
Model-driven Geo-Elasticity In Database Clouds

Tian Guo Prashant Shenoy
College of Information and Computer Sciences

University of Massachusetts Amherst
{tian,shenoy}@cs.umass.edu

Abstract—Motivated by the emergence of distributed clouds,
we argue for the need for geo-elastic provisioning of application
replicas to effectively handle temporal and spatial workload
fluctuations seen by such applications. We present DBScale, a
system that tracks geographic variations in the workload to
dynamically provision database replicas at different cloud lo-
cations across the globe. Our geo-elastic provisioning approach
comprises a regression-based model to infer the database query
workload from observations of the spatially distributed front-
end workload and a two-node open queueing network model
to provision databases with both CPU and I/O-intensive query
workloads. We implement a prototype of our DBScale system
on Amazon EC2’s distributed cloud. Our experiments with
our prototype show up to a 66% improvement in response
time when compared to local elasticity approaches.

Keywords-Distributed Clouds; Database Elasticity

I. INTRODUCTION

Cloud platforms are increasingly popular for hosting web-
based applications and services. Studies have shown that
more than 4% of Alexa top million websites [1] are now
hosted on cloud platforms and these contribute to more than
1% of the Internet traffic. Cloud platforms come in many
flavors. Today’s Infrastructure-as-a-service (IaaS) clouds
support flexible allocation of server and storage resources
to their customers using virtual machines (VMs). Recently
Database-as-a-service (DBaaS) clouds have become popular
as a method for hosting databases for cloud applications. In a
DBaaS cloud, a customer leases a database from the cloud
provider for storing and retrieving their data and offloads
the tasks of managing and provisioning (“right-sizing”) the
database to DBaaS cloud provider. Since the application
provider no longer needs to deal with the complexity of
scaling their database to dynamic application workloads,
DBaaS clouds simplify the task of building cloud applica-
tions. In such a scenario, a multi-tier web application is built
by hosting the front-end tiers on servers leased from an IaaS
cloud, while the back-end database tier of the application is
hosted on a DBaaS cloud. A key benefit of IaaS and DBaaS
cloud platforms is their ability to provide elasticity, where
the cloud platform dynamically and autonomously scales the
capacity allocated to the application or database tiers based
on observed workload dynamics.

A concurrent trend is that today’s cloud platforms are
becoming increasingly distributed by supporting data centers
in different geographic regions and continents. For instance,
Amazon’s EC2 and Microsoft’s Azure offer a choice of
eleven and seventeen global locations to their customers
today. Distributed clouds are especially well suited for
deploying cloud applications that service a geographically
diverse workload. For such applications, a distributed cloud
platform enables application replicas to be deployed at dif-

ferent cloud locations so that users can be serviced from the
nearest cloud replica for the best performance. Studies [2]
have shown that such geo-distributed application see geo-
dynamic workloads, where the workload sees both spatial
and temporal fluctuations. Thus, in addition to well-known
temporal fluctuations such as time-of-day effects or seasonal
fluctuations [3] [4], the application sees spatial fluctuations
where workload volume in one geographic region (e.g.,
North America) fluctuates independently of the workload
volume seen from other regions (e.g., Asia or Europe).
We argue that local cloud elasticity mechanisms that are
designed for handling temporal fluctuations in the workload
are not well suited for handling spatial fluctuations seen
in today’s geo-distributed applications. For instance, if an
application that is deployed in two locations, say North
America and Europe, sees a spatial increase in workload
volume in Asia, current elasticity mechanisms will attempt
to increase the provisioned capacity in the existing locations,
whereas the proper response is to deploy new replicas in
Asian cloud locations.

To address the specific needs of geo-distributed
applications, in this paper, we argue for the need to
support geo-elasticity mechanisms that can handle both
the temporal and spatial variations in the workload. A
geo-elasticity mechanism handles temporal changes by
varying the provisioned capacity locally and handles spatial
changes by provisioning replicas across regions and at
new locations. Our paper specifically targets Database-
as-a-service (DBaaS) clouds and focuses on designing
a geo-elasticity mechanism for DBaaS clouds. (Refer to
Fig. 1 for a high level illustration.) We identify four key
challenges in designing geo-elasticity for DBaaS clouds.
First, since the database tier of the application only sees
the traffic from the front-end tier and does not directly see
the end-user traffic, inferring the geographic distribution of
database workloads and the associated spatial fluctuations
is more challenging than for front-end tiers. Second, prior
work on dynamic provisioning [5] has often assumed that
the database tier is well provisioned and not a bottleneck. As
a result, models for provisioning the front-end application
tiers often assume that CPU is the bottleneck resource.
Such models may not be well-suited for database tiers as
database can either be compute-intensive or I/O-intensive,
or a mix of the two, depending on the computational and
I/O demands of database queries. Third, when a DBaaS
cloud provisions database replicas, the task of maintaining
consistency across replicas needs to be handled. Database
consistency is a complicated task, especially in the presence
of WAN replicas. Our approach provides application
the flexibility to choose an appropriate method—either

2015 IEEE 12th International Conference on Autonomic Computing

978-1-4673-6971-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICAC.2015.46

61

Client

Client

Client

... ...
Web Web Web... ...

... ... DB DB DB

Distributed IaaS Clouds

Distributed DBaaS Clouds DBScale

Monitored Data

Provisioning Results

Distributed
Workload

Figure 1. Geographic replication of a multi-tier application’s backend tier
in distributed clouds using DBScale.

batched updates or more complex configurations such as
master-slave or multi-master—for maintaining consistency.
Finally, the database tier needs to coordinate its geo-elastic
decisions with the front-end to maximize the overall benefits
for the multi-tier application.
Contributions. In this paper, we present DBScale, a system
for implementing geo-elasticity in a Database-as-a-service
cloud. Our system is able to take a global view of the
application workload to provision an appropriate number
of replicas across cloud locations and also to efficiently
provision new database replicas in previously unsupported
regions when needed. In designing and implementing
DBScale, we make the following contributions:
1. We propose a regression-based technique that uses the
observed geographic distribution of the workload seen
by the front-end tier to infer the resulting geographic
distribution of the queries seen by the database tier. This
regression model is used as the basis to predict future
spatial workload for geo-elastic provisioning.
2. We present a technique that models each database replica
as a two-node open queueing network with feedback, with
the CPU modeled as a M/G/1-PS node and the disk modeled
as a M/G/1-FCFS node. In doing so, our model is able to
handle both CPU- and I/O-intensive query workloads seen
by database replicas and forms the basis for provisioning
capacity within the database tier.
3. We propose our DBScale geo-elastic algorithm for
DBaaS cloud using our regression-based workload model
and our queueing-based resource model for database
replicas. We implement a prototype of DBScale on Amazon
EC2’s distributed clouds to track application workloads,
predict spatial fluctuations, use empirical measurements in
conjunction with our models to compute capacity needed
across cloud locations, and replicate, terminate or configure
databases based on the provisioning results using public
cloud APIs.
4. We conduct detailed experimental evaluations of
DBScale using the Amazon EC2’s global cloud platform.
We compare the effectiveness of the geo-elasticity approach
to using only local elasticity approach and also compare the
use of geo-elasticity approach to a centralized approach that
uses a distributed cache. We also demonstrate the efficacy
of coordinating DBScale’s backend provisioning decisions
with those of the front-end tiers. Our results show a 55.03%
improvement in mean response time when compared to
local elasticity, a 66.22% benefit due to coordination, and a
35.8% benefit when compared to a caching-based approach.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we first provide a background on dis-
tributed database clouds and then describe the application
model assumed in our work and the specific problem of
geo-elasticity in DBaaS clouds addressed in this work.

Distributed Database Clouds. Our work assumes
a Database-as-a-service cloud that allows application
providers, also referred to as tenants, to lease one or more
databases from the cloud platform. The DBaaS cloud
provides SLAs on the performance (e.g., response times)
seen by the application and handles the task of configuring
and provisioning sufficient capacity for each tenant. Just
as IaaS clouds support server instances of different sizes
(e.g., small, medium or large servers), a database cloud also
supports different types of database tenants. Small tenants,
who have smaller storage and workload requirements, are
hosted using a shared model where multiple small tenants
share the resources of a single physical server. Large
tenants, on the other hand, are hosted using a dedicated
model, where each tenant is allocated all the resources of a
physical server to support larger database or more-intensive
workloads. The DBaaS cloud itself can be implemented
on top of a IaaS cloud where database tenants are housed
in virtual machines (“server instances”) of the IaaS cloud.
While we assume such a virtualized environment for ease
of prototyping, our approach could be easily generalized to
non-virtualized setting. We assume that the DBaaS cloud
is distributed and offers a choice of multiple locations to
each application provider. Thus, an application may choose
a particular cloud location that is best suited to its needs or
a set of locations where application replicas are placed.

Application Model. Our work focuses on multi-tier web
applications that consist of a front-end web tier and a
backend database tier. We assume that the front tiers (HTTP
and application tiers) are hosted on servers of a IaaS cloud,
while the backend tier runs on a database in a DBaaS
cloud. For simplicity, we assume that application uses a
single cloud provider that provides IaaS and DBaaS services.
This assumption allows the front-tiers and the backend
tier replicas to be hosted in the same data center of that
cloud provider at each location where the application has
a presence. We assume that the multi-tier application has
users that are spread across multiple geographic locations
and hence it services a geographically diverse workload. Fur-
ther, in addition to temporal variations such as time-of-day
effects, such a geographically diverse workload is assumed
to exhibit spatial variations, where the workload volume
from different regions may vary independently (e.g., due to
regional events or regional differences in the popularity of
the application). We assume that the database tier (and the
multi-tier application itself) is geo-distributed, with replicas
in different regions, to handle the geographically diverse
workload. Since the database tier is replicated, both within
a particular cloud location and across locations, maintaining
consistency of the backend replicas is an important issue.
We assume that the consistency policies and mechanisms
implemented by the backend tier (and the DBaaS cloud)

62

are dependent on the application’s needs. In case of pre-
dominantly read-intensive database query workloads, such
as those seen by databases hosting product catalogs of
e-commerce store, a relaxed consistency technique may
suffice, where the product catalogs replicas are updated
periodically in batched mode. In other scenarios, where
stricter consistency is desired, database replicas may need
to be organized in a master-slave WAN configuration or
a multi-master configuration1; these approaches will incur
higher overheads, especially in WAN settings.
Geo-elasticity. Consider a distributed DBaaS cloud that
hosts the database tier of geo-distributed multi-tier appli-
cation as described above. The cloud platform is assumed
to implement elasticity mechanisms where the number of
database replicas of the tenant application is scaled up or
down in response to workload dynamics. However, given the
geographically diverse workload, simply scaling the number
of replicas at a given location is insufficient; the distributed
DBaaS cloud needs to consider where the workload increase
or decrease occurs and decide how many replicas are needed
at each cloud location where the application has been
deployed. If the application sees traffic from new geographic
locations, the cloud platform will need to provision replicas
in new locations. Such elastic provisioning of capacity
within and across cloud locations to handle both temporal
and spatial workload fluctuations is referred to as geo-
elasticity. Provisioning of additional replicas, whether within
an existing data center or at new data center, must be efficient
since it involves substantial copying of disk state. Further,
such provisioning may need to be coordinated with elasticity
mechanisms at the front-end tier since it is advantageous
to also provision a front-end replica at a new site when
provisioning a backend database replica.

Formally, given a DBaaS cloud with N locations, let
〈r1, r2, . . . rn〉 denote the front-end workload from users
in each of those N geographic regions. Then given this
observed front-end workload, we must first infer the spatial
distribution of the database query workload seen by the
backend tier as 〈λ1, λ2, . . . λn〉 where λi database queries
are generated by the ri front-end requests at location i.
Given this query workload distribution, the goal of the geo-
elasticity algorithm is to determine the number of database
replicas to provision at each location 〈d1, d2, . . . dn〉, where
di denotes the number of database replicas at location i. If
di �= d′i where d′i denotes the current number of database
replicas at location i, then |di − d′i| additional replicas need
to be provisioned (or deactivated) at location i. If d′i = 0,
then location i is a new location for the application (i.e.,
application does not have any replicas at this site presently)
, and di new database replicas need to be placed at this
geographic location.
DBScale Architecture. Fig. 2 shows the design of DBScale.
It dynamically provisions databases in cloud locations that
see temporal and spatial variations of user workload. We
explain in details about monitoring and predicting geo-
dynamics database workload in Section III, queueing-based

1Percona and EnterpriseDB both provide multi-master replication.

DBScale

Workload
Monitor

Geo-Elastic
Coordinator

Data

Workload
Forecaster

Resource
Provisioner

Provisioning
Engine

Geo-elastic Algorithm

Performance
Monitor

IaaS Cloud

Global
DNS

Consistency
Engine

Geo-elastic Actuator

DBaaS Cloud

Figure 2. Key components of the DBScale architecture.

model that handles CPU-intensive and I/O-intensive work-
loads in Section IV and step-by-step procedures to provide
geo-elastic database clouds in Section V.

III. REGRESSION-BASED PREDICTION FOR

GEO-DYNAMIC DATABASE WORKLOAD

To obtain the temporal and spatial database workload, it
is usually not enough to just monitor the backend database
workload. This is because queries that are sent to the back-
end do not contain the end-users’ IP addresses. In this
section, we introduce our regression model that enables
DBScale to predict both the temporal and spatial workload
changes that will be seen by the database tenants by observ-
ing the front-end workload.

Assume that there are N cloud locations and the applica-
tion presently has replicas at k sites. We first aggregate the
front-end request logs from all k locations; the request logs
are assumed to include the IP address of the end clients that
issued the request. The aggregated log, which represents the
global workload of the application, is then processed by IP
Geolocation techniques to determine the geographic location
of each request.2 The geographic location of each request is
then mapped to the nearest cloud location, irrespective of
whether the application has an active replica at that site.
This process effectively partitions the global workload of
the application into N bins and yields a request rate vector
〈r1, r2, . . . , rN 〉 that represents the workload spatial distribu-
tion across various clouds. Given the front-end workloads,
we wish to infer the database query rates 〈λ1, λ2, . . . λN 〉
that would be seen at those N locations.

Since each front-end request triggers one or more database
queries, hence the front-end requests and the backend
queries seen within each observation interval T are cor-
related and we attempt to learn these correlations using
regression techniques. We use Equation 1 to capture the
relationship between request rate ri seen at location i and
the query rate λi that it triggers.

λi = airi + bi, i = 1, 2 . . . N (1)

where the term ai captures the linear relationship and bi
is an error term. Let us define a binary indicator variable
Xij :

Xij =

⎧⎪⎨
⎪⎩
1 if requests from ith region is served

by jth cloud location.

0 Otherwise.

2IP Geolocation is a technique that infers user’s geographic location from
IP address. We use MaxMind GeoIP2 [6] for this task.

63

We can then express the actual query rate seen by the
back-end tier at the active cloud location j, λ′j , in terms of
the unknown query rate λi as in Equation 2.

λ′j =
N∑
i=1

Xijλi j = 1, 2, . . . k (2)

Combining Equation 1 and Equation 2, we obtain the
multiple linear regression model in Equation 3. (The regres-
sion model is illustrated in Fig. 3a with known parameters
marked in green and unknown in red.)

λ′j =
N∑
i=1

Xij(airi + bi)

=
N∑
i=1

airij +
N∑
i=1

bij (3)

where rij and bij denote the amount of front-end work-
load from region i that is served in cloud location j as well as
the corresponding error term. For each active cloud location
j, we can then use Least Squares Regression3 to obtain
corresponding coefficients âi (that satisfies Xij = 1) and the

collective error term b̂′j using data from each measurement
interval T that minimize the error ε as in Equation 4.

ε =

√√√√ T∑
t=1

(N∑
i=1

âirijt + b̂′j − λ′jt
)2

(4)

To approximate b̂i, we use wi < 1 to denote its fraction
in the collective error term b̂′j , e.g. we could set wi = 1

n
if requests from n locations are observed in location j,
and assign b̂i = wib̂

′
j . The resulting regression model

(âi, b̂i) for ith location then allows us to simply take the
spatial workload seen by the front-end and use the model to
estimate the geographic query workload that will be seen by
the backend tier. The future workload can be predicted using
the time series of the front-end workload emanating from a
location i as 〈ri(t − M), ri(t − M + 1), . . . ri(t)〉, where
M represents the historical time window, and using any
standard time series prediction technique, such as ARIMA
models [7] to predict the workload in the next interval as
r̂i(t+ 1) and the regression model can be used to estimate

the future backend workload λ̂i(t + 1) from each location.
The predicted query workload is then used as a basis to
provision database capacity in a geo-elastic manner.

IV. QUEUEING-BASED DATABASE PROVISIONING

Given the predictions of the query workload at vari-
ous locations, the DBaaS cloud employs a queueing-based
capacity model to determine the number of replicas to
provision to handle the incoming workload. Queueing-based
models have been used previously for dynamic resource
provisioning [5] [8] [9], but these are designed for pro-
visioning front-end tier where CPU is assumed to be the
bottleneck resource. In contrast, the database tier may see

3Other regression techniques could be applied here as well, such as robust
linear model with Huber loss function or TukeyBiweight.

r1j

rNk λNj

λ1j

λ′jr′j
Web Servers DB Servers

(a) Regression-based model for jth cloud site.

Database Server

CPU I/O
λ pio

(b) Single database
server Queueing model.

Figure 3. Model-driven geo-elastic approaches. We perform regression-
based prediction for each database cloud location to obtain the peak
database workload. For estimating the per-server capacity at location j,
we model the server as a two-node open queueing network.

CPU-intensive or I/O-intensive queries, or a mix of the
two, and may need models to consider the impact of both
resources; prior modeling approaches that mostly focus on
the CPU are not well suited for this scenario. We present
a database-specific queueing-based model that can handle
both CPU-intensive and I/O-intensive workloads.

We model the database tenant replica (on a dedicated host)
as a two-node open queueing network with feedback, where
the CPU is modeled as a M/G/1-PS node and I/O device as
a M/G/1-FCFS node as in Fig. 3b. The queueing network
captures the processing of a query which involves disk I/O to
read data from database and CPU processing to process the
data and execute the query. We use a recent result from the
queueing literature [10] to derive an approximation of the
mean sojourn time spent by the query on the CPU and the
disk for such a two-node queueing network. Let us denote
E[Tcpu] and E[Tio] as the mean sojourn CPU and I/O time,
respectively. Then the result states that:

E[Tcpu] =
s̄cpu

(1− pio)(1− ρcpu)

E[Tio] =
pio

1− pio

[s̄io
1− ρio

+
p(s̄

(2)
io − 2s̄2io)

2(1− ρio)
λ
]

(5)

where s̄cpu and s̄io denote the average service time of CPU
and I/O queues; ρcpu and ρio denote the average utilization

of CPU and I/O queues; s̄
(2)
io is the second moment of the

service time distribution of I/O queue and pio is the query
visit ratio to the I/O.

The mean sojourn time E[T] of database queries is then
the sum of time spent in CPU and I/O queues, i.e., E[T] =
E[Tcpu]+E[Tio]. Since the total time spent by the query in
the database tier has to satisfy the SLA y, which we define to
be the 95th percentile response time, E[T] needs to satisfy
the constraint αT (95) < y. For the 95th percentile, we have
E[T] < y

3 . 4 Hence E[Tcpu] + E[Tio] <
y
3 , and Equation 6

yields an upper bound on the maximum query rate λc
i that

can be handled by a single database replica at location i
without violating the SLA:

λc
i ≤

2y
3 (1− p)(1− ρio)− 2s̄cpu

1−ρio

1−ρcpu
− 2ps̄cpu

p2(s̄
(2)
io − 2s̄2io)

(6)

Obtaining Model Parameters. In order to acquire all
the model parameters for estimating E[T], we need to

4For a general distribution, we can utilize Markov Inequality to obtain
αT (95) ≤ 20E[T]. Here we assume an exponential distribution for
response times, which yields a tighter bound.

64

empirically measure the CPU utilization, I/O utilization
(using Linux tools such as sysstat) as well as the per-query
log that includes the query timestamp and query execution
time(by turning on MySQL slow logging and setting the
long query time to 0 to record every query executed). We
can directly estimate ρcpu from the CPU utilization log at a
predefined time granularity, database query arrival rate λ by
processing the per-query log and s̄io and λio from the I/O
utilization log. pio is estimated as λio

λ+λio
. Since we do not

have easy access to s̄cpu and ρcpu, we approximate these
two parameters by using little’s law as s̄cpu =

ρcpu

λ+λio
and

ρio = λios̄io. It is important to note that the measurement
data are an overestimate due to the extra logging overhead
as well as the resource interference. Finally, to model the
database replica for a new datacenter location, we use the
average of the measured statistics across all available data
centers as an initial approximation.

V. GEO-ELASTIC PROVISIONING ALGORITHM

In this section, we describe how DBScale utilizes the
workload monitoring and predictions and the queueing-
based model to implement the geo-elastic provisioning al-
gorithm. The provisioning algorithm is invoked periodically
or when SLA violations are observed.
Step 1: Where to provision? As discussed earlier, DBScale
tracks the query workload emanating from a geographic
region associated with each of the N cloud locations. Based
on these measurements and future predictions, we decide
where (i.e., which subset of these N locations) to place
replicas. The decision of whether to place a replica at a cloud
site will depend on whether there is sufficient user traffic
from that region. We sort the cloud locations in increasing
order of workload volume and use a simple threshold-based
approach to make this decision—if the query workload
volume at a location i is less than a low threshold τ , then no
replica is placed at that location. Instead, workload from that
region is reassigned to the next closest cloud location and
the process is repeated. At the end of this process, we are
left with a subset of regions that have sufficient workload to
justify placing one or more replicas at each site.
Step 2: How much to provision for each location? We
recompute the workload vector λ̂ obtained from Sec III so
that λ̂i comprises the workload from its geographic region
and the workload that has been mapped to this location from
other regions as a result of the above step. If a decision was
made to not place a replica at a location i, λ̂i is set to 0.
Next we use the empirical measurements of workload λ̂i

to estimate parameters for our queueing model and use the
model to compute the maximum query rate λc

i that can be
handled by a single replica while meeting the SLA y. Given
this capacity of a single database replica, the number of
replicas di needed at this location is computed as:

di = � λ̂i

λc
i

� (7)

If the number of replicas di differs from the value d′i com-
puted in the previous time interval (i.e. current provisioning),
|di−d′i| more replicas need to be provisioned or deactivated

at this location. If d′i = 0, this indicates that location i has
been newly chosen to provision database replicas.
Step 3: Coordinating with front-end tier. While the
DBaaS cloud can make independent provisioning decisions,
coordinating with the front-end tier by informing it of the
decisions that have been made is desirable. For example, if
the DBaaS cloud decided to place a replica at a newly chosen
location, the front-end tier must be informed so that it can
provision a front-end replica at that site to take advantage
of the new database replica. Similarly, the front-end tier
may decide to geo-elastically place a replica at a new cloud
location that previously lacked application presence, and it
needs to inform the backend tier to “force” the provisioning
of a database replica at that site regardless of the backend
provisioning decisions.
Step 4: How to provision database replicas? To provision
a new replica, we first make a hot backup from an existing
replica using a hot backup tool. (e.g., we use XtraBackup5

for MySQL database) The hot backup tool produces a
consistent point-in-time snapshot of the database without
interrupting normal database processing at that replica. Then
the snapshot is transferred to a DBaaS cloud server that
will host the new replica. In the case where a new cloud
location is chosen, the snapshot is transferred over WAN to
this site. The snapshot is loaded into the database by using
the hot backup tool’s crash recovery feature. If any updates
are made to the database replica in the meantime, DBScale
use an offline approach that acquire a read-lock on current
replicas, fetch write queries and apply them to the newly
provisioned replica(s). An alternate online approach is to
make the new replica a slave and have it receive updates
from an existing master (while this approach is suitable for
master-salve configurations within a data center, doing so
will incur higher overheads for master-slave configuration
that run over WAN).

We note that the provisioning latency of backend servers
might be hours if the data size to be copied is large. To
alleviate the problem, we propose to archive one copy of
up-to-date snapshot in every data center location by period-
ically transferring new snapshots from the running database
servers. And at provisioning time, we only need to copy the
difference between the new snapshot and archived snapshot
and use it as a basis to start the database in that location.
By using this optimization, we can better synchronize the
provisioning time of front-end and back-end servers and
quickly use the new servers to service workload increases.

VI. DBSCALE IMPLEMENTATION

We have implemented a prototype of DBScale on Amazon
EC2’s distributed clouds. We assume that our DBaaS cloud
is implemented using IaaS servers where database replicas
run on servers leased from the IaaS cloud. Our prototype is
based on the MySQL database platform—that is, database
tenants are provided as MySQL databases by the DBaaS
cloud. Our system is implemented in Python and is depicted
in Fig. 2. Resource usage statistics at the database servers

5http://www.percona.com/doc/percona-xtrabackup/2.2/

65

hosting the tenant replicas are measured using sar and iostat
utilities, which yield the database server’s CPU and I/O uti-
lization. DBScale’s workload monitoring involves gathering
workload statistics from the front-end and backend tiers of
each application tenant. The workload monitoring compo-
nent gathers web server logs from front-end replicas at each
location and aggregates them, as discussed in Section III,
for analyzing the geographic distribution of the workload.
It also gathers database query logs from backend replicas,
which contains informations about each query executed,
including the execution and start time. A system daemon
collects data from various replicas and cloud locations and
transfers them to a central controller, which then stores
them in a SQLite database. These statistics are then used
to construct a regression model as well as a time-series
predictor using Python’s StatsModels library; those models
are then utilized to produce the future peak temporal and
spatial database workload for geo-elastic provisioning. The
provisioning engine implements our queueing-based model
in Python and implements the provisioning algorithm from
Section V to compute the maximum capacity that can be
sustained by a database replica and the number of replicas
needed at each site. The replicas are provisioned using
Amazon’s EC2 command line utilities to start up servers and
database hot backup tools to extract snapshots and load them
into new replicas. Maintaining the consistency of database
replicas is a key task. Our system supports a batched mode
that can be used during maintenance windows; in this case,
updates are made as a batch at replicas in an offline mode
during maintenance downtime. Alternatively, replicas can
be configured in a MySQL’s master-slave configuration and
updates are made to the master and relayed to the slaves.
In this online mode, DBScale picks a database from a
geographical central location and configures it as master
database; the remaining replicas at this and other locations
become slaves. The choice of a specific method depends on
the application’s needs. For example, when used for holding
data such as product catalogs that see largely read queries,
a simple batched update approach may suffice.

VII. EXPERIMENTAL EVALUATION

Experiment Setup. We experimentally evaluate DBScale
on Amazon EC2’s distributed cloud. We use TPC-W [11]
as our multi-tier application; the front-end tier of TPC-
W runs on Apache Tomcat and is hosted on Amazon’s
IaaS cloud. The backend tier of TPC-W is hosted using
a DBaaS cloud that we create on Amazon cloud using
MySQL database servers. DBScale manages the replicas of
each tenant in this DBaaS cloud. Both the front-end and
backend tiers of TPC-W are assumed to be geo-elastic and
replicable both within and across EC2 cloud locations as
needed. To inject geo-dispersed client workload, we run the
TPC-W clients on PlanetLab’s servers that spread across
multiple locations. Client requests from a PlanetLab node
are forwarded to the nearest front-end replica using a custom
DNS-based load redirection. In our experiments, we use
default browsing and ordering workload mix for TPC-W as
well as a modified read-only browsing workload. In the rest

Figure 5. Efficacy of the queueing model. For each database server size,
we compare the empirically measured response times with queueing model
predictions.

of this section, we use this experimental setup to evaluate
the effectiveness of our regression and queueing models, the
overall effectiveness of our geo-elasticity approaches under
various scenarios, provide a comparison with a caching-
based centralized approach and measure consistency over-
head due to our geo-elastic replication.

A. Effectiveness of Our Models

We first study the effectiveness of our regression-based
workload model and queueing-based capacity model. To
conduct our experiment, we set up multiple PlanetLab client
nodes to inject workload to TPC-W application with the
front-end web and back-end database servers hosted in the
EC2 Virginia data center. We vary the workload intensity
by adjusting the number of concurrent clients that connect
to the front-end tier from 10 to 100 in increments of 10.
We collect the necessary logs for training and testing our
regression-based workload model as well as queueing-based
capacity model.

Effectiveness of the Regression Model. We conduct each
experiment run for one hour and repeat it five times each
for different server sizes e.g. small or medium size servers.
Data from the first four runs are used to train the regression
model and obtain the model parameters a and b for this cloud
location,as illustrated in Fig. 3a. We then use the trained
model to predict the database query rate for the final run
and compare the predictions to the empirically measured
database query rates. Fig. 4 shows that our regression
model makes good predictions for different workload mixes
and both prediction intervals. Overall, the regression model
predictions have a mean error of 7.35%.

Efficacy of the Queuing Model. We next use the queue-
ing model that takes the above prediction to compute the
response time (which in turn yields server capacity) on
database servers of different size. For each server size, we
run five 30-minutes experiments and calculate the mean
response time using Equation 5. In Fig. 5, we compare the
average approximation values across five runs to the em-
pirically measured value. We see that empirically measured
response times lie within the 95% confidence interval values
of the model predictions, indicating a good prediction. Only
in case of 2xlarge EC2 servers, where the empirical value
is outside the 95% CI, we see a prediction error of 19%.
In all cases, the model predictions are overestimates of the
response times, indicating that the computed capacity will
be conservative from a provisioning perspective.

66

(a) Browsing: 30 secs. interval. (b) Browsing: 60 secs. interval. (c) Ordering: 30 secs. interval. (d) Ordering: 60 secs. interval.

Figure 4. Comparison of regression-based model predicted rates with empirical measurements. Predicted and actual query rates over time for
the browsing and ordering workload mixes. The shaded areas represent the 95th percentile confidence interval. For both workload types, the prediction
accuracy is higher for a larger prediction window.

Start Provisioning Provisioned WS
1414 secs 62 secs

Provisioned DB

IRL VA

Clients

GER

DBWS

Clients

WS DBWS

IRL VA
Geo-elasticity

IRL VA
Local elasticity

DBWS

WS DBWS

IRL VA
Geo-elasticity

Clients

GER

62 secs

Loosely Coupled Tightly Coupled

DB

Figure 6. Elasticity mechanisms and provisioning policies. We use 10
clients from Germany to inject traffics. It takes 62 seconds to provision
web server and an extra 1414 seconds to provision database server with
10GB data. Web servers are connected to different databases based on the
provisioning policy.

Mean (ms) Std. Dev. (ms) 95% Conf. Int. (ms)
Local Elasticity 169 20 [167.07, 170.93]
Geo-elasticity 76 10 [75.34 , 76.66]

Table I
Comparisons of client response times for different elasticity

approaches. Geo-elasticity provides lower mean response times due to
lower client-server network latencies.

B. Benefits of Database Geo-elasticity

We next conduct experiments to compare local and geo-
elasticity mechanisms and study the performance differences
between loosely and tightly coupled provisioning policies.
Database Geo-elasticity Benefits. Our first experiment
compares local elasticity and geo-elasticity techniques. We
provision the application in the Virginia, USA data center
and inject a light workload from the US. We then start
10 PlanetLab client nodes in Germany, which causes the
application to see traffic from Europe. Both local and geo-
elasticity mechanisms can react to this workload increase
by provisioning additional capacity, as shown in Fig. 6. In
case of local elasticity, the additional capacity is provisioned
locally (within the same Virginia data center location),
while geo-elasticity techniques can provision capacity at any
suitable cloud location. As a result, local elasticity technique
will provision additional database replica (and a front-end
node) at Virginia, while our approach does so at EC2’s
Ireland data center. Once this is done, requests from the
German PlanetLab nodes are routed to the Ireland front-end
and database replicas. Table I shows that the mean client
response time is improved by 55.03% when switching from
local elasticity to geo-elasticity provisioning. This is mainly
due to the 70 ms network RTT reduction, from 100.29 ms to

Figure 7. CDF comparison of client response times for loosely and
tightly coupled provisioning policies. A tightly coupled policy improves
the 95th percentile of response time from 1350 ms to 390 ms when
compared to the loosely coupled policy. Pre-copying improves performance
of the loosely coupled policy.

29.67 ms due to serving European request and query traffic
from an European cloud location in Ireland.

Loosely v.s. Tightly Coupled Provisioning Policy. Next,
we study loosely and tightly coupled provisioning policies.
In the loosely coupled approach, the front-end and backend
tier make independent provisioning decisions, while in the
tightly coupled approach, they coordinate the provisioning of
replicas at both tiers. In our case, provisioning a front-end
node takes only 62s, while provisioning a 10GB database
in the backend tier takes an extra 1414 seconds. (Refer
to Fig. 6.) We repeat the same scenario as before where
as start with the application in the Virginia data center
and inject additional traffic from Europe using German
PlanetLab nodes. In the loosely coupled approach, both tiers
react to this workload and initiate provisioning of a replica
in Europe. However, the front-end replica comes up first and
since the database replica is not ready, it will need to send
its queries to the backend hosted in Virginia Cloud in USA,
incurring a large WAN latency between the front-end and
backend nodes. In the tightly coupled approach, both tiers
wait until replicas have been provisioned before activating
and redirecting user traffic to the Ireland cloud.

Fig. 7 shows that the tightly coupled policy performs
better than the loosely coupled policy with an 71.11% im-
provement of 95th percentile response time. Moreover, most
client requests incur more than 260 ms latency in the loosely
coupled policy. This is caused by a total of 140 ms network
RTT, dominated by the distance between web and database
server, between end-users and the front-end server, and the
fact that single http request might trigger multiple database
queries. Since the tightly-coupled coordinates provisioning
across tiers, the switchover to the new replica takes longer,
but the new replica yields good performance as expected. We
next conduct an experiment to study the potential benefits

67

Distributed Clouds

Clients

......WS

VA IRL

......

PA
Single-Site

DBScale

DB WS DB

(a) Baseline setups: DBScale and
single-site database elasticity.

Distributed Clouds

Clients

......WS

VA IRL

DB......
cache

PA

(100− x)% queries

(b) Set up for x% cache hit rate.

Figure 8. Experimental setup for comparing DBScale to a caching
approach. The front-end tier is replicated and configured with an 1 GB in-
memory cache in the caching approach. We use the same web and database
server types for all the experiments.

Figure 9. CDF comparison of end-user response time of four
different scenarios. A caching approach with 100% hit rate has comparable
performance to DBScale while a 0% hit rate causes performance to be
similar to local single-site elasticity.

of pre-copying database snapshots to the destination cloud
location for both policies. As shown in Fig. 7, since we
only need to copy a delta of 100 MB data to provision the
database in the new location, the CDF of client response time
for loosely coupled policy is improved in the presence of
pre-copying. While pre-copying databases does not impact
the response time distribution in the tightly coupled policy,
it does speed up the provisioning of database replicas and
thus reduce the latency to activate the front-end and backend
replicas at the new location.

C. Comparing DBScale to a Caching Approach

In this experiment, we compare DBScale’s geo-elastic
replication to a caching-based approach. In a caching ap-
proach, we assume that the backend tier is centralized and
present only at a single location. The front-end tiers, on the
other hand, are replicated in various geographic locations.
Since the WAN latency between the front-end and backend
tiers is high, each front-end tier is assumed to employ an in-
memory cache, such as Memcached [12], where recent query
results are stored. In this case, upon receiving a request, the
front-end tier first examines the cache and only issues a
query to the remote backend tier when data is not cached.
By centralizing the backend database, the approach does not
suffer from consistency problems and when hit rates are
high, the geo-replicated front-end tier can service users from
nearby cloud locations. We modified the TPC-W application
so that it always check the in-memory cache first before
accessing the database in the remote cloud location. We
use a small database of 512 MB and allocate 1 GB RAM
for our in-memory cache. We use the browsing workload
mix and pre-profile all the queries and their parameters. We
can control the cache hit rate by pre-loading a subset of
the query results into the cache and controlling the request
mix so that a certain hit rate is achieved. We compare the
caching approach to our geo-elastic replicated approach (see

Figure 10. CDF comparison of end-user response time with increasing
hit rate. As the hit rate increases from 10% to 50%, the 95th percentile
response time improves by 72.18%, from 4780 ms to 1330 ms.

(a) Caching and baselines scenarios. (b) Various cache hit rates.

Figure 11. Comparisons of mean end-user response time. We calculate
the mean response times for read and write requests. In accordance with the
results from Fig. 9 and Fig. 10, DBScale has the lowest mean response time
for all request types. Interestingly, the response times for write requests
improves but flattens out around 1065.4 ms. This is due to a lighter
workload at remote databases together with the inherent network latency.

Fig. 8b) and also provide baseline results for a local elasticity
approach where both front-end and backend tier are housed
at a single site.

In-Memory Cache v.s. DBScale. Fig. 9 provides a CDF
of the end-user response times for the caching-based ap-
proach with DBScale and local elasticity approaches. For
the caching approach, we show the results for two extreme
workloads that achieve cache hit rates of 0% and 100%. A
0% hit rate sees poor response times since the queries sent
by the front-end tier to the remote database see large WAN
latencies. The performance is similar to single-site elasticity
where clients’ requests incur a similar WAN latency to a far-
away application. In contrast, when the hit rate is 100%, the
performance of the caching approach is comparable to the
DBScale geo-replicated application. In both cases, end-client
requests go to a nearby front-end replica and the latency to
obtain query results from a local cache or a local database
are both small.

Impact of Cache Hit Rate. We next inject workloads
that see different cache hit rates for the caching-based
approach. As the hit rate increases from 10% to 50%, the
client response time also improves accordingly as shown
in Fig. 10. This is because the percentage of requests that
avoid a WAN hop to the remote database decreases as the hit
rate increases from 10% to 50%. Importantly, the benefits of
caching only accrue for predominantly read-intensive query
workloads. Queries that make updates will always need to
be sent to the remote database and incur poor response times
as shown in Fig. 11b.

Overall a caching based approach can provide compara-
ble performance to DBScale’s geo-elastic replication when
cache hit rates are high. Performance of the caching ap-
proach suffers significantly for lower cache hit rates or when
a higher fraction of write queries are present in the workload.

68

VA IRLCA

DBScale

DB DB DB

Report
Data

1. Transfering 2. Updating 2.1 Updating Slaves

(a) Batched updates setup.

VA(Master) IRL(Slave 2)CA(Slave 1)

DBScale

DB DB DB

Report
Data

3. Querying status 4. Generating

(b) Online master-slave setup.

Figure 12. Experimental setup for updating databases in different
locations. Updates are first copied to all the cloud locations or the master
database’s location. Then we either take the databases offline for batched
update or configure a master-slave topology for online synchronization.

(a) Maintenance down time. (b) Update 10% of database.

Figure 13. Batched updates Overheads. The maintenance downtime due
to batched updates is impacted by the server capacity, i.e. server size and
the cloud location, and the amount of the data that need to be updated.

DBScale’s geo-replication does not depend on these factors
and yields good performance always (at the cost of needing
consistency maintenance among replicas). Further, we used
an artificially small database in this experiment to understand
the best case scenario for the caching approach. In practice,
database sizes will be much larger than the size of the in-
memory cache, and the actual cache hit rates will depend on
the skew in the query popularity distribution (and the size
of the in-memory cache).

D. Consistency Maintenance Overheads

In our final set of experiments, we evaluate the overheads
of maintaining consistency of database replicas that spread
across transcontinental cloud locations. We compare two
common approaches, i.e. batched and online updates us-
ing MySQL master-slave configuration, to achieve database
consistency. In both experiments (as shown in Fig. 12), we
use TPC-W web application benchmark that is loaded with
13.43GB database.
Batched Updates Overhead. We measure the overhead of
applying a varying amount of updates in batch mode during
offline maintenance windows; the three database replicas are
each hosted separately in Virginia, California and Ireland
data centers, as shown in Fig. 12a. We measure the latency to
apply updates at all replicas and restart all servers. Fig. 13a
shows the mean downtime for applying varying amount of
updates across five runs along with the 95% confidence
intervals. The figure shows that it takes 12.52 minutes to
update 1% of database data on a small server and as much
as 60 minutes to update 10% of the database on a medium
server. In general, the downtime is cut in half as we move
from a small server to medium or large servers. We observe
the capacity differences and slightly different downtimes
even for servers of same types in different cloud locations as
shown in Fig. 13b. These results show that, barring under-
sized small severs, batched updates can be a feasible option

during maintenance windows, which themselves last for a
few hours.
Online Master-slave Maintenance. Finally, we study the
overheads of using master-slave topology for executing
database updates by measuring (i) the impact on mainte-
nance time and (ii) the impact on foreground requests and
client response time. As shown in Fig. 12b, we configure the
database in Virginia as the master database and the other two
as Slave 1 and Slave 2 in California and Ireland respectively.
Read queries are sent to the databases in the vicinity while
write queries are sent to master database. We record the
time to update 1% of database data as well as the end-users
response time using this topology; all the database servers
run on medium-sized servers.

Fig. 14a shows that it takes 6.35 minutes to update 1%
data and as the front-end workload increase, the online
update time increase too. Our observation suggests that in
order to reduce the length of update time, i.e. the impact du-
ration on end-users, we could adjust the database server size
based on end-users’ workload during the online maintenance
phase. To demonstrate the online maintenance activities’
impacts on the end-users’ response time, in Fig. 14b, we
compare the client response time distribution of master
and slaves compared to baseline no writes scenario for
different levels of workload intensity. We observe no obvious
impact on client response time distribution of master-slave
updates approaches at different workload intensity, making
it a feasible solution as well. Specifically, in Fig. 14c, we
show that the 95th percentile response time increases from
400 ms to 560 ms for master and to 595 ms for slaves for
a 50 clients workload at each location.

VIII. RELATED WORK

Distributed cloud platforms have became a popular
paradigm for hosting web applications with dynamic work-
loads [3], [4]. In virtualized cloud, one challenging problem
is to accurately model the resource usages of each VM [13]–
[16]. The problem becomes more noticeable for applications
with bursty workload characteristics [17]. To overcome this
hurdle, recent efforts have attempted to mitigate the impact
of interference either by combining the VMs workloads [18]
or by employing a novel performance prediction model [19].
In our work, we combine measured distributed front-end
workload and a regression-based model to predict the spatial
and temporal variations for the backend database work-
load. Queueing-based models have been used extensively
to model cloud-based applications [5], [8], [9], but most
have focused on front-end servers . An alternative regression
model [20] was proposed to approximate the CPU demand
of complex systems with different transaction mixes. In
our work, we focus on dynamic provisioning in distributed
database cloud and model the database server as a two-
node queueing network with feedback to track both CPU
and I/O utilization. As more database management tasks are
offloaded to the cloud, researchers have begun to focus on
adaptive and dynamic provisioning of database servers based
on SLA [21]–[24]. These efforts on database provisioning
include using models and tools to predict resource utilization

69

(a) Online maintenance Time. (b) Impact on client response time. (c) Client response time CDF.

Figure 14. Impacts of online master-slave on update time and response time distribution. As the workload of end-users increase, we observe a
corresponding increase in the update latency. Also, response time CDF of both master and slaves behaves similarly to the no-writes baseline scenario.

and performance for databases [21], [25], cloning techniques
to spawn database replicas [23], live migration techniques to
horizontally scale up database server [26], middleware ap-
proach to coordinate cloud-hosted applications and databases
without violating SLA [22] and utilizing distributed cloud
platforms for performance-aware data replication [24]. Our
focus here is on geo-elasticity, which is less well studied, and
we propose the DBScale framework to handle geo-elasticity
for cloud hosted databases.

IX. CONCLUSIONS

Motivated by the emergence of distributed clouds, this
paper focused on implementing geo-elasticity for geo-
distributed multi-tier applications that host their backend tier
in DBaaS clouds. We proposed a regression-based model to
infer the database query workload from observations of the
spatially distributed front-end workload and a two-node open
queueing network model to provision databases with both
CPU and I/O-intensive query workloads. We implemented
a prototype of our DBScale geo-elasticity system and con-
ducted experimental evaluations using Amazon EC2 servers
and PlanetLab clients across different continents. Our results
showed up to a 66% improvement in response time when
compared to local elasticity approaches. As part of future
work, we plan to study integrated approaches for geo-elastic
provisioning of different tiers of a multi-tier application.

ACKNOWLEDGMENT

We thank our reviewers for their comments. This work is
supported by NFS grant #1345300, #1229059 and #1422245.

REFERENCES

[1] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and
T. Ristenpart, “Next stop, the cloud: Understanding modern
web service deployment in ec2 and azure,” in IMC, 2013.

[2] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and
S. Venkataraman, “Identifying diverse usage behaviors of
smartphone apps,” in IMC, 2011.

[3] M. F. Arlitt and C. L. Williamson, “Internet web servers:
Workload characterization and performance implications,”
IEEE/ACM Trans. Netw., 1997.

[4] R. Birke, L. Y. Chen, and E. Smirni, “Usage patterns in multi-
tenant data centers: A temporal perspective,” in ICAC, 2012.

[5] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic
provisioning of multi-tier internet applications,” in ICAC,
2005.

[6] “Maximind geoip service,” https://www.maxmind.com/en/
home.

[7] G. E. P. Box and G. Jenkins, Time Series Analysis, Forecast-
ing and Control, 1990.

[8] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning
servers in the application tier for e-commerce systems,” TOIT,
2007.

[9] M. N. Bennani and D. A. Menasce, “Resource allocation for
autonomic data centers using analytic performance models,”
in ICAC, 2005.

[10] O. J. Boxma, R. D. van der Mei, J. A. Resing, and K. M. C.
van Wingerden, “Sojourn time approximations in a two-node
queueing network,” in ITC, 2005.

[11] “The objectweb tpc-w implementation,” http://jmob.ow2.org/
tpcw.html.

[12] “Memcached,” http://memcached.org/.
[13] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao, “Appli-

cation performance modeling in a virtualized environment,”
in HPCA, 2010.

[14] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling
and modeling resource usage of virtualized applications,” in
Middleware, 2008.

[15] L. Cherkasova and R. Gardner, “Measuring cpu overhead for
i/o processing in the xen virtual machine monitor,” in ATEC,
2005.

[16] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Man-
aging performance interference effects for qos-aware clouds,”
in EuroSys, 2010.

[17] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Burstiness
in multi-tier applications: Symptoms, causes, and new mod-
els,” in Middleware, 2008.

[18] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and
D. Pendarakis, “Efficient resource provisioning in compute
clouds via vm multiplexing,” in ICAC, 2010.

[19] G. Casale, N. Mi, L. Cherkasova, and E. Smirni, “Dealing
with burstiness in multi-tier applications: Models and their
parameterization,” in TSE, 2012.

[20] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based
analytic model for dynamic resource provisioning of multi-
tier applications,” in ICAC, 2007.

[21] B. Mozafari, C. Curino, and S. Madden, “Dbseer: Resource
and performance prediction for building a next generation
database cloud.” in CIDR, 2013.

[22] S. Sakr and A. Liu, “Sla-based and consumer-centric dynamic
provisioning for cloud databases,” in CLOUD, 2012.

[23] E. Cecchet, R. Singh, U. Sharma, and P. Shenoy, “Dolly:
Virtualization-driven database provisioning for the cloud,” in
VEE, 2011.

[24] S. P N, A. Sivakumar, S. Rao, and M. Tawarmalani, “Per-
formance sensitive replication in geo-distributed cloud datas-
tores,” in DSN, 2014.

[25] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan,
“Workload-aware database monitoring and consolidation,” in
SIGMOD, 2011.

[26] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr:
Live migration in shared nothing databases for elastic cloud
platforms,” in SIGMOD, 2011.

70

