribe to multiple topics, process incoming
messages, and publish resulting messages to output topics
(row 1.2). Additionally, each service has a dedicated control
topic to receive messages from the control plane (row 1.4) All
services on a node fall under the node namespace (row 1). In
cases where a node runs backup services for another node, the

Row ID Address

1 node_id/*
1.1 node_id/service_id/*
1.2 node_id/service_id/output

1.3 node_id1/backup/node_id2/service_id/*
1.4 node_id/service_id/ctrl

2 twin/*
2.1 twin/node_id/*
2.2 twin/node_id/service_id/*
2.3 twin/node_id/service_id/ctrl

3 cp/*
3.1 cp/heartbeat

3.2 cp/controller_id/*
3.3 cp/controller_id/ctrl

3.4 */ctrl

TABLE I: Namespace design

address of the backup service is the fully qualified address of
the primary service placed under the backup/ subspace (row
1.3).

Twin Space: The address of a digital twin corresponds
to the fully qualified address of its physical counterpart,
placed under the twin namespace (row 2.2, Table I). Each
twinned component, akin to its physical counterpart, possesses
a dedicated control topic to receive messages from the control
plane (row 2.3). Additionally, the node-service mapping is
preserved within the twin space (row 2.1), facilitating the
straightforward management and control of all services on a
node. For instance, this allows for the simultaneous spawning
of all twins of a node on similar hardware or a virtual
machine. Consolidating all twinned components under the
same namespace (row 2) streamlines the physical-digital twin
address conversion process.

Control Space: All control topics are located within the
control space (row 3, Table I). Each service transmits heart-
beats and diagnostic messages to the heartbeat topic (row 3.1),
which controllers may subscribe to for control functionalities
such as monitoring, anomaly detection, and failover. Con-
trollers, specialized services residing in the control space, have
their own control topic to receive replies from the controlled
services (row 3.3). Controllers can issue control messages to
the control topics of selected targets or all services (row 3.4).

B. Twin middleware library

We implement a digital twin middleware library that adopts
the proposed namespace design. The programming model and
two example services implemented with the library are shown
in Figure 1.

As mentioned earlier, a service is modeled as a node in
a computation graph that processes incoming messages from
topics, produces results, and publishes them to topics. The
twin library handles control messages, including synchroniza-
tion (Sync) [11], getting and setting service parameters, and
maintaining heartbeats. The application handles the rest of the
messages through message queues.
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Fig. 1: Digital Twin middleware library and example services

We provide two examples in Figure 1. To implement a
microphone service that records samples from a microphone
and publishes the messages to the microphone topic, we only
need to implement the application logic that reads samples
from the sound driver and calls the Service.send() API
with the target topic (.e.g, node1/mic) and a vector of
samples as the payload. To implement a processing service
that runs a neural network classifier on the incoming data and
publishes the classification result to a topic, we need to provide
the following application logics: (1) loading the neural network
model on service start, (2) listening on input topics, (3) running
the classifier when there are enough data, and (4) publish the
classification to the downstream pipeline. The twin middleware
handles message serialization and deserialization, distributes
data to all subscribers, and responds to control messages.

C. Control Plane Architecture

The control plane monitors and oversees system states
as shown in Figure 2a. The twin library sends out heart-
beats to the cp/heartbeat topic, which the controller
subscribes to. Each service has a dedicated control topic
in its own namespace <node>/<service>/ctrl that
receives control messages from the controller. Similarly, a
controller can receive replies from the twins in its control topic
cp/controller/ctrl.

Figure 2b shows the system architecture of a typical
networked twin system. Each service in the system is
communicating and managed by the control plane as
illustrated in Figure 2a. On the physical twin side, there
may be multiple services running on each node, forming a
processing pipeline. Twins of selected components can be
mirrored on physical nodes, virtual machines on edge servers,
or in the cloud. Digital twins and their mirrored topics exist in
the twin/ namespace. In the example in Figure 2b, Node 1
and Node 2 run the same pipeline where Service 3 consumes
messages from Service 1 and Service 2. The input topics to
Service 3, <node>/s1/topic and <node>/s2/topic
are mirrored to twin/<node>/s1/topic and
twin/<node>/s2/topic. Then, the controller can
perform analyses and optimizations on the digital twins of
Service 3. If the controller finds a better service configuration
or detects an anomaly, the services are reconfigured through
its control topic <node>/<service>/ctrl by the
controller.

The namespace design supports the development of various
control plane analyses and optimizations tailored to the needs
of the application. Next, we discuss two typical control and
management functions that are commonly needed in edge AI
applications and are built into the default controller. These
functions are (i) inference optimization and (ii) failover (see
Section III). They illustrate the utility, flexibility, and ex-
tendibility of the namespace design.

III. CONTROL FUNCTION EXAMPLES

In IoT systems and Edge AI applications, the ability to mon-
itor, respond to, and adapt to environmental dynamics is cru-
cial for ensuring system robustness and reliability. However,
implementing control plane software to manage both physical
and digital twins, monitor their operational status, optimize AI
model performance, and handle failures can be challenging,
given the openness of the system and dynamic environment.
In this section, we demonstrate how the proposed namespace
design facilitates the implementation of such software through
several examples.

A. Dynamic Model Selection
The first example of a twin-based value-added control

function is a dynamic (edge AI) model selection to enhance
inference accuracy and/or latency. Since edge nodes are gen-
erally resource-limited and heterogeneous, it is not always
clear a priori which version of an AI model will offer the
best latency/accuracy trade-off. Larger models may be too
slow on a given edge device, whereas simpler models may
be inaccurate. What is the best model to use given the current
external environmental condition and internal resource avail-
ability/load? The idea is to exploit the substantial capabilities
of a server that executes the digital twin to dynamically
evaluate and select the most appropriate model, given latency
and accuracy specifications.

Let xt denote the data received at time t and X = {xt}Tt=1

all the data received up to time T . The data synchronized to
the twin space (row 2, Table I) X ′ is a subset: X ′ ⊆ X .

The controller can replay data point xt ∈ X ′ in the temporal
order and observe the prediction of each model:

ŷt,i = f(xt; θi), xt ∈ X ′ (1)

where f(·) is model inference, θi represents the i-th available
model and ŷt,i the inference result of θi for xt. After a certain
period of time, we may gain access to the ground truth label
yt for a certain subset of data points xt ∈ X ′, from stronger
models on the cloud or human operators. To make a timely
and accurate estimation of each model’s trustworthiness, we
evaluate each model’s prediction at the latest time point with
available ground truth. Formally, let ys denote the latest
available ground truth label before time point t, we calculate
and compare the KL divergence between ground truth ys and
prediction ŷs,i made by each model, and select the model
with least-KL-divergence-prediction as the trusted model of
the system at time point t:

i∗t = argmin
i

KL(ys||ŷs,i) (2)
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(a) Control plane (b) System architecture

Fig. 2: Control plane and system architecture

where i∗t denotes the index of the trusted model at time point
t. Then, the controller reconfigures the corresponding physical
twin through the node’s control topic (row 1.4, Table I) to use
i∗t so that the physical twin will run the best model.

B. Inference Latency Profiling and Reconfiguration

Inference latency is another critical aspect of many edge
AI applications, directly influencing their effectiveness and
responsiveness. To address this, our control plane includes a
latency profiling functionality that measures and analyzes the
time it takes for the neural network models to process data.

The controller replays data from X ′ to digital twins (row
2.2, Table I) configured with different parameters θi to record
the resulting latency τi and inference performance Ai. This
data establishes a relationship between τi and Ai, providing
a basis for making informed trade-offs between accuracy and
latency based on specific application needs.

The latency profiling and reconfiguration feature helps iden-
tify configurations that achieve decent accuracy with suffi-
ciently fast response times, balancing performance with speed
to maintain effective operation. We include an experiment in
Section IV-C to showcase this feature.

Apart from edge inference optimizations, the control plane
enables failure detection and can perform appropriate failover
mechanisms to maintain the system’s correctness.

C. Anomaly Detection

To continuously monitor the status of the twined system, the
control plane collects heartbeats and synchronization messages
(row 3.1, Table I). Each time a heartbeat or a state synchro-
nization message is received, the time to live (TTL) value of
the health status record for the corresponding physical twin
is updated. System states, such as memory utilization, CPU
utilization, CPU temperature, and core component voltages,
are periodically piggybacked on the heartbeat messages. The
system states, together with twined parameters registered by
the application, are stored in a database on the controller,
which is available for the anomaly detection algorithms.

The default controller implements a simple model-based
anomaly detection algorithm [12, 13]. The controller interprets
an execution plan supplied by the application, which details
system models that delineate both healthy and failure states.
The controller periodically evaluates the current system states
by comparing them with the predefined models in the execu-
tion plan. If it detects any deviations that indicate a failure,

the controller will try to initiate failover procedures, ensuring
continuous system operation and minimizing downtime. The
controller is designed with flexibility in mind and can be
extended with more complex algorithms (e.g., knowledge-
based and data-driven approaches). We broadly categorized
commonly encountered failures into service failures and node
failures, described below in detail.

D. Service Failures and Failover

We distinguish in our terminology between service failures
and node failures. Service failures are defined as failures of
certain components on a node that can be partially recovered
by reconfiguring the system without resorting to backup nodes.
This is as opposed to node failures, where some backup
node(s) must be called upon. If a service failure is detected,
the controller initiates a failover procedure as follows:

1) The controller first identifies the components in the
processing pipeline that remain functional and healthy
(row 3.1, Table I).

2) It then explores the configuration space, adjusting the
parameters of the involved digital twins (row 2, Table I)
to identify a configuration that achieves a system state
recognized as healthy by the models defined in the
execution plan.

3) Upon identifying a suitable configuration, the controller
implements the necessary adjustments to the physical
twins, including changing physical twin parameters,
activating backups and heterogeneous replicas [3] (row
1.3, Table I), to facilitate recovery.

If no viable failover can be found, the controller will warn of
the failure and report the incident. In Section IV-D, an exper-
iment study with multiple failures is presented to demonstrate
the effectiveness of the service failover procedure.

E. Node Failures and Failover

A node failure is defined as the failure of an entire node
that can not be recovered solely within the existing system
and must be addressed by activating a backup node. If a node
failure is detected, the controller initiates a node failover as
follows:

1) The controller will first locate any available backup
nodes in the system.

2) Then, the controller will apply the last-known config-
uration of the digital twins from the failed node to
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the digital twins of the backup nodes, testing whether
this setup can achieve a system state deemed healthy
according to the models defined in the execution plan.

3) If the backup nodes cannot accommodate a full replica
of the failed node, the controller will seek a node capable
of running a heterogeneous backup to restore a healthy
system state [3, 14].

4) Upon identifying a suitable configuration, the controller
implements the necessary adjustments and activates the
backup node.

If no viable failover can be found, the controller will report
the failure. The effectiveness of node failure failover is demon-
strated in Section IV-D.

These control plane functionalities apply to other applica-
tions that adhere to the same namespace structure. Addition-
ally, other types of controllers can be developed as plug-and-
play solutions for applications following the same convention.

IV. EVALUATION

The above has been a description of how certain useful
services can be implemented where changes in load, envi-
ronmental conditions, or health status trigger the twin to
consider the space of possible reconfigurations, ultimately
producing a new system configuration that is optimized for
the new condition. Below, we evaluate the efficacy of these
mechanisms.

For the sake of the experiments below, we implemented a
multi-node, multi-modality vehicle classification application as
a case study to evaluate the effectiveness of our design from
various perspectives.

A. Experiment Setup

Extending the experimental setup in [15, 16, 17, 18], we
build our vehicle classification system with multiple Raspberry
Pi nodes, each of which is equipped with a microphone,
a geophone and a GPS sensor to record acoustic signals,
seismic signals and GPS locations simultaneously. Raspberry
Pis are connected to portable batteries as power supply. We
place the nodes on the sides of an experimental field. The
nodes are connected with each other and to an edge server
using a standard 802.11 router. Our experiments include four
commonly available civilian vehicles with different weights,
powers, and torques. The detailed specifications of the vehicles
are described in Table II.

Model Type
Weight Engine Power Torque
(lbs) (all 4cyl) (hp) (lb-ft)

2018 Mustang Sports Car 3858 2.3L T 310 350
2022 MX-5 Roadster 2745 2.0L NA 181 151
2023 CX-30 Compact SUV 4345 2.5L NA 186 186
2017 GLE-350 Mid-size SUV 6217 2.0L T 255 273

TABLE II: The specifications of the four target vehicles used
in our experiment. The vehicles span a variety of types,
weights, powers, and torques to ensure

We choose neural networks [16, 17, 18] as vehicle classifiers
in our experiments for their state-of-the-art performance. They
take in sensor signals as input and output a categorical
probability distribution as the prediction.

We conducted comprehensive experiments with the same
vehicle classification system and procedures in two different
locations (denoted as A and B, respectively). The spatial layout
of our system in location A and an example vehicle trace are
shown in Figure 3a and Figure 3b, respectively. The system
layout and vehicle trace in location B are determined similarly.

B. Evaluation of Dynamic Model Selection

We first experiment with the model selection algorithm
using our vehicle classification system on location B. In this
experiment, we adopt one acoustic signal based model and one
seismic signal based model to make predictions. The ground
truth label for each data point is revealed to the twin after
the prediction is made for this data point. In this experiment,
we reveal ground truth to the twin manually. In a real de-
ployment, ground truth might come from a calibration service
(e.g., reliable camera-based classifier) that is available (for
calibration purposes) to the twin but not otherwise available
for the deployed system. As described in Section III-A, the
digital twin dynamically selects which one of the models to
trust based on the latest available ground truth label and the
models’ corresponding predictions. The calibration service is
deployed for nearly 600 seconds in total. To further examine
the effectiveness of our model selection algorithm under severe
environmental conditions, we introduced additional simulated
wind noise from 150 seconds to 370 seconds.

The experiment results are shown in Figure 4, we can see
that the dynamically selected trusted model achieves steadily
high accuracy and outperforms both of the individual models
most of the time. In contrast, the accuracy of the seismic model
is unstable throughout the experiment, while the accuracy of
the acoustic model is steadily high in the quiet environment
but drastically decreases in the presence of wind noise. The
results show that our model selection algorithm can stably
identify the more trustworthy model dynamically, even in
severe environmental conditions, and consequently improve
the overall prediction accuracy of the system.

C. Evaluation on Inference Latency Profiling

In the following experiment, we explore the latency-
accuracy trade-off across various models within our vehicle
classification system, employing the identical experimental
setup, location, and the two neural network models outlined
in Section IV-B. Throughout the experiment, simulated wind
noise was introduced to assess our system under severe en-
vironmental conditions. For comprehensiveness, we profiled
the two neural network models and the selected trusted model
described in Section IV-B. All models originally operated on
a latency of 1000 ms. Models with latencies larger than 1000
ms are created by performing temporally ensemble on original
model predictions of recent seconds.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on April 16,2025 at 14:27:07 UTC from IEEE Xplore.  Restrictions apply. 



(a) Experimental setup and spatial layout of our vehicle classification system.
8 Raspberry Pi nodes with sensors and batteries are deployed uniformly on
the sides of the field and are connected by an 802.11 router.

(b) Exemplar vehicle trace. The vehicle is passing by
Node 3 (marked as red), which can be seen from both
target point of view and external view.

Fig. 3: Experimental setup of the vehicle classification system and an exemplar vehicle trace.

Fig. 4: Comparison of the classification accuracy of different methods. Classification accuracy at each time point is calculated
over the past 30 seconds. We introduced simulated wind noise from 150 seconds to 370 seconds.

The results, displayed in Figure 5, reveal that models with
higher latency tend to achieve higher accuracy for all three
model families, which is an expected outcome given the
broader temporal information base for the models with larger
latency. Notably, the selected model consistently outperforms
the individual models at all latency levels, validating the effi-
cacy of our model selection algorithm. However, the accuracy
of the selected model plateaus at higher latencies, underscoring
the possibility and importance of selecting a model with
an optimal latency level. For instance, one may choose the
selected model with a latency of around 2000 ms for a real-
time vehicle classification application to deliver satisfactorily
accurate predictions at the cost of a tolerable time delay.

D. Evaluation on Failure Detection and Failover

In the following experiments, we implemented our failure
detection and failover mechanisms described in Section III-C
within our vehicle classification system in location A. These
experiments involved three neural network models serving
as classifiers: 1) classifier-geo, which requires only seismic
signals; 2) classifier-mic, which requires only acoustic signals;
and 3) classifier-both, which utilizes both acoustic and seismic
signals and yields higher accuracy than the former two models.
In healthy states, each node operates one of these classifiers

Fig. 5: The trade-off between classification accuracy and
inference latency for different methods.

based on the available sensor data. classifier-both should be
selected if both sensors are operational; otherwise, either
classifier-geo or classifier-mic should be selected depending
on which sensor remains operational.

In this particular application, we abstract the most common
issues encountered during vehicle classification system oper-
ations into two categories: service failure and node failure.
Service failure is defined as any discrepancy between available
sensor signals and the running classifier, which may be caused
by a change in sensor availability or a failure of the classifier
process. An example of service failure is shown in Figure 6.
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Based on Section III, we specifically designed two failover
mechanisms for service failure: 1) for service failure caused
by the change of sensor availability, we replace the current
classifier on the corresponding node with the appropriate
classifier, as illustrated in Figure 7; 2) for service failure
caused by the failure of the classifier process, we identify a
node with extra computational power to run a backup classifier.

The node failure in our application is defined as the failure
of the entire Raspberry Pi or all equipped sensors, which
may be caused by a power outage. The corresponding failover
mechanism is to activate a standby node to replace the failed
one. The failure and failover process is depicted in detail in
Figure 8.

We conducted two experiments to evaluate the empirical
performance of our failover system. In the first experiment,
we inject four service failures on different nodes at different
time points, as detailed in Table III. The result is shown in
Figure 9 (left). We can observe that, after the first injected
failure, the number of correct classifications of the system
with failover is consistently higher than the system without
failover. Besides, the number of correct classifications of the
system with failover grows linearly throughout the experiment,
showing that our failure detection and failover mechanism
successfully addressed all injected failures and consistently
brought the system back to a healthy state.

In the other experiment, we injected 2 node failures on dif-
ferent nodes, which are also listed in Table IV. We can observe
from the result shown in Figure 9 (right) that the system with
failover also achieves a consistently higher number of correct
classifications than the system without failover. Similarly, the
number of correct classifications for the system with failover
also grows linearly a period after the injection of the failures,
which also indicates the effectiveness of our failure detection
and failover mechanism.

When Service Failure Causes Failover

342s node7/mic disabled node7/classifier-both → node7/classifier-geo
458s node3/geo disabled node3/classifier-both → node3/classifier-mic
462s node6/classifier-both failed node6/classifier-both → node4/backup/node6/classifier-both
522s node5/mic disabled node5/classifier-both → node5/classifier-geo

TABLE III: Service failures injected during the experiment.
The experiment lasts for 1800 seconds.

When Failed Node Failover

152s node5/* node5/* → node6/*
212s node7/* node7/* → node4/*

TABLE IV: Node failures injected during the experiment. The
experiment lasts for 1800 seconds.

V. RELATED WORK

The concept of the digital twin originated from NASA’s
early simulations of spacecraft systems, where mirroring phys-
ical systems in a digital framework allowed for effective man-
agement of complex operations [1]. Digital twin technology

Fig. 6: Illustration of an example of service failure in our
vehicle classification system. The microphone attached to node
7 is unplugged, making the acoustic signals inaccessible. The
currently running classifier-both can no longer process the
data, arriving at a service failure.

Fig. 7: Illustration of a service failure and corresponding
failover mechanism. The microphone is disabled, rendering
the current classifier classifier-both unusable and consequently
causing a service failure. The service failure is then addressed
by switching the classifier-both to classifier-geo.

bridges the physical and digital worlds by collecting real-time
data from embedded sensors and other sources, which are
then used to simulate the physical counterpart in a virtual
environment. Examples include OpenTwins [8], a versatile
framework that supports real-time data streams and machine
learning predictions via its Kafka-ML integration; Mobility
Digital Twin (MDT) [19] for transportation and mobility
services; uDiT [10], a digital twin architecture designed to
enhance the dependability of Cyber-Physical Systems (CPS)
through distributed cooperation and data-centric communica-
tion middleware; a digital twin middleware [20] based on
the YANG data model, designed to enhance communication
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Fig. 8: Illustration of a node failure and its corresponding failover process. The battery is unplugged from node 7, which
deactivates the entire node, causing a node failure. Standby node four is then activated to replace node 7.

Fig. 9: Number of correct classifications over time in the
presence of service failures (left) and node failure (right) with
and without digital twin controller.

efficiency between IoT devices and their digital twins in smart
farming; Eclipse Ditto [9] an open-source framework that
facilitates the digital representation of physical objects on
the Internet of Things (IoT), and others. These frameworks
primarily emphasize efficient communication and modeling,
with some incorporating data-centric pub/sub systems [8, 10]
or hierarchical namespace support [8, 9]. In contrast, we focus
on the integration of twin control and management functions
with a microservices-based system abstraction, allowing flex-
ible twin-based orchestration of system behavior.

Existing work explores the use of digital twins for op-
timizing deep neural network workloads and for anomaly
detection, but not within a general and integrated control plane
setting. For example, prior work [21] investigates the use of
digital twins to offload deep neural network (DNN) inference
workload to servers in the Industrial Internet of Things (IIoT).
Another framework [13] leverages the Digital Twin concept
to enable real-time health monitoring and anomaly prediction
by merging historical and real-time data processing at the
network edge. Some efforts [22] propose a flexible framework
that leverages both digital twins and data-driven techniques
to detect and classify anomalous behaviors, which can occur
due to modeling errors or faults in the physical system. In
contrast to these specialized functions, our approach centers
on a general design for system control and optimization. The
optimization examples in the paper entail model selection
and latency optimization rather than offloading. Additionally,

the paper illustrates a failover example that showcases the
flexibility and extensibility of the proposed control plane
design.

VI. CONCLUSION

In conclusion, this paper introduces a novel content-centric
control plane design tailored for digital twin systems in edge
AI applications. By meticulously crafting the namespace, our
approach tackles key challenges in control plane development,
including interoperability, robustness, and coordination. The
proposed digital twin system boasts a structured namespace
alongside a lightweight client library equipped with versatile
pub/sub-based communication middleware. Our control plane
implementation excels in monitoring system states and exe-
cuting a variety of value-added analyses and optimizations.

To demonstrate the practicality and effectiveness of our pro-
posed system, we implemented a multi-node multi-modality
vehicle classification application. Through field deployment,
we showcase how our digital twin system enhances inference
latency, classification accuracy, and robustness in the face of
environmental dynamics and system failures, particularly in
noisy and challenging conditions. This study underscores the
potential of content-centric control plane designs in advancing
edge AI applications and highlights the tangible benefits they
offer in real-world scenarios.
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